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reasoning and statistical techniques for data processing and uncertainty management. The
theory and current practice of BHM of air-sea interaction physics will be introduced and
demonstrated in this paper. The demonstration is in the context of an observing system
simulation experiment. An ocean ‘‘truth’’ simulation is driven by idealized surface winds
in a testbed domain abstracted from the Labrador Sea. Artificial observations analogous to
scatterometer and altimeter data are supplied to a BHM and comparisons made with the
evolution of the ‘‘truth’’ simulation over a ten day experiment. Substantial attention is
devoted to description of computational techniques. INDEX TERMS: 4504 Oceanography:

Physical: Air/sea interactions (0312); 3337 Meteorology and Atmospheric Dynamics: Numerical modeling

and data assimilation; 3210 Mathematical Geophysics: Modeling; KEYWORDS: data assimilation, Monte Carlo,

quasigeostrophy, uncertainty

Citation: Berliner, L. M., R. F. Milliff, and C. K. Wikle, Bayesian hierarchical modeling of air-sea interaction, J. Geophys. Res.,

108(C4), 3104, doi:10.1029/2002JC001413, 2003.

1. Introduction

[2] The combination of model and data is a familiar
problem in the atmosphere and ocean sciences. For example,
rich theories and sophisticated algorithms have been devel-
oped under the rubric of data assimilation [e.g., Bennett,
1993;Daley, 1991; Robinson et al., 1998], and this continues
to be an area of intense research. Three of the most out-
standing issues are (1) the quantification and reflection of
uncertainty in the results; (2) incorporation of diverse
observational data sets relevant to different processes and
coupling models for interacting processes (e.g., atmosphere
and ocean); and (3) inclusion of stochastic elements to adjust
for model uncertainty, unmodeled aspects of the problem,
etc. As is recognized in much of the data assimilation
literature, Bayesian modeling is useful in the development
and analysis of models that incorporate physical reasoning
and respond to observations while accounting for the uncer-
tainties in both. The Bayesian framework, particularly when
formulated hierarchically, provides an inference engine that
can address the three challenges above.
[3] First, in the Bayesian view, all unknowns are modeled

as random variables; that is, a fundamental property of
Bayesian modeling is that model inputs and outputs are
probability distributions. In the context of space-time grid-

ded models analogous to finite difference approaches to the
solution of differential equations, this means that at each
point in a domain, and for every output time step, we can
obtain estimates of a mean value and measures of uncer-
tainty for every predicted variable, as well as measures of
dependence (e.g., covariances) among all variables in the
model system. Further, we can produce estimates and
uncertainty measures for arbitrary (e.g., nonlinear) functions
of the modeled variables. The mechanism for producing
these output distributions, known as posterior distributions,
is Bayes’ Theorem. This theorem is a recipe for updating
prior distributions for quantities of interest based on obser-
vational data. The construction of prior distributions relies
on our knowledge about the variables, but reflects uncer-
tainties in such knowledge.
[4] Regarding the second challenge, Bayesian hierarch-

ical modeling is an application of principles of conditional
probability theory. As we will indicate, this leads to models
that are adaptable to multiplatform observational data sets
including temporally sparse, but spatially abundant, remote
sensing observations. The reliance on conditional probabil-
ity theory also enables the coupling of different process
models as well as probabilistic treatment of uncertain
boundary and initial conditions. In our example here, the
essence of the prior modeling links a parameterized, sto-
chastic model for near-surface atmospheric winds and a
parameterized, stochastic ocean-streamfunction model that
is developed conditional on atmospheric winds.
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[5] As perspective on the third challenge, in our applica-
tion of Bayes’ Theorem, the definition of probabilistic
models and methods for computation differ from those
described recently in the data assimilation literature [e.g.,
van Leeuwen and Evensen, 1996; Miller et al., 1999;
Evensen and van Leeuwen, 2000; Anderson, 2001; Pham,
2001; van Leeuwen, 2001]. The sources of uncertainty in
many of these applications include initial and boundary
conditions as well as model uncertainty. Model uncertainty
is often reflected by the addition of a stochastic error term to
equations that are otherwise identical to deterministic
approximations of continuous, governing partial differential
equations. The BHM view includes such modeling but also
enables extensions. First, the distributions of model errors
involve parameters (e.g., model error covariances) which
are themselves unknown. Further, analogues of diffusion
coefficients and other quantities arising in forward models
can be treated as unknown. Such unknown parameters are
viewed as random variables endowed with prior distribu-
tions and hence subject to updating in light of the observa-
tions. In this fully probabilistic framework, the various
sources of uncertainty can be treated formally in computing
methods quite different from deterministic model integra-
tion (see Scipione and Berliner [1993] for an example based
on the Lorenz system). In the development and implemen-
tation of dynamical priors in the air-sea model described
here, we use spatial operators with discrete forms similar to
those of conventional forward models. However, these
priors are not forward models as in the sense of practical
implementations of, say, the extended Kalman filter in data
assimilation. Time steps and spatial grid dimensions in the
BHM are larger than stability criteria would permit in a
forward model sense. That is because we do not solve
approximations to stiff, quasi-elliptic, partial differential
equations. Nevertheless, some notions of stability are rele-
vant. We return to this issue in section 5.
[6] We implement a Bayesian Hierarchical Model (BHM)

in a testbed configuration in order to demonstrate the
approach, and to indicate characteristics of a BHM in the
context of an observing system simulation experiment
(OSSE). The OSSE consists of an ocean ‘‘truth’’ simulation,
driven by idealized surface wind fields. The ocean simu-
lation is developed in the context of primitive equation,
shallow water equations (PE-SWE), using the model
described by Milliff and McWilliams [1994]. The ocean
‘‘truth’’ and idealized atmospheric forcing are subsampled
in space and time and corrupted with artificial noise to
supply the BHM with simulated observations analogous to
altimeter and scatterometer data. The Bayesian model itself
is based on quasi-geostrophic modeling as opposed to PE-
SWE. Our intent is not to assess nor to suggest quasi-
geostrophic modeling as an approximation. Rather, we
simply seek to mimic the practical issue that no feasible
model can be claimed to capture perfectly the truth in a real
application.
[7] For Bayesian models as complex as those developed

here, exact calculations of the posterior distributions are
infeasible, leading to the use of simulation-based ap-
proaches. The computational method used here is a combi-
nation of two powerful techniques: Importance Sampling
Monte Carlo (ISMC) and Markov chain Monte Carlo
(MCMC). We present these methods in two appendices.

Appendix A reviews these techniques in a comparative
fashion. Specifically, we develop popular ensemble smooth-
ing methods from the perspective of ISMC. Appendix B is a
technical description of the actual algorithms used in this
article.
[8] To clarify both the strategy and the specifics, we

present the modeling in two steps. In section 2 we provide
a comparatively nontechnical overview of Bayesian analy-
sis and our hierarchical modeling for the air-sea problem.
Section 3 is devoted to the actual specification and analyses
for the model applied to the air-sea problem. Section 4
describes results from the OSSE. Discussion is provided in
section 5.

2. Bayesian Analysis and Model Overview

2.1. Basics of Bayesian Analysis

[9] The following notation is used to indicate probability
distributions: for random variables X and D, [X, D] denotes
their joint distribution; [DjX] is the conditional distribution
of D given X. The goal is production of probability
distributions that combine our scientific understanding of
the phenomena of interest, X (including both processes and
parameters), with the information contained in observatio-
nal data, D. The steps leading to the analysis are (1)
scientific understanding and relevant past data concerning
X are summarized in a prior distribution [X] for X; (2)
quantification of the random nature of the data D and their
relationships to X are developed in a data model consisting
of the probability distribution of D given X: [DjX]; and (3)
Bayes’ Theorem yields the updated distribution for X
having observed D. The result, known as the posterior
distribution, is the conditional distribution for X given D,

X jD½ � ¼ DjX½ � X½ �
D½ � : ð1Þ

The denominator in this expression is the integral of the
numerator with respect to X. It is a normalizing constant
insuring that [X jD] has total probability equal to 1. General
reviews of Bayesian statistics are given by Berger [1985]
and Bernardo and Smith [1994]. Also, see Epstein [1985]
and Tarantola [1987] for introductions targeted to geophy-
sical applications, and see Wikle et al. [1998], Berliner et al.
[1999, 2000], and Wikle et al. [2001] for examples of
Bayesian analyses in geophysical settings.

