
Applied Mathematics 120:
Applied linear algebra and big data

FAS course web page: https://canvas.harvard.edu/courses/34260 (Spring 2018)
Last updated: Monday 30th April, 2018, 19:19.

1 Administrative

Instructor: Eli Tziperman (eli at seas.harvard.edu); TFs: Please see course web page.
Feel free to email or visit us with any questions.

Day & time: Tue,Thu 10:00-11:30

Location: Jefferson 250

Office hours: Each of the teaching stuff will hold weekly office hours, see course web page
for times & place. Eli’s office: 24 Oxford, museum building, 4th floor, room 456.

Textbooks, course notes: This detailed syllabus (www.seas.harvard.edu/climate/eli/
Courses/APM120/2018spring/detailed-syllabus-apm120.pdf) contains all the
information about the material used for each lecture, including page or section
numbers from textbooks, and links to course notes. The main textbooks used are:

Str Strang, G., Linear Algebra and its Applications, 4th ed., 2005. [can also use
Introduction to Linear Algebra by Gilbert Strang, Fifth Edition, 2016]

MMD Leskovec, Rajaraman and Ullman, Mining of Massive Datasets, download,

Nielsen Michael Nielsen, online book “Neural networks and deep learning”,

Supplementary materials/ Sources directory: All course notes and Matlab/ python
demos may be found in the Sources directory. To access from outside campus & from
the Harvard wireless network, use the VPN software from the FAS download site.

Course materials are the property of the instructors or other copyright holders, are
provided for your personal use, and may not be distribute or posted on any websites.

Prerequisites: Applied Mathematics 21a and 21b, or equivalent; CS50 or equivalent.

Computer Skills: Programming knowledge is expected, Matlab or python experience
would be particularly helpful. Course homework assignment will involve significant
Matlab or python code writing. You may use either language.

Using Matlab: install Matlab from the FAS software download site. If you need a
Matlab refresher, we recommend the Matlab boot camp, 3-4 lectures during the
beginning of the term; you need to register in advance, see my.harvard.edu.

Using python: Download the anaconda distribution for python version 3.6. Course
demonstrations have been tested using the anaconda “spyder” interface. You may
want to consider the Jupyter notebooks available from the anaconda launcher.
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Sections/ weekly HW help sessions: homework help sessions are held every Monday
5-7pm, the evening before the HW is due, or as advertised on the course web page.
You are strongly encourage to come and work on the homework assignments and on
improving your understanding of the course material with other students and with
the teaching stuff, to ask questions, and to offer help to others.

Homework: Homework will be assigned every Tuesday, and will be due (via electronic
submission, see below) the following Tuesday at 10:00am, unless otherwise noted.
Continuously practicing the lecture material on a weekly basis via HW assignments is
the only way to become comfortable with the subjects covered in the course.

Homework forums on course web page: Please post any questions regarding to
HW to the forums, rather than emailing the teaching staff. You are also strongly
encouraged to respond to other students’ questions on the forum.

Electronic homework submission: Homework assignments must be uploaded to
the Canvas course website. Your submission, including code and figures, must be a
single PDF file, no more than 20 Mb in size. It can be typeset or scanned, but must
be clear and easily legible, not blurry or faint, and correctly rotated. You are
encouraged to use scanners available in the libraries, but a scan using a phone app
(e.g., this) may be acceptable if done carefully. Unacceptable scans could lead to a
rejection of the submission or to a grade reduction of 15%. Late submissions would
be lead to a reduction of 2% per minute after the due time.

Collaboration policy: we strongly encourage you to discuss and work on
homework problems with other students and with the teaching staff. However, after
discussions with peers, you need to work through the problems yourself and ensure
that any answers you submit for evaluation are the result of your own efforts, reflect
your own understanding and are written in your own words. In the case of
assignments requiring programming, you need to write and use your own code, code
sharing is not allowed. In addition, you must appropriately cite any books, articles,
websites, lectures, etc that have helped you with your work.

