
Applied Mathematics 202:
Physical Mathematics II

FAS Course web page: http://isites.harvard.edu/k95674 (Spring 2014)

Last updated: May 11, 2014.
Feel free to write call or visit us with any questions.

1 Administrative
Instructor: Eli Tziperman (eli at seas.harvard.edu).

TFs: see course web page.

Day & time: MWF 10-11

Location: Pierce 209

Sections: once a week, see FAS course web page for times and places.

1st meeting: TBA

Office hours: Eli: Please see course web page for times; 24 Oxford, museum building, 4th floor,
room 456. TFs: please see course web page.

Textbooks: Page or section numbers from the relevant textbook for any given lecture are given in
the detailed syllabus below. The main course textbook is

CP Carrier & Pearson, Partial Differential Equations, theory & technique

Also used at times,

Za Zauderer, Partial differential equations of applied mathematics, 3rd edition, Wiley.

Gr Greenberg, Advanced Engineering Mathematics, 2nd edition.

Gr2 Greenberg Foundations of Applied Mathematics

HW Haltiner and Williams, Numerical prediction and dynamic meteorology, 2nd edition,
(Wiley, 1980).

OC Ockendon, Howison, Lacey & Movchan. Applied partial differential equations,
(Oxford, 2003)

RM Richtmyer and Morton, Difference methods for initial value problems, (Interscience/
Wiley 1967)

Ze Zemyan, The classical theory of integral equations, Springer 2012.

Wh Whitham, Linear and nonlinear waves, 1974.
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Ha Haberman, Applied partial differential equations with Fourier series and boundary
value problems. 4th edition, 2003.

CG Cross and Greenside, Pattern formation and dynamics in nonequilibrium systems,
Cambridge University Press New York, 2009.

Some additional ones,

Hi Hildebrand, Advanced Calculus for Applications (2nd Edition).

CH Courant & Hilbert, Methods of Mathematical Physics, vols. 1,2 (Wiley, 1989)

MF Morse & Feshbach, Methods of theoretical physics, vols. 1,2 (MGH, 1953)

Supplementary materials: Additional materials from several additional textbooks and other
sources, including Matlab programs used in class, may be found here. Follow links below
for the specific source material for each lecture. In order to access these materials from
outside the Harvard campus, you’ll need to use the VPN software which can be downloaded
from the FAS software download site.

Prerequisites: Applied Mathematics 105 (intro to ODEs and PDEs) or equivalent; also useful:
Applied Mathematics 104 (complex analysis) or equivalent. Note: Applied Mathematics
201 and 202 are independent courses, and may be taken in any order.

Sections: The TFs will hold weekly sections and have weekly office hours. During the sections,
they will discuss and expand on the lecture material and solve additional example problems.

Programming Skills: some of the demonstrations and homework assignments will be
Matlab-based. Some previous programming exposure is assumed, although not necessarily
in Matlab. Students are asked to download and install Matlab on their computers from the
FAS software download site.

Homework: homework will be assigned every nine to ten days, and will be due nine to ten days
later in class. The homework assignments are essential for understanding the lecture
material and introduce you to some important extensions. We strongly encourage you to
discuss and work on homework problems with other students (and with the teaching staff,
of course), but you must write your final answers in your own words. You should ensure
that any written work you submit for evaluation reflects your own work and your own
understanding of the topic.

Grading: Homework: 70%; midterm (during evening hours, tentatively Wed Mar 12, 2014,
7-9pm) 15%; final 15%.

Readings: Students are encouraged to read from the sources pointed to by this extended
syllabus, to obtain a broader perspective on the course material.

This document: http://www.seas.harvard.edu/climate/eli/Courses/APM202/2014spring/
detailed-syllabus-apm202.pdf, available from within campus or via VPN.

2

http://www.seas.Harvard.edu/climate/eli/Courses/APM202/Sources/
http://downloads.fas.harvard.edu/download?platform=all
http://downloads.fas.harvard.edu/download?platform=all
http://www.seas.harvard.edu/climate/eli/Courses/APM202/2014spring/detailed-syllabus-apm202.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM202/2014spring/detailed-syllabus-apm202.pdf


Contents
1 Administrative 1

2 Outline 3

3 Syllabus 3
3.1 Introduction, overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Separation of variables and basics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Fourier series, Sturm-Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 1st order PDEs and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Classification of 2nd order PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Transform methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Variational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.8 Perturbation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.9 Integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.10 Nonlinear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.10.1 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.10.2 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.11 More (Time permitting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.12 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.13 Brief intro to numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Outline
Theory and techniques for finding exact and approximate analytical solutions of partial
differential equations: eigenfunction expansions, Green functions, variational calculus, transform
techniques, perturbation methods, characteristics, selected nonlinear PDEs, introduction to
numerical methods.
Note: Applied mathematics 201 and Applied mathematics 202 are independent of each other and
may be taken at any order.
Prerequisites: Applied Mathematics 104 and Applied Mathematics 105 or equivalent.

