CLIMATE CHANGE

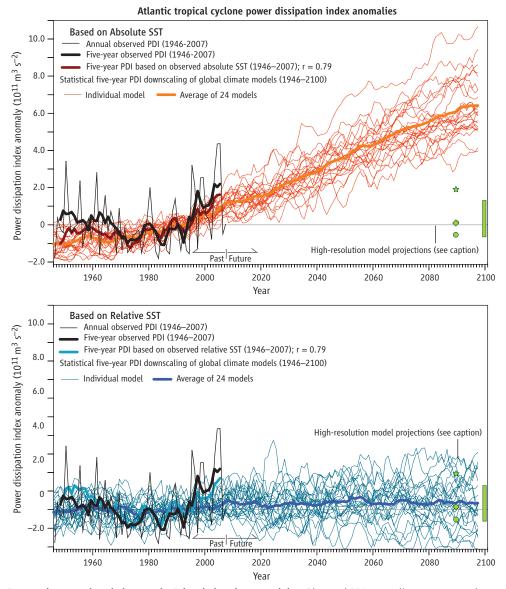
Whither Hurricane Activity?

Gabriel A. Vecchi, ¹ Kyle L. Swanson, ² Brian J. Soden ³

term climate change is whether there likely to be correct? is a causal connection between warming tropical sea surface temperatures (SSTs) observed relation between hurricane activity bined with rising sea levels, would have draand Atlantic hurricane activity (1–3). Such a connection would imply that the marked in the main development region of Atlantic impacted by Atlantic hurricanes. increase in Atlantic hurricane activity since hurricanes (hereafter "absolute SST"). the early 1990s is a harbinger of larger Between 1946 and 2007, this relation can changes to come and that part of that increase be defined by a simple linear regression between SST and Atlantic hurricane activity. could be attributed to human actions). However, the increase could also be a result of Online Material). This observed relation can the warming of the Atlantic relative to other be extrapolated into the 2st century using ocean basins (4), which is not expected to absolute SSTs calculated from global clicontinue in the long term⁵). On current evi-

Alternative interpretations of the relationship between sea surface temperature and hurricane activity imply vastly different future Atlantic hurricane activity.

key question in the study of near- dence, can we decide which interpretation is bound of the projected 5-year average exceeds 2005 levels by more than a factor of To appreciate the problem, consider the two. This is a sobering outlook that, commatic implications for residents of regions


> However, there is an alternate future, equally consistent with observed links between the two quantities (see Supporting Observational relationships 4), theories that provide an upper limit to hurricane intensity (5), and high-resolution model studies (3) suggest that it is the SST in the tropical mate model projections (see the figure, top Atlantic main development region relative to the tropical mean SST that controls fluctuathan \$100 billion in damage. The upper ence a substantial trend in 21st-century pro-

panel) (7). By 2100, the model projections'

[power dissipation index (PDI)] (6) and SST

¹NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542, USA. E-mail: gabriel.a.vecchi@noaa.gov. ^{Autorecondential Sciences Controls Indictor International Controls Indictor International Controls Indictor NJ 08542, USA. E-mail: gabriel.a.vecchi@noaa.gov. ^{Autorecondential Sciences Controls Indictor International Controls Indictor International Controls Indictor NJ 08542, USA. E-mail: gabriel.a.vecchi@noaa.gov. ^{Autorecondential Sciences Controls Indictor International Controls Indictor International Controls Indictor NJ 08542, USA. E-mail: gabriel.a.vecchi@noaa.gov. ^{Autorecondential Sciences Controls Indictor International Controls Indictor International Controls Indictor NJ 08542, USA. E-mail: gabriel.a.vecchi@noaa.gov.}}}} ²Atmospheric Sciences Group, Department of Mathelevel of 2005, when four major hurricanes figure, bottom panel) is as well correlated matical Sciences, University of Wisconsin-Milwaukee (sustained winds of over 100 knots) struck with Atlantic hurricane activity as the absolute Milwaukee, WI 53201, USA³. Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, FL the continental United States, causing more SST. However, relative SST does not experi-33149, USA.