Quizzes, final, grading: Homework: 40%; three quizzes, tentatively scheduled to

1. Wednesday, February 28, 7-9pm, Geological Lecture Hall 100

2. Wednesday, March 28, 7-9pm, Geological Lecture Hall 100

3. Wednesday, April 18, 7-9pm, split over two locations, see course announcements.

(all in the evening): 30% together; final: 30%. HW and quiz grades are posted to
canvas, you need to check the posted grades and let us know within no more than 10
days if you see a problem; later responses to posted grades cannot be considered.
Please approach Eli rather than the TFs with any issue related to grading.
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2 Outline

Topics in linear algebra which arise frequently in applications, especially in the analysis of
large data sets: linear equations, eigenvalue problems, linear differential equations,
principal component analysis, singular value decomposition, data mining methods
including frequent pattern analysis, clustering, outlier detection, classification, machine
learning, modeling and prediction. Examples will be given from physical sciences, biology,
climate, commerce, internet, image processing, economics and more.

Please see here for a presentation with a review of example applications.

3 Syllabus

Follow links to see the source material and Matlab/python demo programs used for each
lecture under the appropriate section of the course downloads web page.

1. Introduction, overview. sources.
We’ll discuss some logistics, the course requirements, textbooks, overview of the
course, what to expect and what not to expect (presentation).

2. Linear equations. sources.

(a) Notation
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(b) Motivation: matrices and linear equations arise in the analysis of electrical
network, chemical reactions, large ones arise in network analysis, Leontief
economic models, ranking of sports teams (Str§2.5 p 133-134; also Str§8.4),
numerical finite difference solution of PDEs, and more.

(c) Reminder: row and column geometric interpretations for linear equations
Ax = b, aijxj = bi (Str§1.2, 2d example on pp 4-5;
geometric interpretation of linear eqns in 3d.m). Solving linear
equations using Gaussian elimination and back substitution (Str§1.3 pp 13-14).
Cost (number of operations, Str, pp 15-16).

(d) Solution of large linear systems via direct vs iterative techniques

i. Direct method: LU factorization (Str§1.5 pp 36-43, see Matlab demos of
both a detailed hand-calculation for a 3x3 matrix and a using library
routines here. (Optional: More on the theory of LU decomposition and why
the algorithm presented works in chapters 20, 21 of Trefethen and Bau III
(1997)).

ii. Iterative methods: Jacobi, Gauss-Seidel, (Time permitting: SOR) (Str§7.4,
pp 405-409; a code with an SOR example.m, and SOR derivation notes;
convergence is further discussed in notes by RAPETTI-GABELLINI
Francesca, and typically systems based on matrices that are either
diagonally-dominant, or symmetric positive definite, or both, tend to
converge best).

(e) Does a solution exist and is it sensitive to noise/ round-off error? Two examples
from (Str p 70) showing the effects of ill conditioned matrix and of using wrong
algorithm even with a well conditioned matrix. (Matrix norm and condition
number to be discussed later.)

(f) Dealing with huge systems:

i. Special cases: sparse, banded and diagonal matrices (wikipedia and
sparse matrix example.m) [HW: solving tridiagonal systems]. Bad news:
LU factorization of a sparse matrix is not necessarily sparse (Figure and a
an example, LU of sparse matrix.m), so it might be best to use an
iterative method to solve the corresponding linear system of eqns.

ii. Google’s MapReduce (Hadoop) algorithm: general idea (MMD§2 intro, pp
21-22). Examples: calculating mean daily flight delay (code:
MapReduce Mean Daily Flight Delay example.m) and corresponding
output file; matrix-matrix multiplication using one MapReduce step
(MMD§2.3.10 pp 39-40, video and text links); (Time permitting:) the more
efficient two step approach (MMD§2.3.9).

3. Eigenvalues, eigenvectors. sources.
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(a) Motivation: Google’s PageRank; partitioning (clustering) of graphs/ networks;
differential equations (Str§5.1 p 258-259) and explosive development of weather
systems.

(b) Reminder: Eigenvalue problems Ax = λx, finding eigenvalues through
det(A− λI) = 0, then finding eigenvectors by solving (A− λiI)~ei = 0 (Str§5.1,
pp 260-261). Similarity transformation S−1AS and diagonalization of matrices
with a full set of eigenvectors (Str§5.2, pp 271-273) and of symmetric matrices
(Str 5S, p 328).