2.2. Bayesian Hierarchical Modeling

[10] The simplicity of Bayes’ formula belies the rich
potential for application. Extremely complex probability
models can be formulated, particularly via the strategy of
hierarchical modeling. Our use of the word ‘‘hierarchical’’
involves the formulation of probability models for large
collections of random variables as products of conditional
probability distributions. We note that one can adopt the
hierarchical view without being explicitly Bayesian and
vice versa. Also, the common use of the appellation
hierarchical in the geosciences refers to a sequence of
increasingly complex models for the phenomenon of inter-
est. While this view can be included in the statistical
definition, the latter definition also includes a variety of
other modeling strategies. Rather than delving into the
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theory, we turn to illustration in our air-sea modeling
context. We use the following variables:
w atmospheric winds, later prescribed as gridded,

horizontal wind vectors (w stands for ‘‘wind,’’ rather
than referring to vertical velocity);

y oceanic variables, later developed as gridded, ocean
streamfunction values;

Dw atmospheric wind data (e.g., scatterometer winds
estimates);

Dy ocean data (e.g., altimetry data).
All these variables are distributed in space and time, though
the extra notation is suppressed for now.
[11] Production of a stochastic model is the construction

of a joint probability distribution for all unknown quantities,
in our case Dw, Dy, w, y, and model parameters. For each of
the four collections of variables, we introduce four sets (not
necessarily disjoint) of model parameters (to be specified
later): Let qw, qy denote parameters associated with the
statistics of the data collection methods (e.g., measurement
error variances), and let hw, hy represent two sets of model
parameters associated with the probability models for the
atmospheric and oceanic processes.
[12] Bayes’ Theorem (equation (1)) provides the posterior

distribution of the unknowns conditional on the observed
data, [w, y, hw, hy, qw, qyjDw, Dy]. Application of the result
requires specification of the joint distribution of all random
quantities: Dw, Dy, w, y, hw, hy, qw, and qy. This is a
formidable task if attempted directly, so we suggest a
hierarchical strategy. The following view of the primary
components of a hierarchical model has proven useful
[Berliner, 1996]:

Data model

Dw;Dyjw;y; qw; qy
� �

;

Process model

w;yjhw; hy
h i

;

Parameter model

qw; qy; hw; hy
h i

:

The hierarchy specifies the desired joint model as the
product

Dw;Dy;w;y; hw; hy; qw; qy
h i

¼ Dw;Dyjw;y; qw; qy
� �

w;yjhw; hy
h i

� qw; qy; hw; hy
h i

: ð2Þ

That such a representation can be written is a simple fact
from probability theory; specifications of the components of
the hierarchy are our challenges.
2.2.1. Data Model: Combining Data Sets
[13] We anticipate the use of complex data sets replete

with spatio-temporal dependence structures (e.g., strong
interrelationships between atmospheric and oceanic data).
An advantage of modeling the conditional distribution of
the data given the true values of the processes they represent
is that major simplifications in model form are typically
quite plausible. In our case, we assume that the two chief

data sets are conditionally independent. Our data model
takes the form

Dw;Dyjw;y; qw; qy
� �

¼ Dwjw; qw½ � Dyjy; qy
� �

: ð3Þ

Note that conditional on w and y, we view the data model
as primarily representing random, but unobserved, measure-
ment errors. Further, the measurement errors made in
developing the scatterometer data and those made in
developing the altimeter data are independent. This is not
the same as suggesting that the two data sets are
unconditionally independent. Rather, the lion’s share of
the dependence among these data sets is thought to arise
through the dependence of the true processes (e.g., winds
and ocean streamfunction). This dependence is then
modeled for the true processes in later modeling steps.
[14] Also, note that we assumed that conditional on w, qw,

the distribution of Dw does not depend upon y, and we
made an analogous assumption for Dy. In general such
conditional independence assumptions are not unequivocal,
and should be defended and assessed on a case-by-case
basis. Finally, such assumptions are not required in Baye-
sian analyses, though they are often quite reasonable and
lead to major simplifications in the computations.
2.2.2. Process and Parameter Prior Models
[15] Thinking hierarchically, we develop a process-model

prior [w, yjhw, hy] as the product

w;yjhw; hy
h i

¼ yjw; hy
h i

wjhw½ �: ð4Þ

In words, the joint air-sea prior is the product of an ocean-
given-atmosphere model and an atmospheric model. The
construction and subsequent analysis of the two distribu-
tions on the right-hand side of equation (4) are primary
themes of this article.
[16] Define 8 to be gridded (in space and time), vector-

ized ocean streamfunction defined on a bounded domain.
We partition 8 = (8I, 8B) where 8I represents values in
the interior of the domain and 8B are boundary values.
Also, let U (V) be similarly gridded zonal (meridional) wind
components. Our tasks are (1) to build stochastic prior
models for the evolution of the processes, (Ut, Vt, 8t): t
2 T }, where T = {1,. . ., T} represents discrete time steps,
and (2) to update the prior based on observations. For
convenience, let

U ¼ Ut : t 2 Tf g;V ¼ Vt : t 2 Tf g;8 ¼ 8t : t 2 Tf g: ð5Þ

[17] We formulate a (first-order) Markovian evolution
model for streamfunction conditional on winds. That is,
we assume that for each t + 1, conditional on past values of
the winds and the model parameters, the distribution of8t+1

depends on the past streamfunction only through 8
t and on

past winds only through Ut and Vt. (Note, for example, that
this does not mean that 8t and 8

t+2 are assumed to be
independent.) Symbolically, we develop a probability dis-
tribution, [8t+1j8t, Ut, Vt, hy]. It follows that the more
formal form of [yjw, hy] is given by

8jU;V; hy
h i

¼ 81jhy
h iYT�1

t¼1

8tþ1j8t;Ut;Vt; hy
h i

; ð6Þ
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where [81jhy] provides temporal initialization of the
stochastic model.
[18] A further factorization of [8t+1j8t, Ut, Vt, hy] is used

to deal with dependence of the interior on the boundary as
well as the evolution of the boundary [also see Wikle et al.,
2003]. Specifically, we formulate the component models

8tþ1j8t;Ut;Vt ; hy
h i

¼ 8tþ1
I j8tþ1

B ;8t;Ut ;Vt; hy
h i

� 8tþ1
B j8t;Ut;Vt; hy

h i
: ð7Þ

Here and elsewhere, we make use of a basic fact from
probability theory: Any conditional joint distribution for x
and y can be factored as [x, yjz] = [xjy, z][yjz]. Note how the
condition z is held constant in all terms.

3. Stochastic Air-Sea Interaction Models

[19] The primary topics of this section are (1) the pro-
duction of the models on the right-hand side of equation (7)
based on physical reasoning, and (2) a review of the
requisite numerical computations.

3.1. Quasi-Geostrophic Ocean Models: Finite
Differences

[20] Let y denote upper ocean streamfunction. A basic
quasi-geostrophic (QG) model, with a conventional b-plane
approximation, for the space-time evolution of y is

r2 � 1

r2

� �
@y
@t

¼ � J y;r2y
� 	

� b
@y
@x

þ 1

rH
curlzt� gr2y

þ ahr4y; ð8Þ

where r ¼
ffiffiffiffiffiffiffi
gH

p
=f is the radius of deformation parameter;

t represents wind stress; r is density; H is the fluid depth;
�gr2y represents the effect of bottom friction; and ahr4y
is the lateral dissipation of relative vorticity by eddy
processes (see below). The operator J is the Jacobian;
J a; bð Þ ¼ @a

@x
@b
@y �

@b
@x

@a
@y.

