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A THEORY OF GLACIER SURGES 

A. C. Fowler 
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Abstract. We propose a model of glacier flow for at least a hundred years, and a major con- 
that is capable of explaining temperate glacier ference (see Canadian Journal of Earth Sciences, 
surges. The laws of conservation of mass and vol. 6, pp. 807-1018, 1969) was devoted to their 
momentum are supplemented by the prescription study. Meier and Post [1969] summed up many of 
of a sliding law that gives the basal shear stress their characteristics and outlined directions 
ß as a function of the basal velocity u and the 
effective pressure N. The effective drainage 
pressure N is determined by a simple study of 
the subglacial hydraulic system. Following 
R6thlisberger, we determine N = N R for the case 
of drainage through a single subglacial tunnel. 
Alternatively, following Kamb, we find that the 
corresponding theory for a linked-cavity drainage 
system yields N = N K < N R. Furthermore, the 
stability of each drainage system depends on the 
velocity u, such that for large enough u, there 
is a transition from tunnel to cavity drainage. 
Consequently, one can write N = N(u). We then 

for future research. 

It is apparent that the only way of achieving 
the sorts of velocities encountered in surges 
(kilometres per year) is by sliding at the glacier 
bed, and thus theoretical explanations have 
centred on the prescription of a physically 
realistic sliding law, relating basal shear stress 
ß to the basal velocity u. The notion that slid- 
ing was a key process led Robin [1955] to suggest 
(essentially) that surges were triggered by a 
thermal instability at the glacier bed. This 
idea was taken up by Clarke and others [Clarke 
and Goodman 1975; Jarvis and Clarke, 1975; Clarke, 

find that the sliding law ß = •(u) is multivalued, 1976; Clarke and Jarvis, 1976], who showed that 
and hence so also is the flux/depth relation 
Q = Q(H). An analysis of the resulting system 
of equations is sketched. For large enough 
accumulation rates, a glacier will undergo 
regular relaxation oscillations, resembling a 
surge. The surge is triggered at the point of 
maximum stress; from this point two hydraulic 
transition fronts travel up and down glacier to 
calculable boundary points. The speed of 
propagation is the order of 50 metres an hour. 
At these fronts, the tunnel drainage system 
collapses, and a high water pressure cavity 
drainage system is installed. This activated 
zone has high velocities and quickly relaxes 
(surges) to a quasi-equilibrium state. This 
relaxation is much like opening a sluice gate, 
in that a large wave front propagates forward. 
Behind this wave front, the velocity can decay 
oscillatorily, and thus the flow can be com- 
pressive. We conclude with some discussion of 
the effects of seasonal variation and of 

prospects for the current theory's applicability 
to soft-bedded glaciers. 

Introduction 

Surging glaciers exhibit large-scale 

some surging glaciers in the Yukon were cold but 
partially temperate at their base, and Clarke 
[1976] suggested that it was possible that the 
surging behaviour was thermally controlled. 
Subsequently, Clarke et al. [1977], Cary et al. 
[1979], Paterson et al. [1978], and Yuen and 
Schubert [1979] related the proposed thermal 
instability mechanism to that of thermal runaway, 
which is a catastrophic instability character- 
istic of stress-driven flows with temperature- 
dependent viscosity in fixed domains [Gruntfest, 
1963]. However, in the glaciological context, 
one can show [Fowler, 1980; Fowler and Larson, 
1980 a, b] that the free boundarv nature of the 
problem renders the solution (in one approximate 
limit) both unique and linearly stable. Whether 
thermal runaway is viable is thus not clear. 
Moreover, surges require large sliding velocities, 
which requires some further sliding instability 
mechanism. As suggested by Clarke [1976], it 
may be that the thermal regime in subpolar surging 
glaciers exerts more of a regulatory effect than 
a causative one. 

Evidently, an explanation of surges is 
intimately bound up with a realistic sliding law 
at the glacier bed. Almost all the theory that 
has been done on this problem has considered the 

relaxational periodic motions. There is typically glacier bed to be hard (i.e., rigid, impermeable) 
a long, quiescent phase (~20-100 years) when the 
glacier is overextended, thin, and slow moving. 
During this phase the glacier retreats and 
thickens. At some critical thickness, a surge 
is triggered, in which ice in a large "reservoir" 
region begins to move rapidly downslope. This 
fast phase typically lasts a year or two and is 
equally abruptly terminated, with the glacier 
again overextended and thin. The cycle then 
repeats itself. 