(c) Google’s PageRank algorithm and finding the first eigenvector efficiently via the
power method: first, Google vs BMW: here. Modeling the Internet via a random
walker and the PageRank algorithm from p 1-7 here. See demo codes. It turns
out that PageRank is the eigenvector with the largest eigenvalue of the transition
matrix. The theoretical background, proving that there is a PageRank and that
it is unique is the Perron-Frobenius theorem stating that a stochastic matrix
(each row sums to one) with all positive elements has a single largest eigenvalue
equal to one. See Wikipedia for the theorem and for stochastic matrices;

(d) The power method:

i. Calculating the largest eigenvalue/ vector;

ii. Reminder: orthonormal base; orthogonality and projection of vectors
(projection of ~b in the direction of ~a is (~b ·~ia)~ia = (|b| cos θ)~ia using the unit
vector ~ia = ~a/|a|); Gram-Schmidt orthogonalization (Str§3.4, pp 195,
200-203).

iii. Calculating the largest p eigenvalues/ vectors using the block power method

iv. The inverse power method for calculating the smallest eigenvalue/
eigenvector;

v. The more efficient shifted inverse power method (Str§7.3 pp 396-397;
example code: block power method example.m; it seems that the block
method should work only for normal matrices, whose eigenvectors are
orthogonal, although Strang does not mention this);

(e) Spectral clustering (partitioning) of networks via eigenvectors of corresponding
Laplacian matrices

i. Preliminaries: More on networks and matrices: Transition matrix was
covered already as part of the PageRank algorithm above (MMD example
5.1, p 166). Adjacency matrix (example 10.16, p 363), Degree matrix
(example 10.17, p 364), Laplacian matrix (example 10.18, p 364).

ii. Spectral clustering (code, network classification example.m and notes,
expanding on MMD§10.4.4 and example 10.19, pp 364-367).

(f) (Time permitting:) Solving large eigenvalue problems efficiently: QR
(Gram-Schmidt) factorization and Householder transformations (Str§7.3)
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(g) Generalized eigenvalue problems, Ax = λBx, arise in both differential equations
and in classification problems (see later in the course). If A,B are symmetric, it
is not a good idea to multiply B−1 to obtain a standard eigenproblem because
B−1A is not necessarily symmetric. Instead, transform to a regular eigenvalue
problem using Cholesky decomposition (code,
Generalized eigenvalue problem.m, and notes).

(h) Linear ordinary differential equations and matrix exponentiation (Str§5.4, pp
294-295, remark on higher order linear eqns on p 296, heat PDE example on p
297-298). Eigenvalues and stability (p 298; phase space plots from Strogatz,
Romeo and Juliet). Matlab demos: first run love affairs(1) and then
run all ODE examples.m. Emphasize that solution behavior is determined by
real and imaginary part of eigenvalues.

(i) Dramatic surprises on the path to tranquility: Non-normal matrices, transient
amplification and optimal initial conditions (notes, and code,
non-normal transient amplification.m).

(j) Jordan form and generalized eigenvectors: when straightforward diagonalization
using standard eigenvectors doesn’t work because they are not independent.

i. Start with simple example of the issue using the beginning of the following
code, Jordan demo.m.

ii. Definition and statement of the ability to always transform to Jordan
normal form (Str, 5U p 329-330).

iii. Second order ODE equivalent to a first order set in Jordan form, that leads
to a resonant solution, see notes.

iv. How to find the Jordan form using the matrix of generalized eigenvalues
detailed example of a simple case. (Time permitting: additional details in
Str App B, pp 463-468; and in notes on the more general case by Enrico
Arbarello).

v. Extreme sensitivity to round-off error: demonstrated by final part of above
Matlab demo.

vi. (Time permitting:) Proof by recursion that a Jordan form can always be
found is also in Str Appendix B.