[21] Conventional conversion to a discrete-time system
approximates the time derivative on the left-hand side of
equation (8) as (r2y(t + 1) � r�2y(t + 1)) � (r2 y(t) �
r�2y(t))}/�, where � is the selected time step.
[22] We consider a two-dimensional domain D consisting

of (n + 2) � (n + 2) rectangular grid boxes, each measuring
hx units in the zonal (x) direction and hy units in the
meridional (y) direction. Let N = n � n denote the number
of interior grid boxes; andNB = 4(n + 1) denote the number of
boundary grid boxes. Define 8t to be the (N + NB)-vector of
space-time gridded ocean-streamfunction values composed
of the N-vector 8I

t and the NB-vector 8B
t . It is convenient to

view each element of a 8 vector as representing the spatial
average of y over the associated grid box.
[23] The next step involves approximation of the spatial

derivatives in equation (8). For example, the conventional
five-point approximation for the two-dimensional Laplacian
r2 at a point (x, y) is given by

@2y
@x2

þ @2y
@y2

� y xþ hx; yð Þ � 2y x; yð Þ þ y x� hx; yð Þ
h2x

þ
y x; yþ hy
� 	

� 2y x; yð Þ þ y x; y� hy
� 	

h2y
: ð9Þ

[24] Combining these space- and time-derivative approx-
imations, we obtain an approximation to equation (8) of the
form

8tþ1
I ¼ Iþ�~G �bDx � gGþ ahG

2
� 	� �

8t
I

þ�~G �J 8t
I

� 	
þ 1

rH
C Ut;Vtð Þ

� �
þ B8tþ1

B ; ð10Þ

where I is the N � N identity matrix; J (8I
t) is a discretized

Jacobian evaluated at 8I
t; C(Ut, Vt) is a discretized

contribution of the wind stress; B8B
t+1 is an NB-vector

arising from boundary conditions; Dx is the matrix operator
corresponding to discretized, zonal spatial derivatives; and
~G = (G � r�2I)�1, where G is the matrix operator for a
discretized Laplacian r2.

3.2. Stochastic Wind-Driven Ocean Models

[25] We seek prior and posterior distributions for the
gridded ‘‘true’’ streamfunction. We now view 8 as an
idealized quantification of an aspect of the ‘‘real’’ ocean,
rather than as idealized numerical approximations to sol-
utions of a system of partial differential equations. Further,
8 is modeled as random.
[26] With equation (10) serving as motivation, our sug-

gestion for the first distribution on the right-hand side of
equation (7) is

8tþ1 ¼ A lð Þ8t � j~GJ 8t
I

� 	
þ c~GC Ut;Vtð Þ þ bB8tþ1

B þ etþ1;

ð11Þ

where et+1 is a vector of random errors. Note that we account
for variability and some uncertainty by inclusion of additive
random errors e. Typical assumptions for the et’s are that
they each have a multivariate Gaussian distribution with
mean equal to the zero vector and covariance matrix �e; as
shorthand, write et � N(0, �e). It is common to assume that
these vectors are independent across time. The use of
additive errors and Gaussian assumptions are convenient,
rather than limitations of the Bayesian viewpoint.
[27] We next describe modeling the various terms and

parameters (what we have been labeling generically as hy is
comprised of the quantities l, j, c, b, and �e) indicated in
equation (11).
3.2.1. Linear Term
[28] Our suggestion for A in equation (11) is based on the

linear contributions in equation (10),

A lð Þ ¼ l1Iþ l2 ~GDx þ l3 ~GG2; ð12Þ

where l = (l1, l2, l3)
0 are parameters to be modeled. Before

describing the modeling, we point out that we have first
applied a simple approximation. Namely, comparing equa-
tion (12) to equation (10), it appears that we omitted
g~GG corresponding to the discretized bottom friction
contribution. In our example, we find that ~GG � I, with
the approximation good to at least four decimal places in
each element. Hence, this term is simply combined in the
development of l1.
[29] The essence of the thought process is the comparison

of the terms in equation (10) with those of equation (12).
Our introduction of l can be viewed as the use of ‘‘free
parameters’’ that can partially control the eigenvalues of A,
but in a fashion that is responsive to the observations.

1 - 4 BERLINER ET AL.: BAYESIAN HIERARCHICAL MODELING OF AIR-SEA INTERACTION



Rather than specifying parameters exactly, we view them as
random, but trainable by the observations through Bayesian
updating. For example, direct comparison suggests that l1
ought to be set to 1 � �g. We treat this as prior information
regarding l1. We do impose the condition that 0 < l1 < 1.
Similarly, comparing terms suggests that l2 ���b and l3 �
�ah, but we treat l2 and l3 as a random quantities. This
approach essentially absorbs the gridding parameters hx, hy
and � into statistical parameters. This is highly nonstandard
from the perspectives of conventional deterministic model-
ing and most modern data assimilation schemes.
[30] Two important enhancements to this strategy are

available in principle. First, the scalars l1, l2, and l3 used
here could themselves be replaced by matrices, leading to
models capable accounting for varying spatial behaviors.
This seems particularly important when the domain D is
large enough to suggest that different ‘‘physics’’ are relevant
within the domain. Second, these control parameters can be
modeled as time-varying, perhaps with clocks much slower
that the clock of the streamfunction process. The idea here is
that the model can be responsive to local space-time
fluctuations of the physical processes of interest. For
example, the operative physics are highly nonstationary
during ocean deep convection events as opposed to those
during nonconvective periods. We should mention that such
enhancements can introduce intense modeling and computa-
tional challenges. As in all modeling efforts, we must trade
off fidelity to the physics and the data with parsimony of the
model and feasibility of computations. Note that the radius
of deformation parameter r2 can also be modeled as random.
3.2.2. Jacobian Term
[31] The quantity � j~G J in equation (11) is to account

for the nonlinear evolution of QG streamfunction. The
inclusion of the parameter j, apparently replacing � in
equation (10), follows the spirit of our discussion of L
and will not be repeated.
3.2.3. Wind Stresses
[32] The term c~GC(Ut, Vt) is critical to our goal of linking

atmosphere and ocean processes. Note that again we have
used a random control parameter c to moderate the con-
tribution of wind-stress curl to the model.
3.2.4. Boundary
[33] We next formulate the boundary model (in equation

(7)). As indicated, this step is amenable to hierarchical
Bayesian modeling [cf. Wikle et al., 2003].
[34] Our prior for CB depends upon changes in the

implied Sverdrup streamfunction in the vicinity of the
western boundary, based on updated wind forcing informa-
tion. First, we specify an initial condition 8B

0 based on the
coarsened PE-SWE ‘‘truth’’ simulation. We allow the boun-
dary to evolve according to

8tþ1
B ¼ 80

B þ asv
�Stv � �S0v
� 	

; ð13Þ

where �Sv
t is the average Sverdrup streamfunction on the

western boundary at time t, and asv is a random parameter
that moderates the contribution of the Sverdrup streamfunc-
tion relative to its initial value. Specifically, we numerically
approximate

Stv xWð Þ ¼ �1

rHb

Z xW

xE

curlzt dx;

where Sv
t (xW) is the Sverdrup streamfunction at a western

boundary location xW. We set �Sv
t = Nx

�1�xW
Sv
t (xW), where the

sum is over all of the western boundary locations. The prior
distribution for asv is set to be uniform over the interval
�0.1 to 0.1.
3.2.5. Errors
[35] As mentioned above, a typical assumption is that the

errors have a Gaussian distribution et � N(0, �e). Our prior
understanding suggests that the errors are likely to be
correlated and we have a rough sense of the variability
corresponding to these errors. Such background information
can be used in formulating reasonable models for �e.
Preliminary computational experiments to analyze the dif-
ferences between PE-SWE solutions and coarsely gridded
QG solutions could provide additional information. Fortu-
nately, modeling spatial covariance matrices is a well-
studied problem in spatial statistics [e.g., Cressie, 1993].
Also, departures from the Gaussian assumptions can be
accommodated. On the other hand, some sacrifices may be
necessitated due to computational limitations.