PERSPECTIVES

Past and extrapolated changes in Atlantic hurricane activity. Observed PDI anomalies are regressed onto observed absolute and relative SST over the period from 1946 to 2007, and these regression models are used to build estimates of PDI from output of global climate models for historical and future conditions. Anomalies are shown relative to the 1981 to 2000 average ($2.13 \times 10^{11} \text{ m}^3 \text{ s}^{-2}$). The green bar denotes the approximate range of PDI anomaly predicted by the statistical/dynamical calculations of (*12*). The other green symbols denote the approximate values suggested by high-resolution dynamical models: circle (\mathcal{B}), star (*13*) and diamond (*15*). SST indices are computed over the region 70W-20W, 7.5N-22.5N, and the zero-line indicates the average over the period from 1981 to 2000. See Supporting Online Material for details.

jections. Hence, a future where relative SST controls Atlantic hurricane activity is a future similar to the recent past, with periods of higher and lower hurricane activity relative to present-day conditions due to natural climate variability, but with little long-term trend.

From the perspective of correlation and inferred causality, this analysis suggests that we are presently at an impasse. Additional empirical studies are unlikely to resolve this conflict in the near future: many years of data will be required to reject one hypothesis in favor of the other and the climate model projections of hurricane activity using the two statistical models do not diverge completely until the mid-2020s.Thus, it is both necessary and desirable to appeal to nonempirical evidence to evaluate which future is more likely.

Physical arguments suggest that hurricane activity depends partly on atmospheric instability (2), which increases with local warming but is not determined by Atlantic SSTs alone (5). Warming of remote ocean basins warms the upper troposphere and stabilizes the atmosphere (5). Furthermore, relative

Atlantic SST warming is associated with atmospheric circulation changes that make the environment more favorable to hurricane development and intensification (9-11).

Further evidence comes from high-resolution dynamical techniques that attempt to represent the finer spatial and temporal scales essential to hurricanes, which century-scale global climate models cannot capture due to computational constraints. High-resolution dynamical calculations under climate change scenarios (8, 12-14) (green symbols in the figure) are consistent with the dominance of relative SSTs as a control on hurricane activity. Even the dynamical simulation showing the most marked increase in Atlantic hurricane activity under climate change (13) is within the projected range for relative SST but outside the projected range for absolute SST.

Whether the physical connections between hurricane activity and SST are more accurately captured by absolute or relative SST also has fundamental implications for our interpretation of the past. If the correlation of activity with absolute SST represents a causal relation, then at least part of the recent increase in activity in the Atlantic can be connected to tropical Atlantic warming driven by human-induced increases in greenhouse gases and, possibly, recent reductions in Atlantic aerosol loading (3, 15, 16). In contrast, if relative SST contains the causal link. an attribution of the recent increase in hurricane activity to human activities is not appropriate, because the recent changes in relative SST in the Atlantic are not yet distinct from natural climate variability.

We stand on the cusp of potentially large changes to Atlantic hurricane activity. The issue is not whether

SST is a predictor of this activity but how it is a predictor. Given the evidence suggesting that relative SST controls hurricane activity, efforts to link changes in hurricane activity to absolute SST must not be solely based on statistical relationships but must also offer alternative theories and models that can be used to test the physical arguments underlying this premise. In either case, continuing to move beyond empirical statistical relationships into a fuller, dynamically based understanding of the tropical atmosphere must be of the highest priority, including assessing and improving the guality of regional SST projections in global climate models.

References and Notes

- 1. C. D. Hoyos, P. A. Agudelo, P. J. Webster, J. A. Curry, Science312, 94 (2006).
- 2. K. Emanuel, J. Climate20, 5497 (2007).
- 3. U.S. Climate Change Science Program/eather and Climate Extremes in a Changing ClimateR. Karl et al., Eds. (Department of Commerce, NOAA's National Climatic Data Center, Washington, DC, 2008).
- 4. K. L. Swanson, Geochem. Geophys. Geos &. Q04V01; 10.1029/2007GC001844 (2008).
- 5. G. A. Vecchi, B. J. Soden, Nature 450, 1066 (2007).
- 6. PDI is the cube of the instantaneous tropical cyclone wind speed integrated over the life of all storms in a

given season; more intense and frequent basinwide hurricane activity lead to higher PDI values.

- 7. We use 24 different global climate models run in support 17. G. A. Meehlet al., Bull. Amer. Meteorol. So&8, 1549 of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR47)), See Online Supplement for details.
- 8. T. R. Knutsonet al., Nature Geosci1, 359 (2008).
- 9. R. Zhang, T. L. DelworthGeophys. Res. Let 83, L17712 (2006).
- 10. D. J. Vimont, J. P. KossinGeophys. Res. Let84, L07709 (2007).
- 11. M. Latif, N. Keenlyside, J. BaderGeophys. Res. Let 84, L01710 (2007).
- 12. K. A. Emanuel, R. Sundararajan, J. William Sull. Am. Met. Soc.89, 347 (2008).
- 13. K. Oouchiet al., J. Met. Soc. Japar84, 259 (2006).
- 14. L. Bengtssonet al., Tellus59A, 539 (2007).
- 15. B. Santeret al., Proc. Natl. Acad. Sci. U.S.A.