4. Principal component analysis, Singular Value Decomposition. sources.

(a) Motivation: dimension reduction, e.g., image compression, face recognition, El
Niño; comparing structure of folded proteins; more unknowns than equations

(b) Principal Component Analysis (PCA; also known as Factor Analysis or
Empirical Orthogonal Functions), calculation from correlation matrix (notes,
section 2).
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(c) Singular Value Decomposition (SVD): statement and examples of SVD
decomposition, X = UΣV T (Str§6.3 pp 364-365 including remarks 1,2,4,5 and
examples 1,2; note that Aui = σivi and ATvi = σiui these are therefore “right
and left eigenvectors”). Note: eigenvectors of a symmetric matrix A = AT are
orthogonal because this matrix is also normal, see proof here.

(d) Practical hints on calculating SVD: Choose the smallest of ATA or AAT ;
calculate its eigenvalues and eigenvectors to find the singular values and the
smaller set of singular vectors; use AV = ΣU , or ATU = ΣV to find the first
part of the larger set of singular vectors; complete the rest of the larger set by
starting with random vectors and using Gram-Schmidt orthogonalization. A
simple numerical example.

(e) (Time permitting:) proof of existence, not really needed after the above remarks
in Str.

(f) Geometric interpretation of SVD for the special case of a real square matrix
with a positive determinant (see animation and caption from Wikipedia by
Kieff, with some more details here.

(g) SVD applications:

i. Image compression, low-rank approximation, (Str p 366, code:
SVD applications image compression.m); variance explained (let
Xn×m = f(x, t), x = x1, . . . , xn, t = t1, . . . , tm;
XTX = (UΛV T )T (UΛV T ) = V Λ2V T ; variance is sum of diagonal elements
of C = XTX/N , e.g., Cii =

∑
j XijXij/N =

∑
j VijVjiΛ

2
ii/N = Λ2

ii/N ; total
variance is sum of singular values squared, explained variance by first k
modes is

∑k
i=1 Λ2

ii/
∑n

i=1 Λ2
ii).

ii. Effective rank of a matrix (Str p 366, matrix condition number and norm
(Str§7.2, p 388-392). Code,
SVD applications matrix rank norm condition number.m).

iii. Polar decomposition (Str p 366-367). Applications exist in continuum
mechanics, robotics, and, our focus here: bioinformatics.

A. A simple demo, SVD applications polar decomposition example.m,
of the geometric interpretation of polar decomposition.

B. The polar-decomposition-based Kabsch Algorithm for comparing
protein structures using the root-mean-square deviation method notes
by Lydia E. Kavraki, p 1-5 and a demo,
SVD applications polar decomposition Kabsch example.m.

C. (Time permitting:) proof that polar decomposition of the correlation
matrix between molecule coordinates is indeed the optimal rotation
matrix, from same notes.

iv. When number of unknowns is different from number of equations:
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A. Medical tomography as an example application which may lead to either
under or over determined systems (notes, section 1).

B. Overdetermined systems: more equations than unknown and least
squares. (i) Brief reminder (notes, section 2). (ii) Using QR
decomposition (cover it first if it was not covered in the eigenvalue/
vector section) for an efficient solution of least-square problems
(Str§7.3).

C. Under-determined systems, more unknowns then equations: Pseudo
inverse solution using SVD and a short proof that it is indeed the
smallest-norm solution (Str p 369-370 and then section 3 of notes,
including the example,
SVD application underdetermined linear eqns.m).

D. A review of all types of linear equations using the code
Review examples linear equations.m).

v. PCA using SVD: notes, section 3, based on Hartmann, and an example,
PCA small data example using SVD.m for PCA using SVD.

vi. Multivariate Principal Component Analysis and Maximum Covariance
Analysis (MCA): analysis of two co-varying data sets. E.g., M stocks from
NY and L stocks from Tokyo, both given for N times: Ymn, Tln. notes,
sections 4 and 5. See Matlab demos in Sources and links from these notes.

vii. The Netflix challenge part I: latent factor models and SVD. First,
highlighted text and Figs. 1 and 2 on pp 43-44 of Koren et al. (2009); then,
notes; finally, example code, SVD applications Netflix.m. [optional:
information on the fuller procedure in highlighted parts of section 6.1 of
Vozalis and Margaritis (2006) available here; Instead of eqn (4) in Vozalis,
let the predicted rating of movie a by user j be
praj =

∑n
i=1 simji(rrai + r̄a)/(

∑n
i=1 |simji|), where simji is the similarity

between the ratings of movies i, j by all users, and the sum is over movies)].

