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2,000-year-long temperature and hydrology
reconstructions from the Indo-Pacific warm pool
Delia W. Oppo1, Yair Rosenthal2 & Braddock K. Linsley3

Northern Hemisphere surface temperature reconstructions suggest
that the late twentieth century was warmer than any other time
during the past 500 years and possibly any time during the past
1,300 years (refs 1, 2). These temperature reconstructions are based
largely on terrestrial records from extra-tropical or high-elevation
sites; however, global average surface temperature changes closely
follow those of the global tropics3, which are 75% ocean. In
particular, the tropical Indo-Pacific warm pool (IPWP) represents
a major heat reservoir that both influences global atmospheric
circulation4 and responds to remote northern high-latitude
forcings5,6. Here we present a decadally resolved continuous sea
surface temperature (SST) reconstruction from the IPWP that
spans the past two millennia and overlaps the instrumental record,
enabling both a direct comparison of proxy data to the instru-
mental record and an evaluation of past changes in the context of
twentieth century trends. Our record from the Makassar Strait,
Indonesia, exhibits trends that are similar to a recent Northern
Hemisphere temperature reconstruction2. Reconstructed SST
was, however, within error of modern values from about AD 1000
to AD 1250, towards the end of the Medieval Warm Period. SSTs
during the Little Ice Age (approximately AD 1550–1850) were
variable, and 0.5 to 16C colder than modern values during the
coldest intervals. A companion reconstruction of d18O of sea
water—a sea surface salinity and hydrology indicator—indicates
a tight coupling with the East Asian monsoon system and remote
control of IPWP hydrology on centennial–millennial timescales,
rather than a dominant influence from local SST variation.

The IPWP is the largest reservoir of warm surface water on the
Earth and the main source of heat for the global atmosphere. Small
variations in SST of the IPWP influence the location and strength of
convection in the rising limb of the Hadley and Walker circulations,
and can thus perturb planetary-scale atmospheric circulation and
influence tropical hydrology4. However, tropical hydrology is also
responsive to high-latitude temperature change5,6. Recent work
suggests that SST of the IPWP has varied during the past millennium,
with colder SSTs during the peak of the Little Ice Age (LIA) than
during the preceding centuries7. However, no millennial-length SST
reconstructions from the IPWP capture the complete warming out of
the LIA or extend into the instrumental era to allow a direct com-
parison with instrumental data. Therefore, the amplitude of re-
constructed SST variations in the context of modern SSTs is still
uncertain. Whereas conventional sediment corers—gravity and
piston corers—often disturb surface and latest Holocene sediments,
multi-corers are lowered gently into ocean sediment and recover the
sediment–water interface undisturbed, together with about a half-
metre of underlying sediment. Combining records from multi-cores
and gravity or piston cores enables the reconstruction of long records
that overlap the instrumental record.

We worked on multi-core BJ8-03-31MCA (‘31MC’) and gravity
cores BJ8-03-32GGC (‘32GGC’) and BJ8-03-34GGC (‘34GGC’),
recovered from the Makassar Strait, on the Sulawesi margin (Fig. 1).
We also use published data from nearby piston core MD98-21607

(‘MD60’). Mean annual SSTs in our study area averaged ,29.3 uC
from 1997 to 2007 (ref. 8) with coldest SSTs (averaging ,28.5 uC)
from July through to the end of September (JAS), the upwelling
season. SSTs decrease during El Niño events4,8. Seasonally, surface
waters are freshest in boreal winter, when SST is warmest, owing to
the combined influence of the northwest monsoon/intertropical con-
vergence zone rainfall9,10 and advection of low salinity waters to the
site by surface currents (Supplementary Discussion). Boreal summer
precipitation is reduced during El Niño events, but rainy season pre-
cipitation is unaffected10. The mean annual weighted d18O value of
precipitation (d18Oppt) is close to the boreal winter value (about 27%
versus approximately 24% in boreal summer11), reflecting intense
vertical convection and heavy rainfall12. Sediment core chronologies
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Figure 1 | Mean annual SST of the IPWP. Shown (stars) are locations of
sediment cores as follows: multi-core BJ8-03-31MCA (459 m), and gravity
cores BJ8-03-34GGC (503 m) and BJ8-03-32GGC (454 m), all at 3u 539 S,
119u 279 E (‘BJ8’), and piston core MD98-2160 (5u 129 S, 117u 299 E, 1,185 m,
‘MD60’). Locations of Lake Huguang Maar and Wanxiang cave are also
shown (stars). Temperature data from ref. 29.
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are based on 210Pb (31MC), radiocarbon dating, and a correlation to
the AD 1815 Mount Tambora ash tentatively identified in MD607

(Supplementary Methods). High sediment accumulation rates
(,100–200 cm kyr21) enable decadal-scale resolution. To reconstruct
d18O of sea water (SST and d18Osw), we generated Mg/Ca and d18O
data on the planktonic foraminifera, Globigerinoides ruber (sensu
stricto morphotype), which inhabits the surface mixed layer
(Methods). Sediment trap data indicate that in the tropics, the sea-
sonal preference of G. ruber varies among locations, ranging from a
cold season (upwelling) preference to a warm season preference13–15

(Supplementary Discussion).
We converted Mg/Ca to SST using a calibration, Mg/

Ca 5 0.38exp(0.09SST), based on seasonal Mg/Ca variations in mul-
tiple species of planktonic foraminifera from Sargasso Sea sediment
trap samples16 (Fig. 2a). Our reconstructed SSTs generally fall
between historical mean annual and JAS SSTs (the National
Oceanic and Atmospheric Administration extended SST reconstruc-
tion8, ERSSTv3; Fig. 2), suggesting that the seasonal flux of G. ruber to
the sediment (G. ruber seasonality) in our study area varied through
time, with a greater flux to the sediment in JAS during cooler periods
(for example, around AD 1900–50) relative to warm periods, when
reconstructed SSTs approach the annual mean.