- 10.1073/pnas.0602861103 (2008).
- 16. T. R. Knutsonet al., J. Climate19, 1624 (2006).
 - (2007).
- 18. We are grateful for comments from T. Delworth, I. Held, S. Ilcane, A. Johansson, T. Knutson, D. E. Harrison, and M. Vecchi. This work was partly supported by NOAA/OGP.

Supporting Online Material www.sciencemag.org/cgi/content/full/322/[issue no.]/ [page]/DC1 Materials and Methods SOM Text Figs. S1 to S8 References

10.1126/science.1164396

Supplement to "Whither Hurricane Activity?"

Gabriel A. Vecchi¹, Kyle L. Swanson², and Brian J. Soden³

¹ NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542 USA

²Atmospheric Sciences Group, Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA

³ Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149 USA

Data and Analysis Procedures

Sea surface temperatures (SSTs) are taken from NOAA's Extended reconstructed SST data set, version 3 *(Supp. Ref. 1)*. The nomenclature absolute versus relative sea surface temperature (SST) in the main text refers to SST within the so-called "main development region (MDR)," where the bulk of hurricanes in the Atlantic develop, particularly those that become intense. The absolute SST in the Atlantic MDR (henceforth absolute SST) is simply the area-averaged SST over the box 70°W-20°W, 7.5°N-22.5°N; while the precise definition varies from author to author, the results presented here are not sensitive to this definition. The definition of relative SST in the MDR (henceforth relative SST) then follows as simply the difference between the absolute SST and the tropical mean SST, which we take as the area average over 30°S-30°N. SSTs are computed for the August-October season, which is the height of the Atlantic hurricane season. Since the global climate models that we use to make our projections of 21st Century Atlantic basinwide hurricane activity were run with historical forcing through the year 2000, we use the 1981-2000 period to define a climatology from which to compute anomalies.

Tropical cyclone intensities as a function of time are taken from the HURDAT database *(Supp. Ref. 2)*, and an empirical correction is applied to correct apparent underestimation of storm intensity prior to 1970 *(Supp. Ref. 3)*. To reduce contamination by extratropical cyclones the parts of the cyclone lifetimes that are identified as extratropical in HURDAT *(Supp. Ref. 2)* are excluded from the definition of the power dissipation index (PDI). Also, PDI is based on storm records whose intensity exceeds 17 m/s. Annual PDI is defined as the integral of the cube of maximum sustained wind speed over the life of all the cyclones is a season.

Linear least squares regressions are computed, regressing the August-October absolute and relative SSTs against the annual average PDI. Such regressions then provide a "recipe" by which extrapolations of future hurricane activity can be made. Suppl. Fig. 1 shows the regressions, along with the slope and goodness of fit (measured by the square of the correlation coefficient, r^2). Again, we use the 1981-2000 period to compute anomalies for the linear fits between SST indices and PDI.

We use the 20th-century historical and 21st-century climate change projections from 24 different global climate models run in support of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4), also known as the Third Coupled Model Intercomparison Project (CMIP3) database (*Supp. Ref. 4*). The 21st-century projections are based on a mid-range emissions scenario (the SRES-A1B scenario), in which atmospheric CO₂ concentrations double between 1990 and 2100. For the 20th Century we use a single

ensemble member for each model of the 20th Century "All Forcing" experiment (20c3m), in which atmospheric radiative agents (well-mixed greenhouse gases, ozone, aerosols, etc) and land-use changes are prescribed to follow estimates of the 19th and 20th Century evolution.

We project PDI into the 21st Century using the observed linear least squares regressions of PDI onto either relative or absolute SST (August-October) anomalies, and applying them to the SST anomalies from the suite of global climate models submitted for the IPCC Fourth Assessment Report (IPCC-AR4, *Supp. Ref. 4*). We use a single ensemble member for each of the 24 models analyzed we explore a single ensemble member of both the historical 20th Century integrations (20c3m) and a mid-range emissions scenario for the 21st Century – known as Scenario A1B or sresa1b. We use only a single ensemble for each model because some models only provided a single ensemble member. References for the climate models used can be found in *Supp. Ref. 5* and *6*. We use the base period 1981-2000 from which to define anomalies.