In effect, glacier surges have been monitored 
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rather than soft (i.e., ice resting on permeable 
till). Hard beds have been studied by many 
authors (for reviews, see Lliboutry [1979] and 
Weertman [1979]); a treatment for soft beds has 
been sketched by Jones [1979] and Boulton and 
Jones [1979]. Many glaciologists now believe 
soft beds to be the norm, for example, under 
Trapridge Glacier [Clarke et al., 1984]. This 
paper will consider hard beds, which may be a 
potentially reasonable assumption for Variegated 
Glacier [Kamb et al., 1985]. However, we will 
offer some observations about soft beds in the 

concluding section. 
The idea has been around for some time that 

a multiple-valued sliding law !u a triple-valued 
function of •) could lead to surging behaviour 
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Fig. 1. Phase portrait of the relaxation 
oscillation of (1). 

[Lliboutry, 1969; Hutter, 1982; Johnson and 
McMeeking, 1986], and Lliboutry [1968] derived 
such a law in the case of a bed consisting of 
four superimposed sine waves. Although Lliboutry 
emphasized the importance of the effective 
pressure N in his sliding law, it plays a passive 
role in the multivaluedness of •(u,N); 
specifically he finds •(u,N) can be nonmonotonic 
at constant N, as u varies. 

It is an easy concept to anyone familiar with 
nonlinear relaxation oscillators (e.g., the 
van der Pol oscillator) that such a multi- 
valuedness will produce in the system a periodic 
solution of relaxational type, i.e., a surge 
[Kevorkian and Cole, 1981], and such an idea 
seems to lie behind various efforts over the 

years to understand surges [Palmer, 1972; Budd, 
1975; Johnson and McMeeking, 1986]. As an 
analogy, consider the simple pair of ordinary 
differential equations 

s• = H - f(Q) 
(1) 

where one should think of H as depth, Q as flux, 
and s as mass balance. If f(Q) > 0 and is cubic 
(so f-1 is S-shaped), then it is easy to do a 
phase plane analysis. If f has turning points 
at Q = Q1 and Q = Q2 (see Figure 1), then if 
Q1 < s < Q2' the system (1) has a steady periodic 
relaxation oscillation, if s is small. The 
analogy with surging (and it is only an analogy) 
is that basal stress z is proportional to depth 
H, so that if s • 0, (1) gives approximately a 
"sliding law" 

Q • f-l(H) (2) 

which is multivalued. 

As we shall see, the analogy is quite a good 
one. The qhestion is, can we derive a spatially 
variant model that will have the same behaviour; 
in particular, how does a space-varying 
relaxation oscillator actually work, and can we 
compare it in quantitative and qualitative detail 
with observations? Notice, in particular, that 
it is important for (1) that s, if small, not 
actually be zero. 

The present theory is an attempt to flesh out 
the discussion above. We first seek to establish 

a realistic physical process whereby the sliding 
law can be multivalued. Having elucidated this, 
we proceed to sketch the analysis of the 
resultant equations, which shows the detailed 
evolution of a surge. Much of the present work 
is based on pioneering theories of glacier 
sliding by Lliboutry [1968], subglacial hydrology 
[R6thlisberger, 1972], and particularly on 
extraordinarily well-documented observations of 
the 1982-1983 surge of Variegated Glacier by Kamb 
et al. [1985]. Theoretical offshoots of these 
observations, currently in the process of 
publication, focus primarily on the detailed, 
even day-to-day, sequences of events during a 
surge. Particular emphasis has been laid on the 
water pressure fluctuations and on the short-term 
time variability of the surge (due to seasonal 
variations in accumulation/rainfall, etc.). This 
paper takes the larger view that seeks to under- 
stand the long-term periodic repetition of surges 
in a predictive manner, which, however, neglects 
such short-term detail. Thus the approach 
embodied here is a complementary one. It is my 
belief that seasonal effects are indeed, in the 
present context, a detail. 

Sliding Law With Cavitation 

In this section we summarize results from two 

other papers [Fowler, 1986, 1987] on the sliding 
law. Fowler [1986] studied the two-dimensional 
Nye-Kamb [Nye, 1969, 1970; Kamb, 1970] sliding 
problem when cavities are included, and also 
regelation is ignored (i.e., small length scales 
are excluded). He corroborated Lliboutry's 
[1968] finding that for a regular array of 
identical humps, the stress first increases with 
velocity and then decreases to zero. Lliboutry 
pointed out that this result depends on the 
simultaneous drowning of the entire bed at large 
u. The precise form of the sliding law takes 
the form 

ß = Nf(u/N n) (3) 

where N is the effective pressure and n is the 
exponent in Glen's law. For n = 1, this is 
rigorous, for n > 1, it is a reasonable, but a 
heuristic, generalization. 