3 Syllabus
Follow links to see the source materials, including Matlab demo programs used for each lecture.
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3.1 Introduction, overview
downloads.
Logistics, course requirements, textbooks, overview of the course, what to expect and what not to
expect.

3.2 Separation of variables and basics
for diffusion, wave and Laplace equations. downloads.

1. Diffusion:

(a) Motivation, derivation of diffusion-advection eqn (notes, section 2), scaling of
diffusion-advection (same notes, section 3). Separation of variables for a basic case
(Gr§18.3, example 1, pp 954-958; then Matlab demo diffusion 1d SL.m).

(b) Some generalities and complications: Sturm-Liouville expansions: S-L theorem
(Gr§17.7.1 p 887-888 until but not including example 1; inner product definition eqn
14 p 890; theorem 17.7.1 p 891). Examples: the diffusion equation we solved above,
leading to Fourier series. Eigenfunction expansion for an inhomogeneous (forced)
problem (CP§1.5, p 13-16), inhomogeneous end conditions (CP§1.7, p 17-18).

(c) More interesting cases: periodic and singular S-L (Gr p 906, eqns 2-5); examples of
singular S-L: (i) diffusion on a disk (Gr§18.3, example 5, pp 968-971) leading to
Bessel eqn (example 2 p 908-909, eqns 12-24); (ii) diffusion on a sphere
(notes-diffusion-1d-sphere-using-Legendre-SL.pdf, only up to derivation of Legendre
equation for x structure on second page) leading to Legendre eqn (example 2, p 910,
eqns 25-28).

(d) Integrating factor to bring to S-L form (notes)

(e) Nonhomogeneous problems via eigenfunction expansion (CP§1.5, pp 13-16)

(f) Nonhomogeneous, time dependent, boundary conditions (CP§1.7, pp 17-18)

(g) Similarity solution (notes). [Time permitting:] Kelvin’s wrong estimate of the age of
the Earth (England et al, eqns 1-4); maximum principle (CP§1.9 p 19-20);

2. Wave: Motivation and derivation (Gr§19.1 p 1017-1019, eqns 2,5-9). Finite domain,
separation of variables and S-L, using a 2d vibrating membrane example to keep it different
from the 1d diffusion case above (Gr§19.3 p 1035-1039). Factoring into 1st order and
D’Alembert’s solution, e.g., for an infinite domain (CP§3.3 p 38-41), semi-infinite domain
using the method of images (CP, problem 3.4.3 p 43). Using energy integral to demonstrate
uniqueness (CP§3.11 p 52-53).

3. Laplace equation:

(a) Motivation, derivation (notes, section 4).
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(b) Simplest problem on a rectangular, using superposition principle in case b.c need to be
expanded on more than one boundary (Gr§20.2, pp 1059-1063)

(c) Separation of variables and S-L, for a 2d problem on a cylinder using non-Cartesian
coordinates (CP§4.4, p 63-64 eqns 4.9-4.12);

(d) Average value principle derived from 4.12, and the resulting minimum and maximum
principles (also, not essential: a more general discussion is given in CP§4.3).

(e) Integral constraints: consistency requirement with Neumann b.c. ∇2u = f (x,y).
Mathematically: integrate equation over the domain; physically: prescribed heat
source f (x,y) plus prescribed heat flux into the domain must sum to zero for a steady
state solution to the diffusion equation to be possible (Gr Exercise 17, p 1069).

(f) Smoothing of discontinuities in boundary conditions (CP, problem 4.8.9 p 74, see also
last paragraph starting on page 67 and notes).

(g) Real and imaginary parts of an analytic function are harmonic; complex variable and
conformal mapping (CP§4.7 p 68-71).

(h) Some problem are non-separable due to eqn (uxx +uxy +uyy = 0) or b.c.

3.3 1st order PDEs and characteristics

downloads.