4. Observing System Simulation Experiment

[36] An observing system simulation experiment (OSSE)
was designed to demonstrate the effectiveness and sensitiv-
ities of the BHM air-sea interaction model. The OSSE
consists of an ocean ‘‘truth’’ simulation, driven by idealized
surface wind fields. The ocean ‘‘truth’’ and idealized
atmospheric forcing are realistically subsampled in space
and time, and corrupted with artificial noise, to supply the
BHM with simulated observational data.

4.1. Ocean Spin-Up

[37] The ocean ‘‘truth’’ simulation is developed in a
primitive equation, shallow water approximation context,
using the model described by Milliff and McWilliams
[1994]. A 1-year spin-up calculation is driven by relatively
low-amplitude constant winds to build a basin-scale back-
ground circulation upon which a 10-day OSSE is con-
ducted. The surface wind forcing for the spin-up
calculation is designed to drive a cyclonic basin-scale
circulation characterized by boundary currents along three
sides of a closed domain, with an eddy field on the basin
interior.
[38] Ocean model parameters for the spin-up calculation

are listed in Table 1. The testbed domain is centered at
55�W, 60�N, and is discretized at 10 km resolution into a
101 � 101 square grid. Given that we have selected
barotropic scaling, the shallow-water, primitive equation
model time step is 15 s. Dissipation in the model is achieved
by bottom friction with a 10-day spin-down timescale, and
Laplacian lateral viscosity which is chosen to be as low as
numerical stability will permit. These parameters are
selected to be appropriate for the 10-day wind-driven
experiment to be described below.
[39] The constant surface wind field used for spin-up is

depicted in Figure 1a, and it consists of two parts. Part one
is the classical sinusoidal distribution of zonal wind with
latitude known to force a basin-scale subpolar gyre circu-
lation with an equatorward western boundary current. Part
two is superposed on part one in the eastern boundary
current region of the basin. There, the northward winds
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increase exponentially toward the coast across a narrow
nearshore band. This induces an eastern boundary intensi-
fication in wind-stress curl that in turn drives a poleward
boundary current along the domain eastern boundary. East-
ern boundary wind-stress curl extrema have been observed
in eastern boundary current regions, all over the globe, in
annual average surface wind-stress curl derived from satel-
lite scatterometer data [Milliff and Morzel, 2001].
[40] The ocean circulation after a 1-year spin-up calcu-

lation is represented in Figure 1b as the perturbation pressure
field, p0 ¼ p

r � gH . The desired boundary currents and
interior eddy fields are evident. The maximum and minimum
velocity component amplitudes corresponding to the pres-
sure gradients in Figures 1 and 2 are �0.19 to 0.29 m s�1 in
the eastward, u component; and �0.24 to 0.33 m s�1 in the
northward, v component. Most of these extrema occur in a
closed cyclonic circulation that is slowly building, over the
course of the spin-up calculation, in the southwest corner of
the domain. While this quasi-permanent cyclonic flow
departs from an idealized circulation based for example
on the Labrador Sea, it provides a ‘‘marker’’ circulation
with which differences in the BHM posterior distributions
can be quantified. The oceanic cyclone in the southwestern
corner of the domain is consistent with b-plume response to
the wind-stress curl forcing on the eastern boundary [see it
Spall, 2000].

4.2. Simulated Data and Data Models

[41] The p0 field in Figure 1b represents the initial
condition for the ocean ‘‘truth’’ circulation to be used in
the 10-day OSSE. Atmospheric forcing for the OSSE period
is designed to be vigorous, emulating the momentum effects
of surface forcing from polar low pressure systems in the
Labrador Sea region in winter [e.g., Renfrew et al., 1999].
An idealized atmospheric cyclone superposes the spin-up
forcing, and is propagated across the testbed domain in 6d.
Figure 2 consists of two columns depicting the simulated
scatterometer samples of the atmospheric forcing data (right
column) and the simulated ocean response p0 fields with
overlying simulated altimeter tracks (left column). Fields
are depicted in Figure 2 for days 1.0, 3.0, 5.0, and 7.0 (four
rows). The idealized atmospheric cyclone propagates across
and exits the OSSE domain within this time period.
4.2.1. Scatterometer Data
[42] Simulated scatterometer data occur in alternating

ascending and descending swathes that span large portions

of the domain at 0 and 12 hours every day. The simulated
orbits are declined 8� with respect to due north. The swath
width, within-swath resolution, and the over-flight fre-
quency are all comparable to the present-day QuikSCAT
system.
[43] The formulation of the scatterometer data model is

given by

Dt
u

Dt
v

0
@

1
A ¼ Kt

w

Ut

Vt

0
@

1
Aþ �tw; �

t
w � N 0; s2w;�I

� �
; ð14Þ

where Du
t and Dv

t are the vectors of u- and v-component
wind observations at time t; the vectors of measurement
errors �w

t are assumed to be independent across time; and
the error variance sw,�

2 is known for both wind components
(e.g., from calibration/validation studies for NSCAT by
Freilich and Dunbar [1999]). The measurement operator
Kw

t is an incidence matrix (a sparse matrix of zeros and
ones) that maps the prediction locations to the observation
locations such that all observations within a prediction
location grid box are assumed to be noisy observations of
the true process at that prediction location [e.g., Wikle et al.,
1998]. More complicated formulations of this incidence
matrix are possible [e.g., Wikle et al., 2001].
4.2.2. Altimeter Data
[44] Simulated altimeter tracks occupy a repeating pattern

of 18 tracks that cross the OSSE domain in alternating
ascending (i.e., from southeast to northwest) and descend-
ing (i.e., from northeast to southwest) directions every 3
days. Simulated altimeter orbits cross portions of the OSSE
domain at 0 and 6 hr every day. Either two or three orbits
are reported at each of those times. The simulated altimeter
reports p0 directly from the ocean ‘‘truth’’ simulation as
described below. The along-track resolution is 12 km. While
this along-track resolution is about half the resolution of the
standard SSH products from the Topex/Poseidon data set,
the number of tracks that cover the domain at any given
over-flight time is about twice the realistic count.
[45] The data model for the simulated altimeter observa-

tions is similar to that used for the wind data,

Dt
p0 ¼ Kt

o8
t fo þ �to; �

t
o � N 0;s2o;�I

� �
; ð15Þ

where Dp0
t is a vector of ocean dynamic pressure observa-

tions at time t; 8t is a vector of the ocean streamfunction
anomaly process at prediction grid locations for time t, fo is
the Coriolis parameter; the vectors of measurement errors �o

t

are assumed to be independent across time; the error
variance s2o,� is again assumed known; and Ko

t is an
incidence matrix that maps the prediction grid locations to
the observation locations, analogous to the atmospheric data
model formulation.
[46] Note that this model implies that p0equiv = foY, which

is valid for a quasi-geostrophic system. We distinguish

Table 1. Shallow Water Primitive Equation Model Parameters

Parameter Value

H, basin depth 5000 m
g, gravitational acceleration 9.81 m s�2

fo, Coriolis parameter at mid-basin 1.263 � 10�4 s�1

b, variation in f with latitude 1.144 � 10�11 m�1 s�1

ah, eddy coefficient (Laplacian lateral viscosity) 135 m2 s�1

g, bottom friction coefficient 1.1574 � 10�6 s�1

Figure 1. (opposite) Shallow-water model ‘‘truth’’ simulation spin-up forcing and response to establish initial conditions
for the 10-day Observing System Simulation Experiment. (a) Surface wind vectors held constant for a 1-year spin-up period.
An eastern boundary positive wind-stress curl extremum is superposed upon a basin scale circulation consistent with
circulation in the sense of a subpolar gyre. (b) Perturbation dynamic pressure contours at 1 year in the spin-up calculation.
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Figure 2. (left-hand column) Ground tracks for simulated altimeter and (right-hand column) simulated
scatterometer inputs to the BHM. Rows, top to bottom, correspond to days 1, 3, 5, and 7 of the 10-day
OSSE. The simulated altimeter tracks are superposed on the perturbation dynamic pressure ( p0) fields
from the ‘‘truth’’ simulation. These p0 data are artificially degraded to simulate observational errors before
being supplied to the BHM. The simulated scatterometer fields depict the rapid transit across the domain
of an idealized atmospheric cyclone. The simulated scatterometer data are also artificially contaminated
with errors before being supplied to the BHM.
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between p0equiv and p0 from the PE-SWE system where a
divergent circulation changes the definition of dynamic
pressure. However, in the OSSE the divergent circulation
component is small, and the data model presented above is
reasonable. More complicated data models for altimetry
observations will be explored elsewhere (e.g., including
geoid and general circulation effects).