For a more realistic hard bed (i.e., consist- 
ing of many superimposed bumps on varying 
scales), the problem is nonlinear (even if n = 1) 
because of the free-boundary nature of the 
cavities, and one must resort to some modeling 
procedure. The method we have adopted is that 
of superimposing bumps of asymptotically distinct 
scales, so that in a formal solution they do not 
interfere with each other. This is the procedure 
adopted by Lliboutry [1968, 1979] and Weertman 
[1964]. With this formal procedure in mind, we 
are able to derive a renormalization scheme, 
which predicts that cavities extend to all 
scales. Using the (approximate) solution to 
this, we can sum the contributions to the stress 
from the various bumps and compute a sliding law. 
On the assumption of a self-similar bed (the 
amplitude ¾ of bumps of wavelength i is given by 

~ •/2), ¾ we find that the dimensionless sliding 
law is given by 
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ß * = k(•2N*)a(u*/•l)(1-a)/n (4) 
where k = 0(1) is a measure of the bed profile; 
ß *, N *, u* are dimensionless stress, effective 
pressure, velocity defined relative to their 
dimensional counterparts •* N u by 

ß /•* = 0gd6 = [•] 

N = 

u/u* = A[•]nd 

(5) 

and here d, • would be (typical) depth and slope 
of a glacier, A is the multiplicative constant 
in Glen's law, and 

v = Y0/X0 
(•) 

o = xo/d 
determine dimensionless measures of roughness, 
Here xQ and Y0 are a typical length and amplitude 
scale for the rough bed. The exponents in (4) 
are determined by 

• - 2) (7) a = 1 - n( 4 • 

and the dimensionless parameters •1 and •2 in (4) 
are given by 

n+l 

U 1 = o/v ' "2 = v/• (8) 
The laborious definition of (4) is made so as to 
be convenient for later analysis: it tells us 
when sliding should be important, as we can see 
from (5) that we expect, for a glacier, •* ~ 0(1), 
N* < 1, and u* ~ 0(1), unless shearing is 
negligible. For example, if x 0 = 5m, Y0 = lm, 
d = 100m, then o ~ 1/20, v ~ 1/5, and if • ~ 0.1, 
then •1 ~ 30 •2 ~ 2, so that if a = 1/4, u = 3, 
then u ~ 151•4 • 2; thus sliding should be 
significant in that case. 

The sliding law (4) is a generalization of 
Weertman's [1957] law and, as such, appealingly 
simple. It has been used (with no a priori 
justification) to test laboratory and field slid- 
ing data by Budd et al. [1979], with values n = 2 
and • = 2.5, and Bindschadler [1983], who found 
similar values (though he forced his data on to 
values a = 1/(n + 1)). 

The physical reason for the more realistic 
(4) being monotonic with u is because of the 
observation that for simple monochromatic bumps, 
the stress continues to increase with velocity 
until the cavity attached to one bump begins to 
reach the next bump. It is only because this 
happens' simultaneously with all bumps that the 
stress can decrease. In reality, however, if 
bumps at one wavelength begin to be drowned, the 
larger bumps with longer wavelength will not be 
and will take up the extra stress. In con- 
sequence, stress will continue to increase as 
long as the bed cannot be completely flooded. 
This is likely to be the general case. 

It may be objected that the neglect of 
regelation renders the above results suspect. 
In Nye's theory, the crucial importance of 

amplitude y(X) (defined before (4}) given by 

• ~ •/2 (9) 

convergence at small wavelengths (with n = 1) 
requires only that e > 2, whereas this is e > 4 
if regelation is suppressed. However, one can 
show that, when cavitation is considered, 
convergence of the resulting stress at small 
wavelengths is assured if e > 2 (in the absence 
of regelation). It follows that, so long as 
e > 2, regelation may be consistently ignored, 
since the regelative drag contribution will be 
uniformly small [Fowler 1986, 1987]. 

We have already mentioned the requirement that 
e > 2. Convergence at long wavelengths then 
requires the more complete 

2 < • < 2( n + 2) (10) n + '1 

For n = 3, this is 2 < • < 2.5. It is either 
interesting or important that values of around 
2.4 have been quoted [Benoist, 1979; Hallet, 
1979]. If we put • = 2.4 and n = 3 into (7), 
we find (1 - a)/n = 1/4 = a, so that (4) is 

ß * • (N'u*) 1/4 (11) 

not radically different from Budd et al's [1979] 
and Bindschadler's [1983] results (corresponding 
to e = 2.5, n = 2). 