5. Data mining overview. sources, wikipedia.
Brief overview of subjects that will be covered in more detail below. slides.

(a) Similar items and Frequent patterns/ itemsets (association rule learning)

(b) Unsupervised learning: clustering

(c) Supervised learning: classification

(d) (Time permitting:) Outlier/ anomaly detection, Summarization

6. Similar items and frequent patterns. sources.

(a) Motivation for similar items: face recognition, fingerprint recognition, comparing
texts to find plagiarism, Netflix movie ratings. (MMD§3)
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(b) Similar items:

i. Jaccard Similarity index (MMD§3.1.1 p 74; demo, Jaccard examples.m,
for logicals, numbers, text files).

ii. Converting text data to numbers: Shingles, k-shingles, hashing, sets of
hashes (MMD§3.2 p 77-80; section 1 of notes and corresponding Matlab
demo of an oversimplified hash function; another demo, crc32 demo.m, for
the Cyclic Redundancy Check (crc32) hash function)

iii. Matrix representation of sets (MMD§3.3.1 p 81)

iv. (Time permitting:) MinHash algorithm for comparing sets (MMD§3.3 p
80-86, and section 2 of notes with summary of MinHash steps)

A. Minhashing: creating a similarity-conserving signature matrix that is
much smaller than the original data matrix, and that allows for an
efficient comparison of sets. Signature matrix is based on a set of
random permutations of the rows of the data matrix
(MMD§3.3.2,§3.3.4 p 81-83)

B. “Proof” that the probability of having similar MinHash signatures of
two sets is equal to the Jaccard similarity of the two sets (MMD§3.3.3
p 82-83)

C. MinHash signature estimated using a set of random hash functions
acting on the data matrix (MMD§3.3.5 p 83-86)

D. Additional resources: code,
MinHash and signature matrix example.m, for calculating signature
matrix and using it to estimate Jaccard similarity; A more elaborate
example python code by Chris McCormick, run using spyder)

E. Locality-Sensitive Hashing (LSH, MMD§3.4-3.8)

(c) Motivation for frequent patterns: market basket analysis: hot dogs and mustard,
diapers and beer; frequent combined Internet searches: Brad and Angelina;
medical diagnosis: biomarkers in blood samples and diseases; detecting
plagiarism. (MMD§6)

(d) Frequent patterns and association rules.

i. Mining frequent patterns (and association rule learning): support for set I
(number of baskets for which I is a subset); I is frequent if its support is
larger than some threshold support s; (MMD§6.1 p 201-206)

ii. Association rules I → j between a set I and an item j; confidence (fraction
of baskets with I that also contain j) and interest (difference between
confidence in I → j and fraction of baskets that contain j);
(MMD§6.1.3-6.1.4)

iii. Apriori algorithm: (MMD§6.2, highlighted parts on p 209-217)

A. Baskets as sets of numbers (MMD§6.2.1 p 209)
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B. Monotonicity of itemsets (MMD§6.2.3 p 212)

C. A-priory first pass; renumbering of relevant itemsets between passes;
and second pass to identify frequent pairs (MMD§6.2.5; a simple code,
apriori example.m)

D. Beyond frequent pairs: larger frequent itemsets (MMD§6.2.6)

E. Example of finding association rules via A-priori algorithm, Matlab code
by Narine Manukyan, run using demoAssociationAnalysis;

7. Unsupervised learning: cluster analysis. sources.

(a) Motivation: Archaeology/Anthropology: group pottery samples in multiple sites
according to original culture; Genetics: clustering gene expression data groups
together genes of similar function, grouping known genes with novel ones reveals
function of the novel genes; TV marketing: group TV shows into groups likely
to be watched by people with similar purchasing habits; Criminology: clustering
Italian provinces shows that crime is not necessarily linked to geographic
location (north vs south Italy) as is sometimes believed; Medical imaging:
measuring volumes of cerebrospinal fluid, white matter, and gray matter from
magnetic resonance images (MRI) of the brain using clustering method for
texture identification; Internet/ social networks: identify communities; Internet
search results: show relevant related results to a given search beyond using
keywords and link analysis; Weather and climate: identify consistently
re-occurring weather regimes to increase predictability.