While the model ensemble mean does not capture the observed decadal variations of relative SST, the observed trajectory lies within the projected range and hence remains statistically consistent with the ensemble statistics. Substantial departures of observed SST from the ensemble mean can be expected over decadal time periods due to internal climate variability (*Supp Ref. 7-9*), whereas the ensemble mean reflects the externally-forced signal.

Further Statistical Analyses:

Global warming has led to increases in absolute SST over the 20th Century, and will likely continue to lead to further increases over the 21st century. This suggests that if PDI follows absolute SST, it will correspondingly increase substantially through the 21st Century. However, an alternative viewpoint is indicated by Supplement Figure 1b, which shows the regression of relative SST against PDI. This regression has an equal goodness of fit, with a higher sensitivity of PDI to relative SST anomalies. An interpretation suggested by the evolution of relative SST in the climate models is that the recent (post-1994) increase in relative SST is due to internal climate variability, and that relative SST may revert to more "normal" values in the future – though one should continue to expect variations of relative SST, the models are not consistent in the sign of the trend in relative SST. If PDI follows this relative SST, it too will revert to more "normal" behavior. The inconsistency of these two viewpoints (a control of hurricanes by absolute SST or relative SST) is the crux of the primary article.

Although our principal argument for the primacy of relative SST is based on the consistency between observations, theory and models that arises within the relative SST framework, there is a statistical basis why one might expect that it is relative rather than absolute SST that controls Atlantic hurricane activity. Supplement Figure 2 shows that for decadal filter time scales, the high level of correlation between absolute SST and hurricane activity weakens somewhat, while that for relative SST strengthens. The top panel in that figure shows the correlation between PDI and absolute/relative SST as a function of the filtering time, where a simple "boxcar" running mean filter is used for ease of comparison.

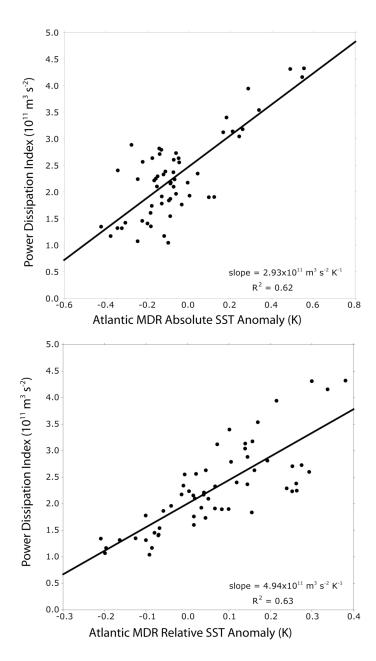
Based on annual data, relative SST "explains" more variance than does absolute SST. On timescales between interannual and decadal, relative and absolute SST exhibit quite equivalent linear relationships to PDI. However, as the averaging time is increased to decadal timescales, the correlation between absolute SST and hurricane activity becomes progressively weaker, while that between relative SST and hurricane activity increases to almost 0.9. This is due to a characteristic "U" shape in the PDI, as shown in Supplement Figure 3, with hurricane activity levels in the 1950's being quite high. The absolute SST is dominated by an increase over this time period, while the relative SST shares a "U" shape with the PDI due to a relative cooling of the tropical Atlantic relative to the tropical mean prior to 1980 and a relative warming since that point in time. The cooling of the Atlantic relative to the rest of the tropics from the 1950s to the 1980s was largely associated with enhanced warming elsewhere in the tropics (*Supp. 5*), representing a dominantly non-local influence on relative SST, and possibly hurricane activity.