Hydraulic Drainage 

Subglacial water drainage typically occurs 
through one or more ice tunnels at the bed. The 
mechanism of this drainage was described by 
R6thlisberger [1972]. (See also Nye [1976].) 
The salient features are the following. A single 
cylindrical channel in temperate ice tends to 
close because of viscous contraction of the ice, 

if the ice overburden pressure Pi is greater than 

the channel water pressure •g This tendency is counteracted by melting of channels due to 
turbulent energy dissipation by the flowing water. 
A dynamical steady state can exist (in the absence 
of external variations in the water flux to the 

channel) that is stable, and in which the 

effective pressure N = Pi - Pw is approximately 
given by 

= (Vi0wg s 0wg s 3/8 1/n 1/4n 
N = N R [' KL )(-•-T ) ] Q (12) 

Here v i = 1/0 i is the specific volume of ice, 0 w 
is the density of water, K is a viscosity constant 
proportional to A in (5), L is latent heat, 
gs = g• is the downslope acceleration, a•d N T is a 
turbulent drag coefficient [Nye, 1976]. The 
single assumption involved in (12) is that the 
downslope water pressure gradient apw/aX << 0wg s, 
which is tantamount to assuming d/• << 8,'where 
d and g are depth and length scales for the flow. 

Thus d/• is the aspect ratio, typically of 0(10 -2 ) whereas • is more like 0(10-1). In many 
cases (12) will be quite realistic, sufficiently 
far from the snout. Further, the water flux Q 
varies with distance due mainly to input from 
the surface via crevasses, etc. However, since 
n = 3, the variation of Qi/4n is very slow, and 

regelation is to allow a convergence of the stress to a good approximatio n we can take Q in (12) 
for self-similar bedrocks. In particular, for the equal to its outlet value at the terminus. Thus 

ß 
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drainage may be considered to be prescribed. With where A* is essentially of the order of the total 
these two assumptions, N R in (12) is a constant. 

Notice, in particular, that Q increases if Pw 
decreases, that is, 8Q/SPw < 0. It follows from 
this that a network of channels is unstable and 

will break down to form a single main channel. 
This may be seen by the following argument 
[R6thlisberger, 1972]. If two neighbouring 
channels have fluxes Qi' Q2 and corresponding 
pressures Pl and P2 (at some x), then in 
equilibrium Pl = P2' Q1 = Q2 (different pressures 
cannot be maintained since the glacier bed is not 

watertight [Lliboutry, 1968]) Now if Pl > P2' water flows from conduit one •o conduit two and 
thus Q2 increases, Q1 decreases, and so Pl - P2 
increases; this positive feedback ensures that 
coexisting channels are not stable. 

It was pointed out by Kamb et al. [1985], on 
the basis of observations of Variegated Glacier, 
that an alternative (linked-cavity) drainage 
system is possible. Here large tunnels are 
absent, and drainage takes place through cavities 
at the bed, linked by joints and striae at the 
bed. However, a calculation shows that small 
striae on their own will not suffice to carry 
a reasonable drainage, and so some of the inter- 
cavity connections must enlarge (by viscous 
heating) to form miniature R6thlisberger 
channels. One thus has drainage through cavities 
connected by a network of small R6thlisberger 
channels. One can carry out the same analysis 
as before. The result that is obtained depends 
on what one assumes about the hydraulic potential 
gradient in the passageways [Walder, 1986]. If 
we suppose that the mean hydraulic gradient is 
0wg s as for the R6thlisbrger channel, then we 
find [Fowler, 1987] that N for this case is much 
lower and, concomitantly, the degree of cavita- 
tion much higher. The result is that 

N = N K = 6N R (13) 
where 

-1/4n 
6 = sn K (14) 

where n K is the number of cavities across the 
width of the glacier (or, more precisely, the 
number of passageways across the width), and s 
is the area fraction of bedrock that is cavity- 

free If we take n K ~ 103 n = 3 and s = 1/2, 
we have 

6 • •/4 (•5) 

Increased tortuosity of the passageways may lead 
to lower values of 6 [Walder, 1986]. Thus the 
linked-cavity drainage system operates at much 
higher water pressure. This has already been 
explained by Kamb et al. [1985] and was the 
subject of a talk by Kamb [1985]. Further, one 
finds that in this case, 8Q/•Pw > 0, so that the 
linked-cavity system is a stable network. 

It remains to ascertain the stability of a 
combined system. This is easily done using a 
reservoir model, and one finds that tunnel 
drainage is stable if 

•u 

^ = x0fN n < ̂ C = (3nSR/A*)(4-e)/e (16) 

cavity cross-sectional area. A typical estimate 
is A C • 1/4. If A > A C, a central tunnel will 
collapse and linked-cavity drainage takes over. 
A typical theoretical value of N R is •30 bars. 
(Values of 15 bars are more appropriate for 
Variegated Glacier [Kamb et al., 1985].) By 

comparison, a glacier of depth 100 m has pi = 9 
bars. If N R > Pi' the R6thlisberger tunnel 
cannot be filled, and thus Pw = Pa' atmospheric 
pressure, and in this case, N • Pi' Thus more 
generally we have 

N = min(Pi, N R) 
(tunnel) and similarly, 

(17) 

N = min(Pi,6N R) (18) 
(cavity). 