(b) Overview: Two main approaches to clustering: hierarchical (each point is an
initial cluster, then clusters are being merged to form larger ones) and
point-assignment (starting with points that are cluster representatives,
clusteroids, and then adding other points one by one). Other considerations:
Euclidean vs non, and large vs small memory requirements (MMD§7.1.2, p
243).

(c) Distances/ metrics:

i. Requirements from a distance: MMD§3.5.1, p92-93.

ii. Examples of distance functions (MMD§3.5, p 93-97): Euclidean (L2

distance), Lr distance, Manhattan (sum of abs values, L1 norm), maximum
(L∞), Hamming distance between two strings of equal length or between
vectors of Booleans or other vectors, cosine (difference between angles),
Jaccard distance (one minus Jaccard similarity), edit. Noting that
“average” distance does not necessarily exist in non Euclidean spaces (p97).

(d) Curse of dimensionality: problems with Euclidean distance measures in high
dimensions, where random vectors tend to be far from each other and
perpendicular to each other, making clustering difficult (MMD§7.1.3 p 244-245,
code: curse of dimensionality.m)
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(e) Hierarchical clustering: intro and example (MMD§7.2.1, Figs 7.2, 7.3, 7.4, 7.5,
and the resulting dendogram in Fig 7.6), efficiency (MMD§7.2.2, p 248-249),
merging and stopping criteria (MMD§7.2.3), in non Euclidean spaces using
clustroids (MMD§7.2.4, p 252-253). (Use
run hierarchical clustering demos.m to run three relevant demos: First
detailed hand calculation, then the example script run first with argument (2)
and then with (20). The hierarchical clustering simpler example.m code
there is a bare-bone version that can be useful in HW)

(f) K-means algorithms: these are point-assignment/ centroid-based clustering
methods.

i. Basics (MMD§7.3.1),

ii. Initialization (MMD§7.3.2; e.g., initialize centroids on k farthest neighbors)

iii. Choosing k (MMD§7.3.3).

iv. Demos: using run kmeans clustering demos.m, first a detailed hand
calculations and then the a more detailed example.

(g) Self-organizing maps (“Kohonen maps”, a type of an artificial neural network).
See notes.

(h) Mahalanobis distance: first for stretched data, diagonal covariance matrix, then
non-diagonal, stretched and rotated (notes).

(i) Spectral clustering into two or more sub-clusters. Such clustering using
eigenvector 2 was already covered for networks, using the Laplacian matrix of
the network, in the eigenvalues/ eigenvectors section.

i. First a reminder of network clustering notes.

ii. Then for clustering of other data: Form a distance matrix sij = |xi − xj|,
defined here as the distance between points i and j in the set; then a
“similarity” matrix (equivalent to adjacency matrix in network clustering)
using, e.g., wij = exp(−s2ij/σ2), then a diagonal degree matrix di =

∑
j wij,

and finally the Laplacian matrix L = D −W (highlighted parts in p 1-4 of
Von-Luxburg (2007)

iii. A proof that the quadratic form xTLx is equal to the sum over squared
differences of linked pairs (Proposition 1 on p 4 of Von-Luxburg, 2007)

iv. Demos of dividing data into two clusters, first two examples in
run spectral clustering examples.m.

v. Two options for dividing data into more than two clusters: (1) Wikipedia
adds that “The algorithm can be used for hierarchical clustering by
repeatedly partitioning the subsets in this fashion”. (2) More interestingly,
can also cluster into k > 2 parts using eigenvectors 2 to k, see box on
section 4 on p 6 of Von-Luxburg (2007), and the third example in
run spectral clustering examples.m.
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vi. Benefit: clustering n data vectors that are only (k − 1)-dimensional
[eigenvectors 2–k]; Much more efficient than clustering original n
d-dimensional data points where d could be much larger than (k − 1).