In Supp. Figure 4 we highlight the results of using PDI and SST data filtered with a fifteenyear running average (rather than five-year as in the main text). The principal results from the Figure in the main text are unaltered, except that the correlation between relative SST and PDI is now nominally higher than between absolute SST and PDI – primarily because relative SST is able to represent the "U-shaped" structure seen in PDI, which is less pronounced in absolute SST. Forward projections of PDI using absolute SST suggest a strong – unprecedented – increase in activity, while those using relative SST suggest a future largely similar to the past, with decadal variations in activity being the dominant signal. It is vital to note the impact of empirical corrections to hurricane intensities, which attempt to correct different intensity estimation procedures that occurred in the early part of the record (prior to 1970) (supp. *3*). While these corrections appear subtle when viewed graphically (*Supp. Ref. 10,11*), the impact of such corrections on the relationship between absolute SST and hurricane activity are profound. The bottom panel in Supplement Figure 2 shows the identical analysis as the top panel, but without the empirical correction used in *Supp. Ref. 3.* The correlation between absolute SST and hurricane activity is significantly reduced at all time scales, while that between relative SST and hurricane activity is significantly to that found in the corrected HURDAT data used in the primary manuscript. However, comparison between the top and bottom panels reveal that the empirical correction produces roughly 70% of the variance explained by a linear regression of absolute SST and hurricanes on decadal averaging time scales.

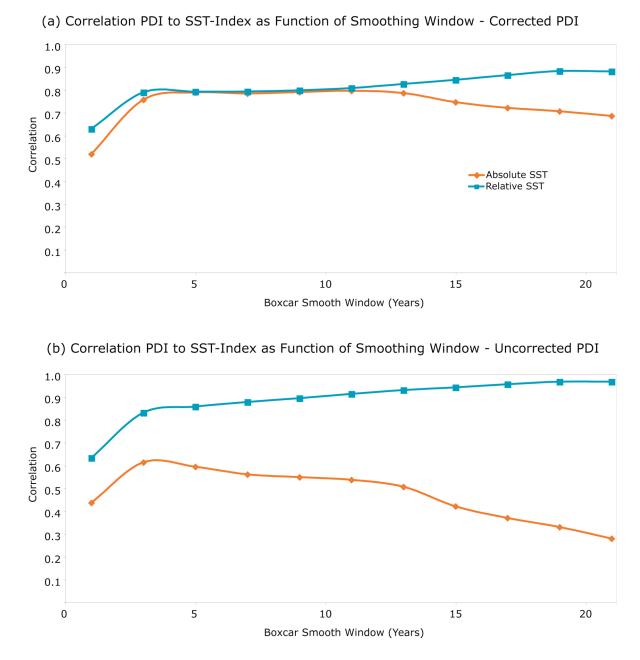
The impact of the intensity correction on the filtered time series is shown in Supplement Figure 5; the uncorrected PDI series has a much stronger "U" shape over the 1946-2007 period, and now more closely resembles the relative SST. A similar analysis to that in the primary manuscript figure but using the uncorrected HURDAT data is shown in Figure 6; the superiority of relative to absolute SST is apparent. This is even more so for longer averaging periods, as Figure 7 shows that the "U" shape in the uncorrected PDI is qualitatively quite different from the roughly linear increase in model absolute SST for each model over the 1946-2007 time period. However, the principal results, that a projection of Atlantic activity into the 21st Century using absolute SST indicates an

increase, while a projection using relative SST shows a future largely like the past is unaltered by this analysis. While the sensitivity to the intensity correlation of the strength of the statistical relationships between PDI and relative/absolute SST highlights the need for a thorough and systematic evaluation of the necessary corrections for HURDAT intensities, for projections of future activity it is more essential to distinguish between relative and absolute SST as the causal predictor of PDI, and to improve regional projections of SST.

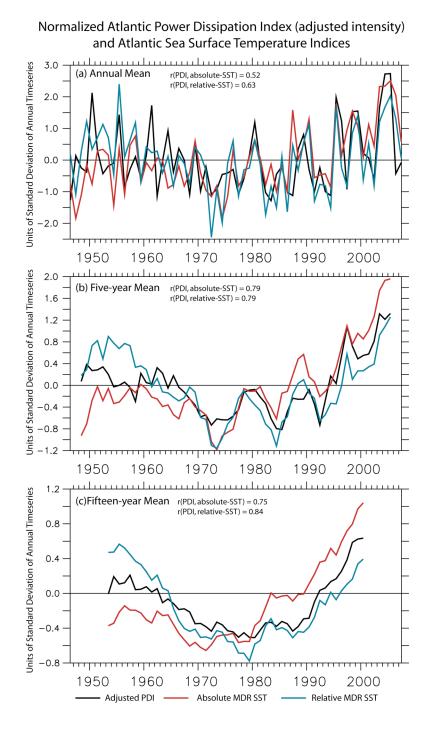
Even when time averaging is removed from the analysis, the enhanced explanatory power of relative SST compared to absolute SST emerges. Supplement Figure 8 shows the tracks of intense Atlantic hurricanes (Category 4 and 5 on the Saffir-Simpson scale; max wind > 58 ms⁻¹) that occurred during the 10 years with the highest/lowest absolute and relative MDR SSTs, respectively. A much larger disparity in the number of such intense storms is found when the data are classified by the relative SST, with 23 events/decade occurring when relative MDR SST is anomalously large, and 6 events/decade when relative MDR SST is small. In contrast, the difference between years when absolute MDR SST is anomalously large (18 events/decade) and small (9 events/decade) is more subdued. This again hints that it is relative SST that governs Atlantic hurricane activity.