Finally, we render these relations dimension- 
less. For simplicity, suppose that Pi > NR' as 
will be the case for a sufficiently deep glacier 
(•300 m). Then A in (16) is õiven in terms of 
the dimensionless variables introduced in (5) 
and (8) by 

n ,n 

A = u*/•l•2N* 
and (17) and (18) give N* implicitly as a 
function of u* by 

(19) 

= A < A c N* -- A > A c 
where N• ~ 0(1). We denote the functional 
dependence of N* on A as 

N* = g(A) (2•) 

depicted in Figure 2. In reality, the transition 
ß 

at A = A C will take time: observations on 
Variegated Glacier are consistent with a 
relaxation time of •1 day. As a simple model of 
this relaxation, we thus put 

•N* 
•* •-•;• + N* = g(A) (22) 

Here t* is a dimensionless time, scaled with a 

convective time scale tconv ~ 20-100 y. Then 
if ttunnel is the tunnel collapse time •1 day, 
we have 

s* = ttunnel/t < 10 -5 (23) cony ~ 

equation (22) is a model that deliberately 
obscures the actual physics of transition, in 
order to give a simple reflection of what the 
end result is. It is worthwhile to point out 
the similarity of (22) and the second equation 
in (1). 

The discussion above follows Kamb's work 

quite closely. In writing (22), we have assumed 
that the transition from linked-cavity to tunnel 
system is at the same value of A = A_ at which 
the transition from linked-cavity toUtunnel 
occurs. This is not at all obvious and is made 

here purely for convenience. That transition 
has been studied by Kamb [1985] and a fusion of 
the two complementary viewpoints would be useful. 
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Paterson, 1981, p. 100]. Its derivation in this 
context involves the formal assumptioh that 

1 << Usliding/Ushearing << 1/6, where Usliding 
and Ushearing are the Basal and shearing 
components of motion, and 6 is the aspect ratio 
d/Z of the glacier, where d and • a•e 
representative de•th and length scales. 
Typically 6 ~ 10 -z, and this assumption will form 
a reasonably realistic basis for study. For 
higher sliding velocities, further analysis is 
necessary, and this has been examined by 
McMeeking and Johnson [1985]. 

The function g(A) is represented in Figure 2. 
The function f(A) is typically monotonically 
increasing, and the generalized Weertman law (4) 
is represented by 

• N* N• 
I 
i 

i 
, 

A c A 

Fig. 2. Schematic representation of dependence 
of dimensionless effective pressure N* on the flow 
parameter A. At A = A c there is a transition from where 
tunnel drainage to cavity drainage. 

f(A) = cA 1/m (25) 

m = n/(1 - a) 4 - c• = c• - 2 > n (26) 
Flow Dynamics 

When the drainage law (21), Figure 2, is 
combined with the generalized Weertman law (4), 
we find that the sliding law is multivalued, as 
indicated in Figure 3. As a consequence the ice 
flux, Q is a multivalued function of depth H, 
and we can anticipate the kind of periodic 
relaxational motions (surges) discussed in the 
introduction. This section aims to provide a 
summary of how the governing equations can 
predict surges. 

Dimensionless equations that govern two- 
dimensional motions of glaciers over flat (but 
rough) sloping beds have been derived by Fowler 
[1982]. With the present sliding law, these 
take the form 

H t + (Hu) x = s'(x) (24a) 

H(1 - •H x) + e[HUxlUx[(1/n)-l] = Nf(A) (24b) x 

eN t + N = g(A) (24c) 
A = u/N n (24d) 

as follows from the right-hand inequality of 
(10). We shall henceforth take f(^) as defined 
by (25). 

The parameters •, •, • are typically small. 
Typical estimates (see Fowler [1982], also (23)) 
are 

10-2 -1 -5 U ~ 10 • ~ 10 (27) 

Consequently, the simplest procedure is to ignore 
them altogether, in a first approximation. Then 
we have only to solve the reduced system 

Ht + Qx = s'(x) 
Q = F(H) 

(28) 

where H (- •) as a function of Q (= Hu) is 
essentially the same as Figure 3, and so F(H) 
is as shown in Figure 4. This is a nonlinear 
first-order wave equation, but the multivalued- 
ness renders it rather peculiar. Nonlinear waves 
are discussed by Whitham [1974] and in the 
glaciological context by Fowler and Larson 
[1980c] and Hutter [1983]. It is important to 

These equations are written for dimensionless 
variables representing depth H• ice velocity u, 
which is assumed to be predominantly by basal 
sliding, and effective pressure N. We have thus 
dropped the asterisks that previously 
distinguished dimensionless from dimensional 
variables. In (24), subscripts represent partial 
differentiation, and the equations represent 
conservation of mass (24a), with the balance term 
s'(x) = ds/dx representing accumulation if 
s' > 0, ablation of s' < 0. The second equation 
(24b) is the sliding law (4), or more generally 
(3). The left-hand side is the shear stress. 