(j) BFR algorithm: Clustering large data sets that cannot be fully contained in
memory: BFR algorithm and Summarization (MMD§7.3.4 and 7.3.5, p 257 to
middle of 261)

(k) CURE (Clustering Using REpresentatives) algorithm, for clusters that have
complex shapes, such as concentric rings. This is a point-assignment clustering
algorithm, like k-means, not relying on centroids but on a set of representative
points that span an entire complex-shaped cluster (MMD§7.4, p 262-265; and
several demos using run CURE examples.m of Hierarchical clustering based on
an appropriate distance measure to find the representatives and then point
assignment to cluster the rest of the data)

(l) (Time permitting:) Outlier/ anomaly detection: a brief overview only.
Motivation: unusual credit activity as indication of credit card theft. Detection
using statistical methods e.g., assuming Gaussian distribution;

(m) (Time permitting) GRGPF algorithm combining hierarchical and
point-assignment approaches, for large data sets (MMD§7.5). Clustering for
Streams (MMD§7.6). Simrank; Density-based (DBSCAN).

8. Supervised learning: classification. sources.
(We stick to Euclidean distances for now, other options were discussed under cluster
analysis).

(a) Motivation: Optical character recognition, handwriting recognition, speech
recognition, spam filtering, language identification, sentiment analysis of tweets
(e.g., angry/ sad/ happy), amazon book recommendation, Netflix challenge,
on-line advertising and ad blocking on Internet sites, credit scores, predicting
loan defaulting, and Mastering the game of Go!

(b) Machine learning Introduction (MMD§12.1, p 439-443)

(c) Perceptrons: Intro (MMD§12.2 p 447); zero threshold (MMD§12.2 first two
paragraphs, 12.2.1, p 448-450); allowing threshold to vary (MMD§12.2.4, p
453); problems (MMD§12.2.7, simply show Figs. 12.11,12.12,12.13 on p
457-459). Use perceptron classification example.m, see comments at top of
code for useful cases to show; for adjustable step I made step size (η)
proportional to deviation of current data point that’s not classified correctly
(η = |x ·w − θ|), but bounded on both sides, say 0.01 < η < 1.

(d) Support vector machines:

i. Introduction, formulation for separated data sets, formulation for
overlapping data sets, solution via gradient method and a numerical
Example 12.9 of the final algorithm (MMD§12.3, p 461-469);
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ii. Misc Matlab demos, run all relevant ones using run SVM demos.m.

iii. Note: in a case of data composed of two clusters that can be separated
perfectly well, it is useful to choose a large C = 1000 or so to find an
appropriate solution.

(e) Multi-Layer Artificial “feed forward” Neural Networks (a brief introduction):

i. Motivation: these are based on a powerful extension of the perceptron idea,
and allow computers to perform image/ voice/ handwriting/ face
recognition, as well as Mastering the game of Go.

ii. Introduction: perceptron as a neural network with no hidden layers; failure
of perceptron for XOR, and success using one hidden layer and a simple
nonlinear activation function; a general one-hidden layer formulation
(highlighted parts of the introductory notes by Lee Jacobson)

iii. Details: architecture (including number of layers, number of nodes in each
layer, geometry of connections between nodes); example activation
functions: tansig, sigmoid, rectified linear, softplus; selecting output layer
activation function based on need for (1) regression (linear output layer),
(2) a yes or no (sigmoid output layer), (3) a discrete set of labels using a
softmax output layer plus Matlab’s vec2ind (on-line demo), (Goodfellow
et al. (2016), §6.2.2, p 181-187; the activation functions are plotted by
neural networks0 activation functions examples.m and in Goodfellow
et al. (2016), §3.10, and Figs. 3.3, 3.4, p 69)

iv. Matlab demos, use run neural network demos.m to run all, stop just before
backpropagation demos which are shown later.

A. Understanding the internals of Matlab’s neural networks using
neural networks1 reverse engineer manually.m.

B. Two simple example neural network Matlab example codes for
classification,
neural networks2 simple 2d classification example.m and
regression, neural networks3 simple 2d regression example.m, and
then a failed network,
neural networks4 simple 2d FAILED classification example.m, to
show how this can be diagnosed.