(a) Motivation: advection (notes, section 2); traffic as an example of conservation laws
(Haberman, p 549, eqns 12.6.10 and 12.6.12, with c(ρ)≡ dq(ρ)/dρ); age distribution
(population at age a and time t is equal to population at age a−dt and time t−dt
minus those that died between a−dt and a:
n(a, t) = n(a−dt, t−dt)(1−µ(a−dt)dt); this implies
[n(a, t)−n(a−dt, t−dt)]/dt =−µ(a−dt)n(a−dt, t−dt); use
n(a−dt, t−dt) = n(a, t)−∂tndt−∂andt to finally get ∂n

∂t +
∂n
∂a =−µn); factoring 2nd

order wave PDE into first order PDEs.

(b) Linear 1st order PDEs in two independent variables: solution using characteristics.
Examples: (1) unidirectional wave equation (section 1 in notes, based on Za, example
2.2 p68-69); (2) a slightly more advanced case (see section 2 of notes, based on
CP§6.1, eqns 6.6-6.10 p 93-94, plus problem 6.2.1, pp 93-94).

(c) Quasilinear, shocks: quasilinear 1st order PDEs in two independent variables,
characteristics. (1) Equations (6.13-6.15) in CP§6.3p 97 (section 3 in notes). (2)
Traffic problem, demonstrating multivalued solutions and shock formation, shock
conditions, velocity of shock propagation (section 4 in notes, and Haberman,
§12.6.3-12.6.4, p 549-555). (3) An example showing multivalued solution and the
formation of a shock (section 5 of notes) and Matlab program.
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(d) A bit of theory: characteristics here have the same meaning as with 2nd order PDEs:
specifying the value of the function on characteristic curves does not allow us to solve
near these curves (heuristically: because signal propagates along the curves rather
than away from them. See details in CP§6.5 p 99-101). Implication: solvability and
Jacobian of characteristic curves and curve along which initial values are specified
(Jacobian vanishing means they are parallel and the problem is not well posed); Time
permitting: extension to more independent variables (CP§6.7, eqns 6.18-end);
envelopes of characteristics (CP§13.1).

(e) Nonlinear 1st order PDEs, characteristics, Charpit’s equations; example: Eikonal
(Eiconal) equation (notes from Oxford course by Dr. Norbury; see also, although less
transparent, Za§2.4 pp 102-111 or OC§8.2.1, §8.2.3 pp 360-368).

3.4 Classification of 2nd order PDEs

downloads.

(a) Intro: calculating the solution from Cauchy data (specified value and normal
derivative) along the y axis, and when this might fail (CP§5.1 p 75-76).

(b) More generally, trying to find a local solution based on Cauchy data on an arbitrary
curve using a power method expansion, e.g., if characteristic is the y axis:
φ = φ(0,y)+ xφx(0,y)+ x2

2! φxx(0,y)+ · · · ; characteristics of 2nd order PDEs are lines
along which this cannot be done; for other cases, this is possible according to the not
so useful (see below) Cauchy-Kowalewski theorem. [Note: if curves ξ(x,y), η(x,y)
are parallel at a point, the cross product of their gradients should vanish, so that
0 = ∇ξ×∇η = ξxηy−ξyηx = J(ξ,η)]. (CP§5.2).

(c) Case I: hyperbolic (wave, two real characteristics, B2−AC > 0): there are two cases
(curves) for which the coefficient of φξξ vanishes, so there are two curves y(x) where
Cauchy’s data are insufficient. (CP§5.4, p 79-80, only until and including eqn 5.8).
Example: for the standard wave equation, φtt− c2φyy = 0 we have A = 1, C =−c2,
B = D = E = F = G = 0, so that ±