The term H(1 - •H x) corresponds exactly to the 
more familiar ß = 0gh sin 8, and the term in • 
represents approximately a small correction due 
to longitudinal stress that is important in 
highly compressive/extensional regions, i.e., 
where 8u/3x is large. This term is the same as 
the term G, derived by many authors [see 

u 

Fig. 3. Multivalued sliding law, taking into 
account the dependence of N* on u*. 
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st branch 

w branch 

H_ H+ H 

Fig. 4. Multivalued flux/depth relation, 
corresponding to the sliding law in Figure 3. 

realize that linearization techniques, as for 
example in Nye [1960] and Lliboutry [1969], are 
incapable of correctly analyzing such systems. 

We begin our analysis of (28) by sketching 
the evolution of a surge pictorially. First, 
note that there is generally a steady state 
profile 

Q = s(x) (29) 

where s(x) is a concave profile [Fowler and 
Larson, 1978]. Examining Figure 4, we see that 
if Sma x < Qc' this steady state is perfectly 
sensible, and no anomalous behaviour will occur. 

However, if Sma x > Qc' then the steady state 
would consequently be (most probably) very 
unstable; time-dependent behaviour is thus 
expected in this case. 

To see what happens, suppose that Q < Qc 
everywhere initially (but Qc < Smax); this 
corresponds to the quiescent phase of a surge. 
The situation is represented in Figure 5, where 
the dashed profile for H indicates the steady 
state that would be obtained if the lower branch 

of Q versus H on the right were continued beyond 

H+. Thus as time evolves, H relaxes toward its 
(apparent) steady state. However, after some 
time (of O(1) on a convective time scale, e.g., 
20 years), the maximum value of H reaches H+. 
The profile is still in6reasing in depth but can 
no longer do so continuously because either a 
jump in H or Q would then form. What happens 
is shown in Figure 6. Two activation waves 
propagate very rapidly both up and down the 
glacier to the points where H = H_. The passage 
of these waves indicates the collapse of the 
tunnel drainage system and transfers the ice 
flux from the lower branch of the Q, H curve. 
The activation waves are halted at H = H_, where 
the upper (fast) branch Q no longer exists, 
During the passage of these waves, H is virtually 
unaltered. 

In order to justify the above description, we 
have to show that such waves are consistent with 

solution of the full system (24) and that they 
have features consistent with observation. This 

has been done, but the detailed analysis will 
be reported separately. The results are that 
such waves can exist, travelling both up and down 
glacierS. Their dimensionless speed (in terms 
of a typical, nonsurging flow velocity) is given 
by V, where 

n 

V ~ 1 (_•_•)n+l (m - n) 2 • 6P P = m(m + 1) (30) 
If we take m = 4, n = 3, then p = 1/20, so the 6 
term is not important With n = 3, e = 10 -2 ß , 

• 10-5 = , we have V ~ 3000. For a presurge 
velocity of ~0.4 m d -1 [Kamb et al., 1985], this 
corresponds to an actual velocity of propagation 
of 50 m h -i, although this should only be taken 
as an order of magnitude. Although activation 
waves as such were not documented by Kamb et al. 
[1985], "minisurges", in which large fluctuations 
in velocity occurred, were observed and had 
similar propagation speeds. The depth change 
accompanying propagation of these waves is a drop 
of ~l/V; in a 400 m-thick glacier, this 
corresponds to 12 cm. The width of the 
activation front is essentially ~en/(n+l). For 
e ~ 10 -2 n = 3 this is ~ 3 x 10 -2 ' For a 
20-km-long glacier, that is ~600 m. At a fixed 

H 

H+ 

Q 

/ \ i 

// i 
I 

x H+ 

Fig. 5. Quiescent phase of surge: H on subcritical branch, H < H+. 

H 
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A B C 

! 
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Fig. 6. Surge activation. H reaches H+ (at point C); hydraulic transition fronts 
propagate rapidly up and down glacier and in so doing transfer the ice between them 
to the upper branch of the Q-H curve. 

value of x, the rise in velocity would thus occur 
on a time scale of a few hours. 