4.3. BHM Specifications

[47] We next describe the specific assumptions used in
the OSSE. First, we set the BHM time step to be 12 hours.
4.3.1. Atmospheric Process Model
[48] As shown by Royle et al. [1999] and Wikle et al.

[2001], the BHM framework can be used to obtain realistic
wind fields given sparsely sampled scatterometer data.
Since our focus here is on the atmosphere-ocean coupling
and the ocean response, and since we have assumed that
relatively large amounts of wind data are available, we
employ a relatively simple BHM for the atmospheric
component. We make use of a ‘‘stochastic geostrophy’’
argument, similar to Royle et al. [1999]. For each time t,
we specify the distribution of the horizontal wind compo-
nents given the atmospheric pressure field as follows:

UtjPt; s2ujP � N � 1=ra f0ð ÞDyP
t;s2ujPI

� �
ð16Þ

VtjPt;s2vjP � N 1=ra f0ð ÞDxP
t; s2vjPI

� �
; ð17Þ

where Pt is the atmospheric pressure field at time t, ra was
set to 1, Dx and Dy are the difference operators in the x- and
y-directions, respectively, and sujP

2 , svjP
2 are variances of

random errors representing differences between the true
field and the geostrophic approximation. Note that more
sophisticated (i.e., correlated) error structures can be used
for this error process and the geostrophic relationship can be
made less explicit within this framework [Royle et al., 1999;
Berliner et al., 1999].
[49] We next specify the distribution for the atmospheric

pressure process. (Note that expressions such as equation
(6) should formally include the pressure process; we will
not adjust the notation.) In the current setting we have no
observations of atmospheric pressure. Thus, pressure is in
the model as a ‘‘hidden process.’’ We specify a distribution
for the pressure process that can simulate realistic pressure
fields. Specifically, we let Pt � N(MP, �P) where MP is the
mean pressure field and �P is the covariance matrix of a
correlated noise process. One could obtain �P by choosing
a covariance function appropriate to the atmosphere [e.g.,
Thiebaux, 1985] with correlation lengths appropriate for the
Labrador Sea region. In the limited domain of the Labrador
Sea, analyses of surface winds from NSCAT and Minimet
drifting buoys [Milliff et al., 2003] suggest that a reasonable
correlation function for the pressure field is the exponential
covariance function, c(d) = sp

2 exp(�qpd) where d is
distance and qp is a parameter describing the correlation
decay over space. To facilitate computation, we reparame-
terize the pressure process by letting Pt = mp1 + E(qp)A

t,
where mp is the baseline pressure (assumed known), E(qp) is
a matrix of the first np EOFs from the covariance matrix �P

(which depends on the parameter qp), and A
t are the random

variances associated with the EOFs E. We assume that the
A
t all have the same distribution and are independent over

time: At � N(0, diag(L)) where diag(L) is a diagonal matrix
of variances. We assume the lj, j = 1,. . ., np are independ-
ent, each distributed according to an inverse gamma dis-
tribution, IG(qj, rj), where the parameters qj, rj are known
and can be obtained from the EOF decomposition of �P.
[50] We must specify prior distributions and/or parameter

values for this model. For example, s2ujP and s2vjP can be
given inverse gamma priors with known parameters or we
can simply specify the variances directly, in which case they
are assumed to be fixed. We take the latter approach and
specify sujP

2 = svjP
2 = 3 m2 s�2 in the OSSE. Similarly, sP

2

can be given a distribution but is fixed in the OSSE to be
sP
2 = 105Pa2. Furthermore, we fix qP = .003 km�1 (corre-

sponding to distance in kilometers) and let np = 10. Our
results are not extremely sensitive to these choices.
[51] Note that there is no dynamical time-dependence in

this atmospheric model. Dynamical models for wind fields
can be considered in the BHM framework [e.g., Wikle et al.,
2001] but are not needed for the OSSE. A time-varying
‘‘stochastic quasi-geostrophic’’ model in the BHM frame-
work can be used in situations with realistic scatterometer
sampling and will be discussed elsewhere.
4.3.2. Ocean Model Error Distribution
[52] We consider the distribution et � N(0, se

2R(q)), where
se
2 is the variance (assumed to be homogeneous) and R(q) is

a correlation matrix which depends on a spatial dependence
parameter q. Given the relatively small spatial domain, we
assume an isotropic exponential correlation model in defin-
ing R [Cressie, 1993, section 2.3]. Implementation is
problematic however, given the relatively high-dimensional
prediction grid for which samples from this multivariate
normal distribution must be obtained. In testbed mode, we
make an additional simplification for the sake of computa-
tional efficiency. We use an approximation,

~R qð Þ ¼ F qð Þ qð ÞF0 qð Þ; ð18Þ

where F(q) is an N � ne dimensional matrix of eigenvectors
(EOFs) of R(q)), and �(q) is the corresponding diagonal
matrix of spectral variances. The implied correlation
function is approximately exponential, if ne is relatively
large. Further, ~R(q) is singular, but suffices for the
illustrative intent of the OSSE.
[53] We must specify distributions for se

2 and q. We let se
2

�Unif (1.1 � 106, 1.6 � 106), where Unif indicates a
uniform distribution on the indicated range, and q �
DUnif ([.001,.002,. . .,.01]), where DUnif refers to a discrete
uniform distribution. Our selection of parameters corre-
sponds to the exponential correlation, exp(�qd) where d
is distance in kilometers.
4.3.3. Initial State Prior
[54] The initial condition 8

1 was assumed to be Gaussian
with prior mean that is the coarsened spin-up value from the
truth simulation and covariance matrix that is the same as
that of the model errors, with the exception that the variance
is reduced by a factor of 10 (i.e., 0.10 se

2R(q)).
4.3.4. Altimetry Data Model Revisited
[55] The computational algorithm used here (see Appen-

dices A and B) is valid, but may be inefficient. One
byproduct of this inefficiency was that we needed to inflate
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so,�
2 = .001 (see equation (15)) by a factor of 104 in the

numerical calculations. In terms of standard deviation (i.e.,
in the same units as the altimetry data), this is an increase by
a factor of 100. In part, this inflation is a result of subgrid-
scale effects. Namely, the simulated data were produced by
adding noise to the original PE-SWE results before apply-
ing space-time gridding up to the BHM specifications. Our
data analysis of the PE-SWE results suggest spatial subgrid-
scale variations leading to a standard deviation of about 0.1,
explaining 1 order of magnitude of our inflation. Temporal
effects may explain more of that inflation. We will report on
new algorithms now being developed and tested elsewhere.