√
B2−AC =±c. Comments: (1) the slope of the

line y(x) along which ξ(x,y) = const is determined as follows,
0 = d

dxconst = dξ/dx = ∂xξ+∂yξ
dy
dx , which implies dy/dx =−ξx/ξy. (2) Note the

similarity of eqn 5.8 to the one derived in D’Alembert’s solution, φηξ = 0 by using
ξ = x+ ct, η = x− ct for the simple wave equation φtt = c2φxx. (3) “Physical”
interpretation: the two characteristics correspond to the trajectories of wave
propagation in the (x, t) plane. Because the value of φ is effectively propagated along
these curves, it cannot propagate off the curves in order to allow us to find the solution
away from the curves. With any other curve on which Cauchy data are prescribed,
these data can be carried off the curve by wave propagation to allow calculation of the
solution there. (4) This is an important lesson on a consistent b.c. formulation for the
wave equation and on what to avoid.
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(d) Case II: parabolic (diffusion, B2−AC = 0, one characteristic, CP§5.5, p 81): in the
case of the standard 1d diffusion eqn φt = κφxx the characteristics in the (x, t) plane
satisfy dt/dx =−B/A = 0 so that they are given by t = const and are parallel to the x
axis. Note that we cannot specify arbitrary Cauchy data in this case because the
normal derivative is nothing by φt which is already given by φxx via the equation itself
(determined from φ(x, t = c) along the characteristic). So in this case the characteristic
is a curve along which arbitrary Cauchy data cannot be specified rather than that they
are insufficient for solving around the curve. While the classification indicates that we
cannot solve the equation by a power series method with Cauchy data specified on the
characteristic, we can still find a solution via time integration as long as the Cauchy
data are consistently specified. Cauchy-Kowalewski theorem is clearly not so relevant
in this case.

(e) Case III: elliptic (Laplace, B2−AC < 0, no real characteristics): can always find a
solution near a curve with specified Cauchy data via a power series expansion.
Example: Laplace equation, φxx +φyy = 0, A = 1, C = 1, B = D = E = F = G = 0,
B2−AC =−1. Physically, think steady diffusion, and note that information diffuses to
the neighborhood of the curve, allowing the solution to be determined. However, one
can come up with examples where the solution does not depend continuously on the
Cauchy data (CP§5.10, p 90, middle paragraph), so that Cauchy-Kowalewski theorem
is again not useful from practical point of view. Still, one can show that any elliptic
equation may be locally transformed to the Laplace equation, providing some insight.

(f) Time permitting: Characteristics as only possible location of discontinuities in second
derivatives, as paths for signal propagation, as curves where Cauchy data cannot be
specified arbitrarily. (CP§5.8).

3.5 Transform methods

downloads.
used to reduce the order of the PDE or even convert it into an ODE. Fourier transforming
the spatial dimension of a PDE often leads to a solvable ODE initial value problem in the
time dimension; solving it and inverse Fourier transforming solves the original problem.
Similarly, Laplace transforming a wave or diffusion equation leads to a boundary value
problem, which can then be solved and inverse Laplace transformed.

(a) The Fourier transform is especially useful in problems with infinite spatial
dimension(s). Fourier transform and inverse formula in n dimensions, (proof),

F(k) =
1

(
√

2π)n

∫
∞

−∞

· · ·
∫

∞

−∞

eik·x f (x)dx; f (x) =
1

(
√

2π)n

∫
∞

−∞

· · ·
∫

∞

−∞

e−ik·xF(k)dk,

see also basic 1d definition and properties in Za§5.2, eqns 5.2.6-7, 5.2.10-11 p
256-257. Application to diffusion equation (Za example 5.2, p 261-262, eqns
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5.2.26-5.2.39); wave equation, and derivation of D’Alembert’s solution (Za example
5.3, p 264; is there a missing minus sign in front of one of the G(λ) integrals in
5.2.46?); Laplace equation on a half-plane (Za example 5.4, eqns 5.2.50-5.2.58, p 265
to line 4 on p 266).

(b) Higher dimensional Fourier transforms (Za§5.4, eqns 5.4.1-2, p 281). Example: 2d
Modified Helmholtz equation (Za pp 287-288, eqns 5.4.26-5.4.36, skip details in eqns
5.4.32-5.4.35).

(c) The Laplace transform: is especially useful for initial value problems. The transform
and inverse transform are,

F(s) =
∫

∞

0
e−st f (t)dt; f (t) =

1
2πi

∫
γ+i∞

γ−i∞
estF(s)ds.

Transform of time derivatives and other basic properties (Za§5.6, pp 297-299). In
particular the useful property for IVPs
L [ f (n)] = snL [ f ]− sn−1 f (0)− . . .− s0 f (n−1)(0). Applications: diffusion equation in a
semi-infinite domain, noting infinite propagation speed of diffusing signal (CP§2.1,
pp 24-25); wave equation (statement of problem in CP§3.3, eqn 3.5 on p 39; then
solution method in CP§3.9, pp 50-51, with details given in the notes; and the final
solution is given by CP§3.3, eqn 3.7 on p 40).

(d) Time permitting: Fourier sine and cosine transforms; Hankel transform (Za§5.5).

3.6 Green’s functions

downloads.

(a) Motivation, using Green’s function for nonhomogeneous problems, and/ or to satisfy
initial and boundary conditions. Solving once for Green’s function allows to easily
solve many nonhomogeneous cases. We’ll demonstrate several methods of solving for
Green’s function.