Once the activation waves have activated the 

reservoir region (H > H_), the surge proper 
begins. (It is important to realize that the 
present description is for absolutely static 
external conditions; there are no seasonal 
effects of snow cover, ablation, or rainfall; 
these can in principle be added but not until 
the overall description is seen to be 
satisfactory.) The activated zone now moves 
rapidly, while the slow zones H < H_, still on 
the lower branch, move slowly. If Q is large 
enough (6 is small enough), then the slow zones 
are essentially static, while the fast ice in 
the reservoir region rushes downstream. This 
is portrayed in Figure 7. Accumulation/ablation 
is irrelevant on a fast time scale, and so the 
mass balance equation for the fast ice is 
approximately 

Ht + Qx ' 0 (31) 
where Q(H) is on the upper branch. Thus the 
surge front propagates forward as a shock wave 
into the quasi-stagnant downstream ice until the 
entire activated zone is reduced to H = H_. At 

this point, shown in Figure 8, the surge 
terminates, although the shock wave at the front 
of the activated region continues to propagate 
forwards as an ordinary shock wave on the lower 
branch [Fowler and Larson, 1980c]. The entire 
glacier reverts to the lower branch by the 
propagation from either end of de-activation 
waves, similar in type to the activation waves. 
We have not studied these in detail. After this 

the surge cycle begins again (Figure 5). 
The propagation of an ordinary shock wave 

occurs at a speed 

dXs [Q] = (32) 
dt [HI 

H 

< reservoir region >, x 

Fig. 7. The surge. The activated zone moves (slumps) rapidly forward until it reaches 
a quasi-equilibrium at the left-hand end of the upper branch of the Q-H curve. 
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> 

x 

Fig. 8. The end of a surge. The ice "falls" off the upper branch, back to the lower 
branch of the Q-H curve, presumably by passage of "deactivation" waves, which restore 
the tunnel drainage. The quiescent phase resumes. 

where x is the shock position and [Q] and [H] 
are theSjumps across the shock of flux and depth, 
respectively [Fowler and Larson, 1980c]. For the 
Variegated surge front [Kamb et al., 1985], we 
have H+ ~ 150 m, H_ ~ 250 m, u+ ~ 0, 
u ~ 50 m d -1 whence dXs/dt ~ 80 m d -1 with an 
apparent shock structure width of ~2 km [Kamb et 
al., 1985, figure 4]. We can analyze the shock 
structure of the surge front, using the full 
equations (24). We find the shock speed is 
indeed given by (32), and the dimensionless shock 
thickness k is given by 

n/(n+l) -q X ~ • 6 (33) 

where q depends on m and n, and is small. With 
e = 10 -2 , 6 = 10 -1, m = 4, n = 3, we find 
A ~ 0.03, corresponding to a length scale of 
600 m on a 20 km-long glacier. 

The variation of velocity u behind the front 
depends not only on u and e, but on the depths 
H + and H- in front of, and behind it. A complete 
analysis of this has not yet been done, but for 
the Newtonian case (n = 1), oscillatory decay 
of the velocity behind the front is likely to 
occur (see Figure 4 of Kamb et al. [1985]); a 
similar analysis by Fowler [1982] showed the 
existence of oscillatory behaviour in so-called 
transcritical shock propagation and consequently 
alternate compressive and extensive zones behind 
the front (see Figure 5 of that paper). 

Thus the description of surges based on the 
dynamics resulting from the theoretically derived 
sliding law bears a useful resemblance, both 
qualitatively and quantitatively, to at least 
one well-documented surge, that of Variegated 
Glacier. It should be emphasized once again that 
because rainfall, etc., varies on the same fast 
time scale over which the surge occurs, it is 
unrealistic to expect the average description 
given here to portray the same time variability 
as occurs in practice (e.g., surge velocity 
decrease during winter); nevertheless, it is felt 
that, so far as the model goes, this is a detail, 
even if a substantial one. 

Finally, we may compare the predicted increase 
in velocity with that observed, typically 10-100 
(say, 100 for Variegated). With the sliding law 
(4), and (20), the jump in u across an activation 

wave is such that stress (or depth) is 
essentially constant. Then if u_, u+ are the 
quiescent and surging velocities, respectively, 
we have 

• a.a (1-a)/n N u (1-a)/n = 6 mRU + (34) -- 

whence 

u+/u_~ (1/6) na/(1-a)=(1/6) [2(n+2)-(n+l)e]/(e-2) 
(35) 

In particular, for n = 3, this is 
u+/u_ ~ 6 -[10-4e)/(e-2}. For e = 2.4, we have 
u+, u_ ~ 6 -1 . For e = 2.2, this is u+/u_ ~ 6 -6 . 
If 6 ~ 1/4, ratios of 10-100 are easily 
attainable. The correspondin sliding laws are 
z • N0'25u 0'25 and ß • N2/3u 1•9, respectively. 