4.4. Results

[56] The basin-scale ocean circulation response to forcing
from the idealized atmospheric cyclone is compared, for
days 1, 3, 5, and 7 during the OSSE period, in Figure 3. The
right-hand column depicts the p0equiv = foy field for the
posterior mean of the BHM simulations (based on 1000
realizations), and the left-hand column depicts p0 from the
PE-SWE ‘‘truth’’ simulation. The field evolutions over the
10-day OSSE are very similar in feature morphology and
response to the intermittent forcing.
[57] The amplitude fluctuations when the atmospheric

cyclone inhabits most of the basin (see Figure 2) are larger
in the posterior mean p0equiv from the BHM than for p0 from
PE-SWE ‘‘truth.’’ The atmospheric cyclone imprint on p0

contours at midbasin is apparent in the fields from days 3
and 5. The BHM posterior mean response amplitude is 30%
larger than for the PE-SWE ‘‘truth’’ field on day 3.
Boundary currents implied by gradients in p0 in the ‘‘truth’’
simulation are at most 10% stronger than for the BHM
posterior mean. The oceanic cyclone in the southwestern
corner of the domain is 40% deeper than for the BHM case
on days 5 and 7. On days 1 and 3 the difference is only
20%. Note that the oceanic cyclone is the strongest oceanic
signal in both the ‘‘truth’’ and the BHM posterior mean.
[58] Difference fields with respect to p0 from the PE-SWE

‘‘truth’’ simulation are depicted for two BHM results in
Figure 4. Again, the rows correspond to differences on days
1, 3, 5, and 7. The left-hand column shows differences from
‘‘truth’’ on those days for p0equiv from the posterior mean
field described in Figure 3. The right-hand column shows
differences for the BHM calculation from which all simu-
lated altimeter data have been excluded.
[59] As expected, the largest differences, for both com-

parisons, occur in the oceanic cyclone in the southwestern
corner of the ocean domain. However, the difference by day
5 in the BHM case with altimeter data is about 60% smaller
than for the case when altimeter data are excluded. The
dynamical priors for both BHM simulations are the same, so
the difference field comparisons in Figure 4 quantify and
add spatial information as to the value of simulated altimeter
data in the Bayesian framework. This hints at an array
design utility for BHM that will be taken up elsewhere.
[60] We also note that the differences in the boundary

region in both BHM simulations (i.e., with and without
simulated altimeter data) are uniformly small throughout the
OSSE period. This implies that, in a posterior mean sense,
the boundary vector approach to stochastic boundary con-
dition specification is working [Wikle et al., 2003]. The
implementation of time-dependent quasi-geostrophic boun-

dary conditions in deterministic modeling is somewhat
nontrivial [e.g., Pinardi and Milliff, 1989], and the present
success in this regard within the BHM framework indicates
another potential strength of the approach.
[61] Figure 5 shows estimates of the standard deviation in

p0equiv from the BHM simulation in Figure 4, for days 1, 3, 5,
and 7 (note change in contour interval). These estimates of
standard deviation are based on 1000 realizations of the
posterior distribution for ocean streamfunction (converted to
equivalent dynamic pressure). They reflect regions of
greater and lesser uncertainty in the posterior mean fields
of Figure 3. Again, the region of the oceanic cyclone in the
southwestern corner of the domain appears as a local
extremum. Higher uncertainties are also associated with
the domain boundaries. Similarly robust field measures of
uncertainty are expensive to produce in conventional deter-
ministic modeling.
[62] Next, we consider posterior distributions for model

parameters. Prior distributions for many of these parameters
have been described in the text, and they are summarized in
Table 2. Values used for specified quantities are given in
Table 3. Figure 6 compares the posterior and prior distri-
butions for four parameters discussed in sections 3.2 and
3.3. (These plots are of estimates of the posterior density
functions based on the Monte Carlo analysis. Throughout
this article, the estimated densities are kernel density esti-
mates [cf. Silverman, 1986].) These include; g the bottom
friction parameter, ah the lateral dissipation parameter, j a
parameter on the nonlinear evolution component of the
BHM, and c a parameter on the wind-stress curl component.
Posterior distributions for these parameters have evolved
from initially uniform priors (e.g., the flat lines in each
panel of Figure 6). The ranges for these priors were deemed
reasonable, and were in some cases influenced by experi-
ence in deterministic model settings.
[63] The posterior distribution for the BHM term identi-

fied with the bottom friction coefficient g (Figure 6a)
implies a spin-down time longer than the bottom friction
parameter used in the PE-SWE ‘‘truth’’ simulation (Table 1).
This suggests a tendency in the BHM for lower overall
dissipation. A tendency of this kind can arise because of an
inconsistency that might be indicated between large dissi-
pation in the model and the more energetic circulation
implied by the observations. Figure 6b depicts the posterior
distribution for the BHM term identified with eddy viscosity
(ah). The posterior mode for this distribution is less than
zero, with a magnitude much smaller than the positive value
required in the PE-SWE ‘‘truth’’ simulation for numerical
stability (ah = 135 m2 s�1 in PE-SWE). Only by trial and
error did we arrive at a uniform prior for ah that included
both positive and negative values. In BHM considered here,
the ah term is a random variable that scales a nearest-
neighbor process in the evolution of the stochastic stream-
function process. Apparently, given the BHM grid spacing
and time step size, this nearest neighbor process does not
take up the role of a Fickian diffusion, at least in the
presence of the observations.
[64] The posterior distributions for c and j (Figures 6c and

6d) are also difficult to relate to experience in deterministic
modeling. The posterior distribution for c is bimodal, with
extrema occupying the low and high ends of the range
prescribed in the prior. The extremum in the largest ampli-
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tude range might also infer a BHM tendency toward a
higher energy state. The posterior distribution for j does not
identify a clear mode. The distribution is shifted toward the
higher nonlinearity end of the prior range.

[65] As a final indication of potential calculations based
on the BHM output, consider basin-integrated kinetic energy
KE(t) as a function of time t. The KE(t) trace from the PE-
SWE ‘‘truth’’ simulation is marked by a bold solid line in

Figure 3. (right-hand column) Posterior mean fields versus (left-hand column) ‘‘truth’’ simulation for
days (rows from top to bottom) 1, 3, 5, and 7 in the 10-day OSSE. For each day, the perturbation dynamic
pressure ( p0) is compared with the posterior mean for an equivalent field ( p0equiv = foy).
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Figure 4. Difference fields with respect to the p0 ‘‘truth’’ simulation for the posterior mean fields from
two BHM OSSE calculations. (left-hand column) Differences (in m2 s�2) for the BHM OSSE that
includes both simulated scatterometer and simulated altimeter data sets. (right-hand column) BHM OSSE
difference fields from posterior mean field comparisons in an experiment excluding simulated altimeter
data. Difference fields are shown for days (rows from top to bottom) 1, 3, 5, and 7.

1 - 12 BERLINER ET AL.: BAYESIAN HIERARCHICAL MODELING OF AIR-SEA INTERACTION



Figure 7. The BHM yields posterior distributions of kinetic
energy at each BHM output time. These distributions are
indicated by gray-scale shading in Figures 7a and 7b. The
means of the posterior distributions for KE(t) are marked by
bold dashed lines. Figure 7a compares ‘‘truth’’ KE(t) with
the BHM posterior distributions for an example simulation
relying on both simulated-scatterometer and simulated-
altimeter data. Figure 7b depicts the comparison for a
BHM simulation from which all simulated altimeter data
have been withheld. Figures 7c–7f depict KE(t) distribution
comparisons for selected times (days 1, 3, 5, and 7).
[66] First, note that for the simulation based on both data

sets, the true values of KE(t) are contained in regions of
reasonably high posterior probability for each t. The poste-
rior means of KE(t) from the BHM simulations depart from
the PE-SWE ‘‘truth’’ KE(t) with time, though this effect is
less prominent when simulated-altimeter data are included
(Figure 7a). Simulated-altimeter data are incorporated in the
BHM every 12 hours, beginning 12 hours after the model
initialization. The posterior mean KE trace can be seen to
respond by jumping back toward the SWE ‘‘truth’’ KE(t) in
the BHM output times following simulated-altimeter
updates. The posterior distributions for KE(t) dissipate in
amplitude with time, demonstrating in part an increase in
uncertainty in the BHM simulation with time due to
dynamical effects in the presence of uncertain initial con-
ditions. However, as expected the spread in the posteriors
relying on both data sets is less than those based on the
simulated-scatterometer data only.
[67] We note that there is a bias toward a lower KE state in

the BHM that is overcome in part by simulated-altimeter
data. Possible causes for this bias in the posterior means
include (1) the BHM underestimation of the oceanic cyclone

Figure 5. Maps of posterior standard deviations of p0equiv
for days 1, 3, 5, and 7 from the 10-day BHMOSSE including
both simulated scatterometer and simulated altimeter data.