C. An example,
neural networks5 character recognition example appcr1 Mathworks.m,
that demonstrates character recognition using Matlab’s neural network
toolbox.

v. Back-propagation! Calculating the cost gradient with respect to weights and
biases (Nielsen)

A. Cost function definition (Nielsen§1, eqn 6)

B. Gradient descent rule (Nielsen§1, eqns 16,17, and following two
paragraphs).
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C. Back-propagation: basically all of Nielsen§2.

D. Code demos: continue running run neural network demos.m from
where we stopped previously, which will show the following. First, hand
calculation demonstrated in
neural networks6 backpropagaion hand calculation.m, of
feedforward and backpropagation, comparing to a finite-difference
estimate of gradient. Then, a full optimization of a neural network,
neural networks7 backpropagation and steepest descent.m, first
with MNIST=0 for a simple XOR data set, and then with 1, for an
actual hand-writing recognition data set (translated to Matlab from a
python code by Nielsen)

vi. Ways to improve neural networks:

A. Learning slow-down and the improved cross-entropy cost function that
resolves that (appropriate section of Nielsen§3, beginning to two demos
after eqn 62. Use on-line version of the chapter for the nice demos.)

B. Over-fitting, how to identify it and how to resolve it using (1) L2
regularization and (2) enlarging the training data set using random
rotations/ added noise to original data (appropriate section of
Nielsen§3)

C. Weight initialization to avoid initial saturation and increase initial
learning rate (appropriate section of Nielsen§3)

D. Choosing network’s hyper-parameters: learning rate (which may also
vary with epochs), regularization constant, mini-batch size used the
average the gradient before applying steepest descent. Trick is to first
find parameters that lead to any learning, and improve from there
(appropriate section of Nielsen§3)

E. Convolution layers and their advantages: parameter sharing, sparse
interactions (Goodfellow et al. (2016), §9.1-9.2); zero-padding in
convolution (Fig 9.13, p 351); pooling (§9.3);

(f) k-nearest neighbors (k-NN):

i. Classification: finding a label of input data based on majority of k nearest
training data neighbor(s) when label is discrete such as type of dog or sick
vs healthy. Start with a single neighbor, including Voronoi diagram
(MMD§12.4, p 472-474 including Fig. 12.21; then Mitchell (1997), Fig. 8.1,
p 233 which shows how the results of nearest neighbor can be different from
k = 5 nearest ones)

ii. Locally-weighted kernel regression: e.g., estimating house prices as function
of age and living area from similar houses (Section 1 of notes based on
Mitchell (1997), §8.3.1 p 237-238; k NN kernel regression example.m)

iii. (Time permitting:) Using PCA for dimensionality reduction to avoid curse
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of dimensionality when looking for nearest neighbors in a high-dimensional
space. (Section 2 of notes)

iv. k-NN application: the Netflix challenge part II (presentation by Atul
S. Kulkarni, remote and local links).

(g) (Time permitting) Decision trees:

i. First, definition of entropy in information theory (from Wikipedia, local).

ii. ID3 algorithm: motivation and outline (Mitchell (1997) §3.1-3.3); entropy
measure (§3.4.1.1); information gain (§3.4.1.2); ID3 algorithm (Table 3.1, p
56); example (§3.4.2, p 59-61, here).

iii. (Time permitting:) If the potential labeling variable is a continuous
number, need to try all possible values to find the one that leads to the
maximum entropy gain, as demonstrated for classifying houses into two
neighborhoods based on house price and house area in
decision tree ID3 information gain continuous label example.m.

(h) (Time permitting:) Additional issues:

i. Avoiding over-fitting, pruning and dealing with continuous variables and
thresholds (Mitchell (1997), §3.7).

ii. C4.5 algorithm for decision trees (Mitchell (1997), §3.7)

iii. Fisher’s Linear discriminant analysis (LDA) leading to a generalized
eigenvalue problem (notes)

iv. From binary classification (two classes) to multiple classes: one vs rest and
one vs one strategies (here)

v. From linear to nonlinear classification, the kernel trick.

vi. Nearest neighbors using k-d trees.

9. Review. sources.
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