Additional Model interpretation:

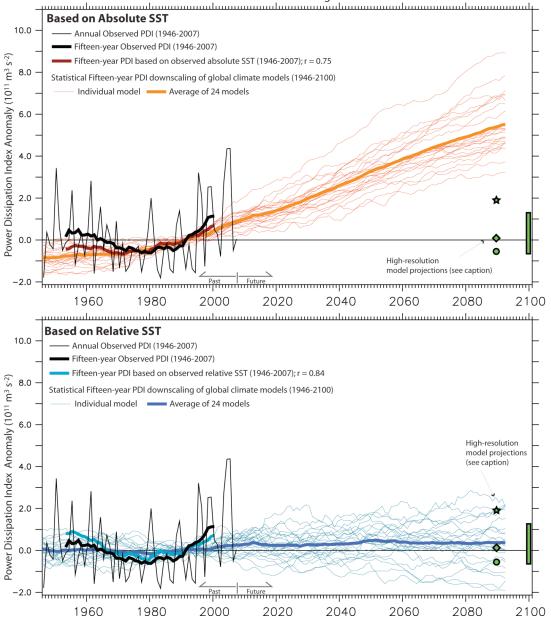
An alternative interpretation of the climate model projections of tropical SST is that uncertainties in their pattern of tropical warming are large enough that one should not trust their regional structure. Instead one should assume a uniform SST change equal to the tropical-mean warming projected by the models. If this is done, then the difference between a control on cyclones by absolute and relative SST continues to plague statistical projections of PDI: applying the absolute-SST based model to the models' projections of tropical-mean SST gives a broad range of possible increases (see yellow bar in the top panel of the Supplement Figure 9, which reproduces the main text's Figure), whereas the relative-SST model leads to PDI changes that are trivially zero. This highlights the need both for improved understanding of the aspects of SST that control hurricane activity, and how SST patterns are likely to change in the future.

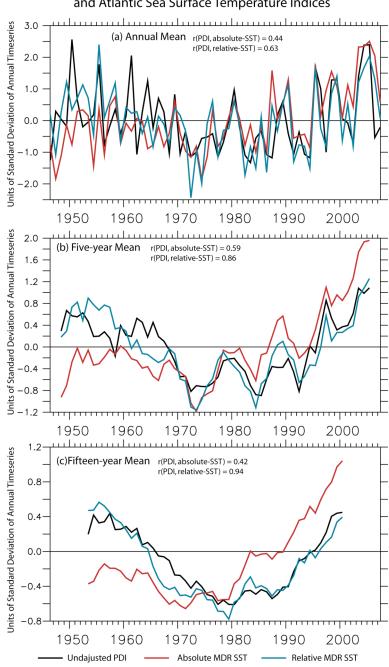

Finally, a few words are appropriate about the methods used in comparing model downscaling of hurricane activity to the statistical regression-based projections described above. It is well understood that at their current stage of development, many of the dynamical models used to explore the response of hurricane activity to climate change have difficulty capturing the dynamics of the most intense storms (*e.g., Supp. Ref. 12*). Hence, all dynamical results presented in the primary paper were interpreted in terms of their *relative* increase in PDI when comparing the period 2001-2020 and 2081-2100. This relative increase is then multiplied by the *observed* climatological value of PDI over the period 1981-2000 to yield the symbols shown in the Figure. For consistency of comparison, a similar analysis was applied to the statistical-dynamical results of *Supp. Ref. 13*, even though that approach captures aspects of the behavior of the most intense storms and represents the response at the end of the 22^{nd} Century.