Table 2. BHM Parameter Prior Distributions

Parameter Prior Distribution

l1 1 � �g where g � Unif (0,1.6534 � 10�6)
l2 Unif (��b � (0.04)�b, ��b + (0.04)�b)
l3 �ah, where ah � Unif (�215, 215)
j Unif (� � (0.04)�, � + (0.04)�)
c Unif (� � (0.04)�, � + (0.04)�)
b Unif (.97, 1)
se

2 Unif (1.1 � 106, 1.6 � 106)
asv Unif (�0.1, 0.1)
q DUnif ([0.001, 0.002, . . ., 0.01])

Table 3. BHM Fixed Parameters

Parameter Fixed Value

H 5000 m
r 1000 kg m�3

r 1.753 � 106 m
fo 1.26301 � 10�4 s�1

� 43,200 s
hx 32.3 � 103 m
hy 32.3 � 103 m
so,�2 0.001 m4 s�4

ne 30
np 10
sw,�2 0.1 m2 s�2

sujP
2 3 m2 s�2

svjP
2 3 m2 s�2

qp 0.003 km�1

sp2 105 Pa2

mp 100,000 Pa
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in the southwestern corner of the domain, (2) the incon-
sistency between large dissipation implied by the BHM prior
model and the more energetic circulation suggested by the
observations, and (3) the fact that we deprived the model of
some of its ability to respond to the truth by basing the
ocean-data model (equation (15)) on a QG-like approxima-
tion. On the other hand, note that an alternative summary, the
posterior mode (most likely value), outperforms the mean at
some time points (e.g., Figure 7d). Furthermore, preliminary
computations based on more sophisticated Monte Carlo
methods (also, see the conclusion of Appendix B) than those
used here also suggest that the true posterior results are less
biased than those presented here.

5. Conclusion

[68] We have demonstrated how Bayesian hierarchical
modeling can be applied to form stochastic models for
complex processes, including the coupling of atmospheric

and oceanic processes in the presence of unknown boundary
conditions. In contrast to most views of ‘‘statistical mod-
els,’’ these stochastic models can be based strongly on
physical reasoning. Such prior process models are com-
bined with observations by application of Bayes’ Theorem.
Throughout all stages of the model development and
analysis, the primary objects of interest are probability
distributions describing predata uncertainties and postdata
uncertainties.
[69] To illustrate the strategy, we presented an OSSE

based on a truth simulation of a basin-scale, wind-driven
PE-SWE ocean model. The ‘‘true’’ processes were sampled
and corrupted with noise to provide artificial data sets. This
experiment was formulated to parallel the collection of
scatterometer and altimeter data sets over the Labrador
Sea. We then considered a QG-based, stochastic model
and updated the model based upon data. We then provided
extensive discussion of the results of the Bayesian analysis.
These included summaries of posterior distributions of

Figure 6. Plots of prior and posterior distributions for four BHM parameters described in the text. The
prior distributions for all parameters are set to be uniform (i.e., flat lines) over the intervals depicted in
each panel. (a) Bottom friction parameter, g. (b) Lateral viscosity parameter, ah. (c) Coefficient of the
nonlinear terms in the BHM, j. (d) Coefficient of the wind-stress curl term, c.
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primary variables of interest (ocean streamfunction) as well
as functions of these variables (e.g., basin-scale total kinetic
energy KE) and model parameters.
[70] While our overall impression of the results is quite

favorable, we also indicated aspects of the results that depart
from perfection (e.g., an apparent bias toward smaller-than-
true KE ). The following issues are important in gauging the
results. First, we have tried to truly ‘‘forget’’ the true model
in developing the statistical models. In particular, we did not

direct the process models or the data models to account for
behaviors beyond those associated with a QG-ocean, except
for the inclusion of the stochastic error terms. Though error
terms were included, they were not modeled using our
knowledge that the truth was PE-SWE as opposed to QG.
Similarly, we did little ‘‘tuning’’ of parameters or their
priors based on the data nor our knowledge of the truth.
[71] A second issue is that our intent in BHM is to form

effective combinations of information present in observa-

Figure 7. (a, b) Basin-integrated kinetic energy posterior distributions (gray scale), posterior mean
traces (bold line), and ‘‘truth’’ simulation traces (bold dashed line). Figure 7a depicts the 10-day evolution
of these posterior results for a BHM simulation incorporating simulated scatterometer and altimeter data
sets. Figure 7b depicts the results when simulated altimeter data have been excluded. (c–f) Posterior
densities for days 7, 5, 3, and 1.
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tions and physics, rather than more typical notions of
seeking approximate solutions of uncertain physical models.
This suggests that a typical BHM cannot be expected to
maintain all the properties associated with traditional deter-
ministic modeling and include uncertainty management. For
example, while we investigated the implied posterior dis-
tributions on QG-model parameters such as g and ah, we
never expected to obtain excellent statistical estimates of
these parameters based on the model used. Indeed, we made
clear that the statistical model involved time steps far too
large to permit the interpretation that our model is a
discretized QG model. On the other hand, this is not a
limitation of the BHM approach in principle. Rather, we
sought to indicate approximate modeling in the presence of
serious computational limitations. Without such limitations,
BHM can be used in a mode similar to that of solving a
deterministic system in the presence of uncertainty.
[72] Though we did not seek to solve a deterministic

system, some notion of stability regarding the model (equa-
tion (11)) is relevant. For example, recall that the OSSE was
based on a 10-day model. What happens if we extend the
study period beyond 10 days? While the formulas of
Bayesian methods apply for arbitrary study periods, their
numerical implementation may be difficult. In particular, a
component of the numerical strategy described in Appendix
B involves simulation of realizations from a stochastic
dynamical system based on equation (11). Hence, we are
concerned with stochastic stability. Unfortunately, this
notion cannot be defined uniquely [e.g., Meyn and Tweedie,
1993; Borovkov, 1998]. Meyn and Tweedie [1993] consider
forms of stochastic stability for Markov chains, though
these results are difficult to transfer to our context since
our model includes random parameters and equation (11) is
merely conditionally Markov given the winds; that is,
stochastic stability, however defined, applies to the entire
model, not just to the streamfunction variables. This general
topic, particularly as it relates to the efficiency of numerical
procedures, is an important subject for future research.
[73] Finally, it is important to separately assess the value

of the BHM paradigm and any particular implementation of
that paradigm; that is, we presented a BHM with particular
choices of the model components. In general, there are no
unequivocal choices for such components, just as there are
no unequivocal choices of parameterizations and data
assimilation schemes in deterministic numerical models.
Limitations of knowledge and practical implementation
apply.

Appendix A

A1. Bayesian Computations

[74] Recalling the notation of section 2.1, the calculation
of the normalizing constant [D] in equation (1) is intractable
in many applications. A variety of computational techniques
have been considered [see Berger, 1985; Bernardo and
Smith, 1994]. We focus on simulation-based, Monte Carlo
methods.

A2. Importance Sampling Monte Carlo

[75] One of the main uses of conventional Monte Carlo
is the estimation of integrals or expectations in the case
of probability models. Let f be some function of the

variable X of interest and assume a Bayesian context in
which we are to estimate the expected value of f (X )
conditional on the data D,

E f Xð ÞjDð Þ ¼
Z

f xð Þ xjD½ �dx ¼
R
f xð Þ Djx½ � x½ �dxR

Djx½ � x½ �dx ; ðA1Þ

assuming this integral exists. A Monte Carlo estimate can
be obtained by (1) generatingM pseudo-random realizations
or ensemble members from [xjD], and (2) evaluating f for
each realization and computing the arithmetic average of the
results. Under independent sampling, this average tends to
E( f (X)jD) in a very strong sense as M ! 1. Further, such
convergence also holds if the realizations are stationary (or
ergodic), though not necessarily independent. (This fact is
critical in MCMC.)
[76] Typically, ISMC is suggested as a method for

improving the efficiency of Monte Carlo (i.e., achieving
the same or better expected precision with smaller sample
sizes). The technique is also useful in settings in which
simulation from [xjD] is difficult. Consider another distri-
bution, say q, which is comparatively easy to simulate from.
One generates M ensemble members from q and evaluates
f for each. To use these values to estimate equation (A1),
each must be weighted to adjust for the fact that the
ensemble members are not from the target posterior. A
useful formula for an ISMC estimate of equation (A1) is
[e.g., Berger, 1985; Berliner, 2001]