(b) δ function reminder (viewed either as a generalized function defined only through its
integrals when multiplying other functions: Za, p 438-441; or, alternatively, viewed as
a limiting case of well behaved functions that tend to a delta function as a parameter
goes to zero or infinity: CP, §2.5 p 30-33 for 1d case and p 141, eqns 9.5-9.8 for 3d
case)

(c) Laplace equation in a finite domain:

i. Construction of equation and boundary conditions for Green’s function for
Laplace equation using the divergence theorem; (section 1 in notes; and then the
somewhat more general case in Za§7.1 pp 410-412. Equivalently: CP§9.2, pp
142-143).
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ii. Solving for the Green’s function, Method 1: using eigenfunction expansion,
useful for self-adjoint operators in bounded domains (first, theoretical derivation
in Za§3 p 444 eqns 7.3.1-7.3.6 plus my notes that elaborate on the derivation of
the eigenfunction expansion and show that the expansion indeed leads to a
green’s function; then example of a Laplace equation on a rectangle, Za example
7.6, eqns 7.3.26-7.3.41 pp 448-450); Time permitting: modification for Newman
conditions (Za example 7.7, p 454-456);

iii. Method 2: finding an explicit solution for the Green’s function using jump
conditions at x = ξ. Start with a general derivation (Za eqns 7.3.7-7.3.12, pp
445-446); proceed with an example for an ODE (Za example 7.5, eqns
7.3.13-7.3.18, pp 446-447), and finish general discussion (Za eqn 7.3.1, p 447).
Example: elliptic eqn on a rectangle again, this time using this alternative method
(Za eqns 7.3.42-7.3.45, pp 450-451).

iv. Method 3: Finding a Green function solution g1 with the right singularity at x−ξ,
and adding a harmonic function p satisfying Laplace equation in interior and
b.c. such that g = g1 + p satisfies the needed Green’s function b.c. First, note that
(in 3d!) ∆(1/r) = δ(~x−~ξ), [in 2d, the equivalent eqn is ∆ logr = δ(~x−~ξ)] where
r = |~x−~ξ| (CP p 141, first eqn and then 9.7-9.8). Next, definition of two
components of Green’s function, 1/r and p and an example in a sphere (CP§9.2
pp 142-144). This is based on Kelvin’s inversion formula for a solution of
Laplace eqn outside of a sphere in terms of a solution inside the sphere, briefly
explained in CP question 7.2.5 on p 109); Time permitting: Modified Laplacian
(CP§9.6, pp 152-154, uses modified Bessel functions K0, I0).

(d) Diffusion equation in an unbounded domain. Start by deriving the eqn and b.c. for the
Green’s function using section 3 in these notes. In order to solve for the Green’s
function, consider Method 4: using Fourier transform, useful in unbounded domains
(Za§7.4, eqns 7.4.1-7.4.6, pp 462-463). Time permitting: see also here for solving for
the Green’s function of the wave equation using Fourier transform.

(e) Wave equation: can use several of the previous methods, but consider an alternative,
Method 5: using Laplace transform (CP§9.8, pp 156-157 eqns 9.37-9.40, with an
example of a moving wave source; the actual derivation of the Green’s function
solution (9.38) is too brief, so see section 2 in notes). Time permitting: for an
alternative approach using both Fourier and Laplace transforms, see eqns 18-37 on pp
3-5 of these notes from here.

3.7 Variational methods

downloads.

(a) Motivation: minimum area of soap films (derivation of problem using notes);
equivalence of variational problems and PDEs (CP problem 10.2.7, p 166); data
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assimilation and weather prediction (notes); access to additional numerical methods.

(b) Introductory example, calculus of variations, demonstrated first by differentiating with
respect to epsilon and then using the δ notation (CP§10.1, pp 161-164).

(c) A variational principle from squaring a given PDE: show explicitly CP problem
10.2.7, p 166 using my notes.

(d) Natural boundary conditions (CP§10.3, p 167, eqns 10.4-10.7 plus the paragraph after
this last equation).

(e) Constraints and adjoint equations:

i. Reminder of Lagrange multipliers (CP§10.4, pp 168 and then text around eqn
10.12).

ii. An actual variational problem, posed at the beginning of the last paragraph (“we
now extend...”) On p 170, and then solved on p 171, eqn 10.14 to end of page.

iii. Note that when constraint is applied at each point, Lagrange multiplier becomes a
function.

iv. A time dependent example: calculating sensitivity efficiently using adjoint
equations (notes).