An interesting inference from (35} is the 
effect of bed erosion. Low values of e 

correspond to "jagged" beds. One might 
reasonably expect e to be lower for geologically 
younger beds. Then u+/u_ >> 1 and surges (if 
they occur) would be spectacular. However, as 
repeated surges erode the bed, e increases, so 
that u+/u_ decreases, and "surges" would become 
very tame affairs. One would thus envisage a 
kind of main sequence for glaciers, whose active 
surging behaviour is in their youth. This idea 
can be compared with the last paragraph of Clarke 
et al's [1984] paper. 

Discussion 

This paper offers an explanation of surges 
based on the following ingredients. The sliding 
law is a function of velocity and effective 
pressure, and 8•/8u > 0, •z/SN > 0. There are 
(at least) two possible types of drainage, each 
stable on its own, but such that a preference 
for one or the other depends on the ice flow 
rate: the stable drainage mechanism at higher 
ice velocity must have lower effective pressure. 
These ingredients combine to yield a multivalued 
sliding law, and such a law explains surges. 
However, not all glaciers surge, because (1) one 
needs a high enough accumulation (Sma x > Qc ) i.e., the glacier must become deep enough; ({) 
the bed must be rough enough: as e + 2.5 
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(smoother bed), (35) indicates that the drainage 
switches but no surge occurs; (3) even if 
• < 2.5, no rapid ice advance will take place 
unless u+/u_ is large: from (25), we thus require 
6 to be "small"; and (4) also the parameter A in 
(19) must be able to reach A c given by (16). 
From (8), we have 

A ~ v•n/o (36) 

with typical value (v = 0.2, • = 0.1, n = 3, 
o = 10 -z) A ~ 0.02, compared with a typical 
estimated value A c ~ 1/4. So there are com- 
plicated parametric restrictions that will ensure 
that not all glaciers will surge but the 
possibility exists. 

So if we could produce the above ingredients 
as a possibility for all glaciers, a uniform 
explanation of surges might be possible. The 
major complication with this aim is that the 
assumption behind the sliding law and drainage 
envisaged here is that we visualize a hard bed 
and subglacial drainage through the ice. 
Trapridge Glacier [Clarke et al., 1984] is a 
well-documented example of a surging glacier for 
which neither of these assumptions is true. It 
is not even temperate. Nevertheless, it is 
plausible that exactly the same qualitative 
features may be involved in the theoretical 
explanation of this glacier's surging behaviour. 
The following argument is based on that of 
Clarke et al. [1984]. Water arrives at the bed 
of the glacier, where it flows away through a 
permeable subglacial till. In this till, the 
water fraction w affects the effective pressure 
N = p0 - Pw' as usual in soil mechanics. 
Specifically, N = N(w), where N decreases from 
a very large value as w + 0, to zero when w 
approaches saturation. Also, w affects the 
permeability K = K(w), K increasing with w. The 
process of piping involves the formation of 
preferential flow paths by washing out fines. 
In this way, one can envisage drainage being 
focussed into a few large channels within the 
permeable till. These channels survive by 
balancing the processes of washing away of their 
side walls, which depends on the vigour of the 
flow through them, with the tendency for the 
till to close up because of its relative over- 
pressure. When there are a few such channels, 
the flow through the till elsewhere will be 
relatively low, the water fraction will be low, 
and the effective pressure N will be high. In 
fact, these channels may be the permeable till 
version of R6thlisberger channels; we might call 
them Clarke channels. Evidently, their dynamics 
is virtually identical to that of R6thlisberger 
channels, with the same stability properties. 

If such channels did not exist, then drainage 
would have to be through the till. Since the 
flux through the till would then be higher, the 
permeability would be higher, i.e., w would be 
higher, and so N would be lower. Further, an 
increase in water flux in this system leads to 
increased K, increased w, and decreased N, i.e., 

increased Pw' Thus exactly the same drainage 
switch for this case seems possible as for the 
hard bed. 

The other ingredient in the sliding law is 
the dependence of ß on u and N. The simplest 
prescription [Jones, 1979] has 

z = •(w)u/h (37) 

where h is the till layer thickness. The 
effective viscosity for till deformation would 
have 8n/Sw < 0, so that with N = N(w), 8N/Sw < 0, 
we have 

z = n(N)u/h (38) 

with 8•/8N > 0. Hence •z/SN, 8z/Su > 0, which 
would give the same qualitative dependence as 
the adumbrated here. 

In conclusion, we offer the opinion that, 
whereas the physics of surging glacier beds may 
be extremely important (e.g., as to whether the 
spatial distribution of surging glaciers is 
geologically controlled [Clarke et al., 1984]), 
the theory that explains such surges may be 
mathematically similar for both hard and soft 
beds and for subpolar or temperate glaciers. 
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