Ê f Xð ÞjDð Þ ¼
P

i f xið Þ xijD½ �=q xið ÞP
i xijD½ �=q xið Þ : ðA2Þ

[77] Note that equation (A2) can be implemented even
when normalizers of [xjD] and/or q cannot be computed. A
common selection of an importance sampler is the prior [X].
For a sample of size M from [X], equation (A2) reduces to

Ê f Xð ÞjDð Þ ¼
P

i f xið Þ Djxi½ �P
i Djxi½ � : ðA3Þ

[78] In our setting as well as much of the data assimilation
literature, the primary variables of interest are a time series,
say X = (X1,. . ., XT). Suppose further that (1) our prior for
the series is a Markov process model of order 1,

X½ � ¼ X 0
� �YT�1

t¼0

X tþ1jX t
� �

; ðA4Þ

and (2) observations D1,. . ., DT are available. If we assume
that these observations are conditionally independent and
that the conditional distribution of any Dt depends only on
Xt, we have that

XjD½ � / X 0
� �YT�1

t¼0

Dtþ1jX tþ1
� �

X tþ1jX t
� �

:

For Monte Carlo samples xi = (xi
0,. . ., xi

T ) generated from
the prior equation (A4), the estimate (equation (A3)) is

Ê f Xð ÞjDð Þ ¼
P

i f xið Þ
QT

t¼1 Dtjxti
� �

P
i

QT
t¼1 Dt jxti½ �

: ðA5Þ

Equation (A3) (with notation changes) appears at the top of
page 265 of the work by Berger [1985]. It is the same
(again, with notation changes) as the basis of ensemble
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methods as described by van Leeuwen and Evensen [1996,
p. 2903, equation (34)]. Indeed, equation (A5) is an
ensemble smoother.

A3. Markov Chain Monte Carlo

[79] For many distributions, including settings in which
the normalization of densities is not possible, one cannot
readily generate realizations. In such cases, MCMC offers
an approximate approach to generating realizations. The
idea is to construct an ergodic Markov chain whose sta-
tionary, ergodic distribution coincides with the distribution
of interest. Then, after a transience or burn-in period,
numerically generated realizations of the chain are (in a
limiting sense) realizations from the target distribution.
However, these ensemble members are not independent,
and hence, we require larger samples to achieve the same
accuracy as can be expected with independent sampling.
Theories have been developed that enable us to write out
prescriptions for Markov chains with ergodic distributions
that are posteriors from complex Bayesian models; that is,
there are recipes for doing so, even though we cannot
display the posterior. A general discussion of the approach
is given by Robert and Casella [1999].
[80] Formal comparisons between ISMC and MCMC are

difficult and beyond the scope of this article. There is one
simple intuition, however. The intent in any case is to
produce as efficiently as possible ensemble members which
are representative of the true posterior. MCMC accom-
plishes this, but at a computational cost of enduring a
transience period and potentially very large ensemble sizes
compared to independent sampling. It can also be very
difficult to implement for nonlinear models, especially in
the case of coupled models as considered here. ISMC or
ensemble filter/smoother methods may be preferred to
MCMC in settings in which the posterior and prior
distributions are not too dissimilar. The idea is that if the
prior [X] and data model [DjX] (but viewed as a function
of X for fixed D) favor very different regions of the X-
space, most of the values of [Djxi] in equation (A5) would
be very small. That is, most of the samples are wasted, and
we again would expect the need for large ensemble sizes to
achieve good accuracy. One hopes that this is partially
alleviated by use of a sequential procedure. The general
issue can be particularly problematic in large hierarchical
models.

Appendix B

B1. Posterior Computations for the OSSE

[81] The posterior distribution of the primary physical
variables of interest U, V and 8 (recall equation (5)) and all
model parameters, conditional on the observations is given
by

U;V;y; qw; qy; hw; hyjDy;Dw

h i

/ Dyjy; qy
� �

81jU;V; hy
h i

Y
8tþ1j8t;U;V; hy
h i

hy; qy
h i

DwjU;V; qw½ � U;Vjhw½ � hw; qw½ �: ðB1Þ

The proportionality constant for this distribution is the
integral of the right-hand side with respect to all variables
except the data Dy, Dw.
[82] Though recipes for developing MCMC analyses

exist, the highly nonlinear structures associated with our
version of the wind-driven QG model render them intract-
able. However, a combined ISMC-MCMC approach is
available. The key step is to apply Bayes’ Theorem to the
third line of equation (B1) only, isolating the wind process
for the moment. It follows that

U;V;8; qw; qy; hw; hyjDy;Dw

h i

/ Dyj8; qy
� �

C1jU;V; hy
h i

Y
8tþ1j8t ;U;V; hy
h i

hy; qy
h i

U;V; qw; hwjDw½ �: ðB2Þ

Though we cannot produce the normalizing constant for the
third line of equation (B2), we can perform an MCMC
analysis of this distribution [Royle et al., 1999]. The output
of this ‘‘atmosphere-only’’ MCMC are not realizations from
the target posterior. (Intuitively, this must be so since such
output could not be affected by Dy.) We (1) substitute a
realization of U, V from this MCMC into the first and
second lines of equation (B2), along with randomly
generated values of the model parameters, and (2) generate
a realization of 8 from the resulting model. Again, the
resulting 8 is not a realization from the final posterior.
However, we can generalize equation (A5) to achieve the
desired inferences.

B2. ISMC-MCMC Algorithm

[83] Our algorithm consists of two primary steps.
B2.1. Step A: MCMC the Atmospheric Model
[84] We construct and run an MCMC algorithm for the

atmospheric model, which after transience, yields M sam-
ples from equation (B2), Ui, Vi, qw,i, hw,i: i = 1,. . ., M.
B2.2. Step B: MCMC-ISMC Linkage
[85] Let f = f (U, V, 8, qw, qy, hw, hy) be any (integrable)

function of the unknowns. To estimate posterior expect-
ations of f, E( f jDy, Dw), perform the following.
B2.2.1. Step 1
[86] Choose an MCMC generated Ui, Vi (step a). Inde-

pendently generate qy,i, hy,i � [qy, hy] (step b). Generate the
full time series of ocean streamfunction from the process
model, with parameters and winds from steps a and b (step c):

8i � 81jUi;Vi; hy;i
h iY

8tþ1j8t;Ui;Vi; hy;i
h i

:

B2.2.2. Step 2
[87] Compute

Ê fð Þ ¼
P

i fi Dyj8i; qy;i
� �

P
i Dyj8i; qy;i
� � ; ðB3Þ

where fi = f(Ui, Vi, 8i, qw,i, qy,i, hw,i, hy,i).
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[88] To clarify the form in equation (B3), note that we
generated a realization from

U;V;8; qw; qy; hw; hy
h i

/ C
1jU;V; hy

h iY
8tþ1j8t;U;V; hy
h i

hy; qy
h i

U;V; qw; hwjDw½ �:

This plays the role of q in our explanation of ISMC above.
Dividing the correct posterior, p in the simpler version, as
given in equation (B2) by this distribution, we see that only
the data model [Dyj8,qy] survives in the analogue of
equation (A5).
[89] In the case of no ocean data, the correct full posterior

reduces to

U;V;8; qw; hw; hyjDw

h i
¼ 81jU;V; hy

h iY
8tþ1j8t ;U;V; hy
h i

� hy
h i

U;V; hw; qwjDw½ �: ðB4Þ

Note that this is an equality, not a proportionality relation-
ship. Hence, inference for ocean streamfunction is accom-
plished directly with no need for reweighting. That is, the
algorithm produces realizations from the correct posterior.
Posterior expectations are estimated by

Ê fð Þ ¼
P

i fi

M
: ðB5Þ

One can compute both equations (B3) and (B5) based on a
single simulation. This enables assessments of the impact of
the addition of the ocean data in the presence of the
atmospheric data.
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