(f) Approximations: Rayleigh-Ritz method (CP§10.6, pp 174-177, until the end of the
paragraph following eqn 10.23). A brief reminder: finite element (CP§10.8) is closely
related to Rayleigh-Ritz method.

3.8 Perturbation methods

downloads.

(a) Motivation.

(b) Scaling, non-dimensionalization. Example 1: scaling estimate for maximum height of
a thrown ball (notes, “idea 2” on page 2). Example 2: forced pendulum:
mẍ+ rẋ+ kx = F sinωt, use x = Lx′, t = Tt ′, to get
ẍ′+(T 2r/T m)ẋ′+(T 2k/m)x′ = (T 2F/mL)sinωTt ′. Assuming this is essentially a
harmonic oscillator with weak forcing and weak dissipation, choose T =

√
m/k

(natural frequency), to find ẍ′+(r/
√

mk)ẋ′+ x′ = (F/kL)sinω
√

m/kt ′, and let
ε = r/

√
mk� 1. For the forcing to be small, choose again F/(kL) = ε f , where f is a

nondimensional, O(1), forcing amplitude. Define ω′ = ω/
√

k/m to finally get
ẍ′+ εẋ′+ x′ = ε f sinω′t ′. Example 3: rotating shallow-water fluid dynamics (notes
sections 1-2).

(c) Regular perturbations: Example 1 (CP§8.1, pp 127-129; order: eqn 8.1 then 8.4, 8.5
and the following equations and b.c., then solution for φ(1) = ψ(1)−ψ(0) from 8.2 and
last eqn on p 127; then write ψ(2) = φ(0)+φ(1)+φ(2) from p 128 after eqn 8.3).
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(d) Singular perturbations and boundary layers: First, ODE reminder (CP§15.1, use these
notes, section 1). Then, Example 1: PDE case from (section 2 of notes, based on
CP§15.1). Example 2: quasi-geostrophy again, steady large-scale ocean circulation,
with Gulf Stream as a boundary layer (notes, section 5). Example 3: Boundary
(initial) layer in a singular perturbation wave problem (Za, example 9.10, pp
606-610). Example 4: degeneracy of geostrophy and quasi-geostrophic shallow water
vorticity equation (notes sections 3-4).

(e) Boundary perturbations: when the boundary shape is close to that of a simpler object
(e.g., circle) and the difference may be treated as a perturbation (CP§8.4). Another
example: surface gravity waves, where the b.c is applied at an approximate boundary
location rather than the accurate one (my hand-written notes, based on Knauss,
introduction to physical oceanography, 2nd edition, 1996m pp 195-198).

(f) A brief reminder of 1d bifurcations: saddle node and pitchfork.

(g) Method of multiple scales: is again an approach to dealing with perturbations
problems in which regular perturbation fails. This may happen for example in a
time-dependent problem when the regular perturbation holds only for a short time due
to the appearance of secular terms in the higher order perturbation terms which lead to
a failure of the perturbation expansion at longer times.

i. ODE example: a weakly nonlinear damped oscillator. (Ha§14.9.1, pp 696-699)
ii. PDE example: a weakly unstable nonlinear diffusion equation. This is an

example that occurs in the study of pattern formation (Ha§14.9.3, pp 703-705).

3.9 Integral equations

downloads.

(a) Motivation and examples: random walks, radiative transfer (notes); Integral
transforms are an example of an integral equation (e.g., Laplace transform
F(s) =

∫
∞

a e−st f (t)dt is an inhomogeneous Fredholm integral eqn of the first kind for
f (t) in terms of the assumed known F(s) with the symmetric kernel K(x, t) = e−st);
Conversion of 2nd order ODE to a Volterra integral equation of the second kind
(Shestopalov and Smirnov, 2002, section 4.1 including example 5, p 8-10, eqns
31-46).

(b) Classification:

• Fredholm integral equation of the first kind: ϕ(z) =
∫ b

a K(z,z0)ψ(z0)dz0,

• and of the second kind: ψ(z) = ϕ(z)+λ
∫ b

a K(z,z0)ψ(z0)dz0,
• Volterra of the first kind: ϕ(z) =

∫ z
a K(z,z0)ψ(z0)dz0,

• and of the second kind: ψ(z) = ϕ(z)+
∫ z

a K(z,z0)ψ(z0)dz0.
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• Homogeneous (ϕ = 0) and non-homogeneous; Writing a Volterra equation in
Fredholm form; Volterra equations for Green’s function.