Supplement References


- 1. T.M. Smith, R.W. Reynolds, Thomas C. Peterson, & Jay Lawrimore, J. Climate, 21, 2283-2296 (2008).
- 2. C.W. Landsea, et al., Bull. Am. Meteorol. Soc. 85, 1699–1712 (2004).
- 3. K. Emanuel J. Climate 20, 5497-5509 (2007).
- 4. G.A. Meehl, et al. Bull. Amer. Meteorol. Soc., 88, 1549-1565 (2007).
- 5. G.A. Vecchi & B.J. Soden, *Nature* **450**, 1066-1070 (2007).
- G.A. Vecchi & B.J. Soden, J. Climate, 20, 4316-4350, doi:10.1175/JCLI4258.1
 (2007)
- 7. R. Zhang, T. L. Delworth, Geophys. Res. Lett. 33, L17712 (2006).
- B. Santer et al., Proc. Natl. Acad. Sci. U.S.A., doi/10.1073/pnas.0602861103 (2008).
- 9. T. R. Knutson et al., J. Climate, 19, 1624 (2006).
- 10. C.W. Landsea Nature doi:10.1038/nature04477 (2005).
- 11. K. Emanuel Nature doi: :10.1038/nature04427 (2005).
- T.R. Knutson, J.J. Sirutis, S.T. Garner, G.A. Vecchi &I.M. Held, *Nature Geosciences* 1, 359 364, doi:10.1038/ngeo202 (2008).
- K.A. Emanuel, R. Sundararajan & J. Williams, *Bull. Am. Met. Soc.* 89, 347-367 (2008).

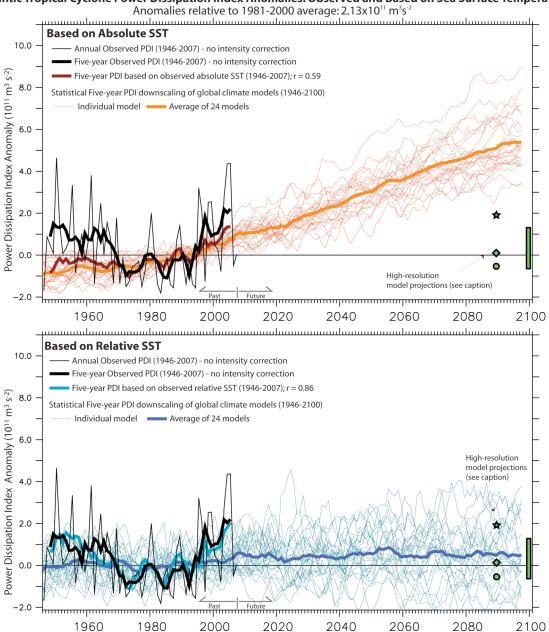
Supplement Figure 1: The regression of hurricane activity in the Atlantic as measured by the PDI against (a) absolute Atlantic main development region August-October SST anomalies from the 1981-2007 mean; and (b) Atlantic main development regions August-October SST anomalies relative to the tropical mean SST. Goodness of fit (r) and the slope in terms of PDI per Kelvin are as indicated.


Supplement Figure 2: The top panel is the correlation between the absolute and relative SST time series and the hurricane activity PDI time series based upon HURDAT intensity data corrected as in Supplement Reference 3. The abscissa marks the averaging time applied to each time series before the correlation is taken. The bottom panel is the same, but for hurricane intensities from HURDAT without the intensity correction of Supplement Reference 3.

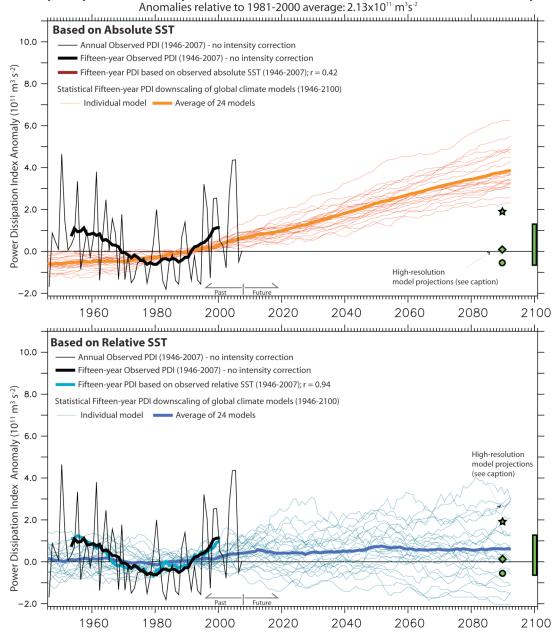

Supplement Figure 3: Power dissipation index (PDI) versus absolute and relative SST for 1, 5, and 15 year boxcar filtered timescales using the HURDAT intensity data corrected as in Supplement Reference 3. Note the "U" shape centered about 1980 for both PDI and relative SST, while the absolute SST is quite constant prior to 1980.

Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature

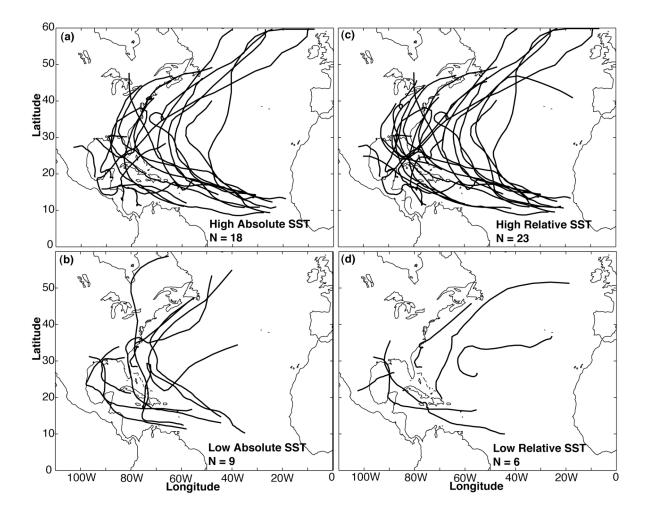
Anomalies relative to 1981-2000 average: 2.13x10¹¹ m³s⁻²


Supplement Figure 4: As in the primary manuscript, but with a 15-year averaging period. Note the significant departure of the predicted PDI from the model envelope for the absolute SST case (top panel) around 1980. Anomalies are computed from the 1981-2000 climatology.

Normalized Atlantic Power Dissipation Index (HURDAT intensity) and Atlantic Sea Surface Temperature Indices

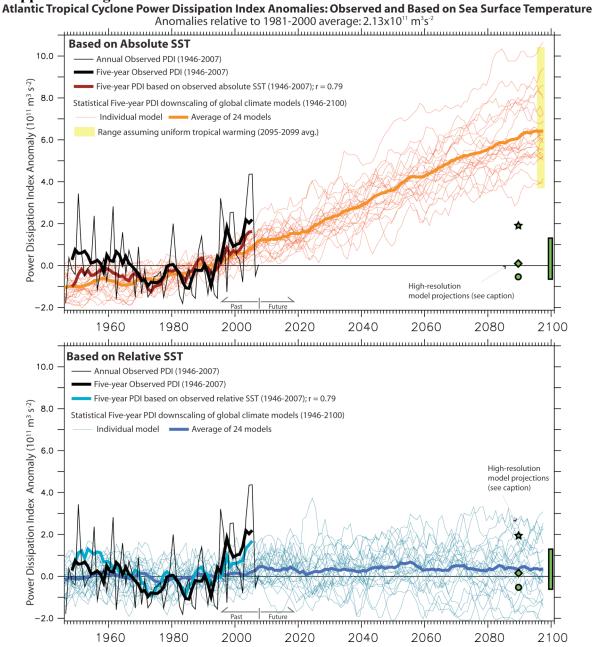

Supplement Figure 5: As in Supplement Figure 3, but using HURDAT data without the intensity correction of Supplement Ref. 3. Note that the corrected PDI is exhibits a more pronounced "U" shape, as the intensity correction that was removed acted to reduce intensities of pre-1970 tropical cyclones pre-1970 compared to the raw HURDAT data.

Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature



Supplement Figure 6: As in the primary manuscript, but for PDI computed using the uncorrected HURDAT data. Anomalies are computed from the 1981-2000 climatology.

Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature



Supplement Figure 7: As in Supplement Figure 6, except for a 15-year averaging period. Anomalies are computed from the 1981-2000 climatology.

Supplement Figure 8: Tracks of intense hurricanes (Saffir-Simpson Category 4 and 5; max wind $> 58 \text{ ms}^{-1}$) during the years with the 10 highest/lowest SST anomalies. Panels (a) and (b) indicate absolute SST, and panels (c) and (d) indicate relative SST. There is a higher level of implied sensitivity on relative SST by this measure.

Supplement Figure 9

Supplement Figure 9: As in the primary manuscript, but with an additional symbol indicating the range of PDI extrapolated using absolute SST, using the assumption that the patterns of SST change from the GCMs are too uncertain, and only the tropical-mean change SST should be used (yellow bar).