(c) Fredholdm second kind for separable Kernels: definition of problem (Ze§1, p 1);
parallel with matrix eqn~ϕ = ~f +λK~ϕ; separable kernel example (Ze§1.2, p 4-11);
summary combined Fredholm theorem (Ze§1.3.4 p 23-24). Discuss the condition for
solvability when λ is an eigenvalue of the Kernel using a matrix example from my
hand written notes.

(d) Fredholdm second kind for general kernels.

i. Method of successive substitution (Ze§2.2, p 33-34 to eqn 2.1); mention that this
works only if |K(x, t)|< M for all x, t in domain and |λ|M(b−a)< 1. Example
((a) on page 37?), make sure resolvent can be summed in close form.

ii. Method of successive approximation (Ze§2.3, p 37-39, to eqn 2.4; then theorem
2.3.1, p 41 until the expression for the resolvent kernel; note the different
convergence condition obtained by this method although solution for resolvent is
essentially the same).

iii. Example: Ze, p 42-43: example 1, and then example 2 (second approach,
skipping the one based on the kernel being separable).

(e) Briefly: Fredholdm second kind, Hermitian Kernels. A Kernel is Hermitian if
K∗(x, t)≡ K(t,x) = K(x, t). E.g., K = (x+ t), K = ei(x−t) are Hermitian. Parallels
with the matrix problem~ϕ = ~f +λK~ϕ when K is symmetric, K = KT (use my notes); A
Hermitian Kernel K has specific properties involving its eigenfunctions and
eigenvalues, and both it and its resolvent can be expanded in terms of these and the
integral equation be explicitly solved giving exactly the same expression as in the
matrix problem (Ze§3, selected theorems and then Example 2, p 116-117).

(f) Singular integral equations (infinite domain), consider only one simple but important
example, of equations that can be solved using the convolution theorem and Fourier
transform (Ze§7.2.2, p 256 until the third displayed equation on p 257).

(g) Volterra equations: convolution type eqns can be solved using Laplace transform
(Ze§4.1 p 152 and then Ze§4.3 p 167-168, only eqns 4.3, 4.5 and first displayed
equation on p 168). Show example 1, p 168. Mention that successive approximation
and substitution etc can also be used.

3.10 Nonlinear PDEs

downloads.
So far we deal with nonlinearities in the discussion of 1st order PDEs using the method of
characteristics, as well as in the case of weakly nonlinear PDEs using the perturbation
methods. We now consider two classes of higher order, strongly nonlinear PDEs as a brief
introduction to the very rich area of nonlinear PDEs, one leading to solitons and the other to
pattern formation.
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3.10.1 Solitons

downloads.

(a) Kortewegde Vries (KdV) eqn ηt + c0(1+ 3
2h0

η)ηx + γηxxx = 0 or
ηt +ηx +6ηηx +ηxxx = 0 (Wh, p 463, eqn 99);

(b) Linear analysis with nonlinear term set to zero and dispersion relation (η = ei(kx−ωt),
so that ω =−k(1+ k2), cph = ω/k =−(1+ k2); so that linear wave propagation is to
the left, short waves propagate faster);

(c) Derivation of nonlinear propagating solutions (Wh§13.12, pp 467-468). Show
nonlinear and linear single soliton solutions using Matlab program on course web
page. Explanation: nonlinearity exactly balances dispersion.

(d) Numerically only: elastic interaction of solutions, show two interacting solitons using
same Matlab code (hence the name Solitons, indicating particle-like solutions). Note
phase shift during interaction, easier to note for slower soliton.

(e) (Time permitting:) infinite number of conservation laws, inverse scattering transform
(OC§9.7, pp 417-426, or Wh§17).

3.10.2 Pattern formation

downloads.

(a) Motivation: patterns in nature, pattern formation in Swift-Hohenberg model, see here
(use Firefox); alternatively, using Matlab code from here, also posted here under
course web page.

(b) The Swift-Hohenberg equation in 1d and 2d. Potential dynamics of Swift-Hohenberg
eqn (CG§5.1, p 179-182).

(c) Linear stability analysis: while a uniform state leads to the global minimum value of
the potential, it is unstable to small perturbations (which increase the potential) and
the system then evolves to a different, local, minimum of the potential (CG§2.2, 2.3;
Figs 2.7, 2.8, 2.9 in §2.5).

(d) Complex amplitude, phase and translation symmetry, heuristically deduced nonlinear
cubic form of amplitude equation (CG§4.1.1).

(e) (Time permitting:) Nonlinear saturation, bifurcation theory, stripe states (CG§4.1.2,
4.1.3 pp 134-139).

(f) Amplitude equation, derivation using multiple-scale perturbation theory (CG§A2.3.2
p 512-514).

(g) Applications of amplitude equation:
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i. effect of pattern-suppressing lateral boundaries, first a single boundary and then
two (CG§6.4.1, pp 226-229).

ii. Eckhaus instability, (CG§6.4.2 p 230-233). Mention connection to Floquet
theory: consider the linearized stability of a periodic orbit leading to the equation
ẋ = A(t)x where the matrix function A(t +T ) = A(t) is periodic and x(t) is the
perturbation vector; Floquet theory tells us there is a solution of the form
x(t) = p(t)eµt where p(t +T ) = p(t) is periodic; µ is also related to the
eigenvalues of the linearized dynamics of a Poincare section of the periodic orbit
(Strogatz).

iii. Existence of front solutions in a nonlinear diffusion equation and super-critical vs
sub-critical pitchfork bifurcation (CG§8.3 p 296-299).

iv. (Time permitting:) Wavenumber selection (CG§8.3 p 296-308).

(h) Mention briefly and show two figures of solution of Kuramoto-Sivashinsky eqn
(CG§5.4 p 196-199).

(i) (Time permitting:) Stability balloons, Zigzag instability of Swift-Hohenberg model
(CG§4.2.1 p 139-147).

(j) (Time permitting:) complex Ginzburg-Landau eqn (CG§5.5 p 196-199).

(k) (Time permitting:) Nonlinear reaction-diffusion equations: fronts, linearized stability
analysis via normal-mode eigenfunction expansion (Wikipedia; CG§5.6 and chapter
11).

3.11 More (Time permitting)

downloads.

(a) Ray tracing solution of wave equations; WKB calculation of amplitude variations

(b) Floquet theory

(c) Similarity solutions, Lie groups (OC§6.5 p 262-271).

(d) Barotropic instability, CP p 138, question 8.5.12).

(e) Stochastic PDEs

3.12 Review

downloads.
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3.13 Brief intro to numerics

downloads.
Outline and sources for 2014 lectures by Madeline Miller: here

(a) Motivation: On the need to solve numerically: (i) even very simple equations cannot
be solved analytically (e.g., chaotic systems such as the Lorenz equations); (ii) a
complicated analytic solution is not necessarily more insightful than a numerical one;
in both cases one plots the solution as function of different parameters; (iii) a
numerical solution is often the first step toward an analytic approximation, allowing to
find which terms are dominant and which may be neglected.

(b) Basics: first order one-sided (O(∆)) vs second order center difference (O(∆2))
approximations (in space or time; HW p 109) as examples of the order (accuracy) of
numerical schemes; first derivative in time (e.g., for diffusion equation) using first
order Euler forward and improved Euler-Forward (St pp32-33).

(c) Numerical stability: definition of convergence and stability (HW, p 122); stability
analysis using the matrix method (HW, §5-5-1, pp 123-126)); Stability analysis using
the Von Newman method (HW, §5-5-2, pp 127-129; Euler forward example in
§5-6-1); [alternatively: RM, §1.2, 1.3 and 1.4, pp 4-12].

(d) Implicit schemes and their stability advantage (semi-implicit scheme for advection
equation HW, §5-6-3 p 132 and first half of p 133; [alternatively, implicit scheme for
diffusion equation RM, §1.5, pp 16-18];

(e) Stiff problems (wikipedia, or a local copy, highlighted definitions and examples of
eqns 1-3, 10-15).

(f) Preserving conservation laws of the continuous equations in the finite difference
approximation, examples: advection and diffusion, advantage of writing the finite
difference equations in flux form, and demonstrating staggered grids using the same
example (notes).

(g) Consistent formulation of finite-difference boundary conditions: prescribed flux/ value
for diffusion equation, fixed vs stress-free end of a string for wave equation, location
of end points on grid as function of type of boundary condition (notes).

(h) Finite element methods (Burden and Faires, Numerical Analysis, 8th edition, §12.4 pp
721-733).

(i) Spectral methods (Durran, Numerical methods for wave equations in geophysical fluid
dynamics, §4.2 p 176-184 or so).

(j) Artificial numerical dispersion and dissipation (Durran, Numerical methods for wave
equations in geophysical fluid dynamics, §2.4.1, 2.4.2, 2.4.3)
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