We applied the Mg/Ca–SST calibration16 to data from all four cores
(Fig. 2b). Following previous studies7,17–19, we also reconstructed

d18Osw from the d18O of G. ruber (Supplementary Data) and our
SST estimates (Fig. 2c). The SST reconstruction shows cooler tem-
peratures between about AD 400 and AD 950 than during much of the
so-called Medieval Warm Period (about AD 900–1300), a warm period
found in many northern high-latitude records but whose global sig-
nificance is uncertain1. A gradual SST decrease began at about AD

1300, and culminated at about AD 1700, within the peak of the LIA.
Subsequent warming was interrupted by two multi-decadal cold
periods, one towards the end of the LIA and one during the early
twentieth century. Each was nearly as cold as the coldest LIA peak.

At face value, our reconstruction suggests that peak LIA SSTs were
,1 uC and 1.5 uC colder than late twentieth century JAS and mean
annual SST, respectively. Given the possibility raised by our compar-
ison of reconstructed SST to the instrumental record (Fig. 2a) that
the flux of G. ruber to the sediment was higher in JAS during the LIA
than at present, we favour a conservative interpretation that JAS
surface waters were ,1 uC colder than late twentieth century JAS
SSTs. Considering that from 1856 to 20078, the amplitude of mean
annual SST variability averaged ,70% of the amplitude of JAS SSTs
variability (Supplementary Discussion), we infer that mean annual
SSTs were ,0.5 to 1 uC colder than the late twentieth century.

Reconstructed SSTs were warmest from AD 1000 to AD 1250 and
during short periods of first millennium (Fig. 2b). Given the evidence
that G. ruber tends to record near mean annual SSTs during warm
intervals of the last 150 years (Fig. 2a), reconstructed SSTs during these
warm periods probably reflect mean annual SSTs. If this is the case, as
we suspect, then SSTs within error of modern SSTs occurred in the
IPWP during the Medieval Warm Period and during brief periods of
the first millennium AD. If, on the other hand, G. ruber calcified
preferentially during the JAS upwelling season throughout the study
interval, then JAS SSTs as warm as modern also characterized the
previous millennium. Regardless of G. ruber seasonality in this region,
the reconstruction suggests that at least during the Medieval Warm
Period, and possibly the preceding 1,000 years, Indonesian SSTs were
similar to modern SSTs.

To estimate errors and facilitate comparison to other records,
we developed composite records (Fig. 3; Methods Summary). Our
averaging scheme reduces the amplitude of the records, but preserves
only the most robust features. Considering the age uncertainties in our
reconstruction, long-term SST trends are similar to those in Northern
Hemisphere temperature reconstructions, especially the ‘NH land
error-in-variables (EIV) composite’2 (r2 5 0.5, P= 0.00001; Fig. 3a),
consistent with the instrumental record, which suggests that
Indonesian SST is correlated to global SST and air temperature on
multi-decadal and longer timescales (Supplementary Notes). (Here
NH indicates Northern Hemisphere.) Contrary to the Indonesia SST
reconstruction, however, the Northern Hemisphere temperature
reconstruction does not estimate temperatures as warm as modern
at any time during the past two millennia. The hemispheric and global
temperature difference between the early AD 1900s and the modern era
is similar to the difference in mean annual SST at our core site
(Supplementary Notes), so the greater amplitude of Makassar Strait
SST than Northern Hemisphere temperature variability (note differ-
ent axis scaling in Fig. 3a) may be related to the hypothesized changes
in G. ruber seasonality. We note that the high-amplitude variations
resulting from these hypothesized changes in G. ruber seasonality also
preclude accurate estimates of the rates of SST change in the past and a
meaningful comparison to the rate of SST increase during the past
decade.

Long-term d18Osw trends are also similar to Northern Hemisphere
temperature trends (r2 5 0.3, P=0.0001) with the lowest values
during the coldest peak of the LIA (Fig. 3b). The d18Osw decrease that
began at about AD 1300 was linked to gradual Northern Hemisphere
and IPWP cooling, and the subsequent increase in d18Osw values
associated with nineteenth- and twentieth-century warming. This
general trend of increasing d18Osw was punctuated by two multi-
decadal d18Osw minima, each with slightly higher d18Osw values. By
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Figure 2 | Sea surface temperature and d18Osw reconstructions.
a, ERSSTv38 mean annual (red line) and JAS (green line) SST
reconstructions based on the instrumental record for the grid box
containing the BJ8 core sites. Blue line, Mg/Ca-based SST estimates using a
published calibration16. Crosses, Mg/Ca-based SST estimates. Lines are
three-point running means. b, Downcore SST, and c, d18Osw reconstructions
(31MC, blue crosses; MD60, red crosses; 34GGC, green crosses; 32GGC
black circles). Colour-coded lines are three-point running means. Upper and
lower horizontal lines in a and b are modern (1997–2007) mean annual and
JAS SST8 at the BJ8 core sites, respectively. Colour-coded triangles in
b denote radiocarbon age control, except for the most recent red triangle,
which denotes the Mt Tambora ash, tentatively identified in MD60
(Supplementary Notes). d18Osw values are relative to Vienna Standard Mean
Ocean Water (VSMOW).
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analogy with the seasonality of modern precipitation9,10, of d18Oppt

values11,12, and of surface currents (Supplementary Discussion), the
low d18Osw values indicate that the Indonesian rainfall regime from
about AD 1500 to AD 1900 was more boreal winter-like (stronger boreal
winter, weaker boreal summer monsoon) than the preceding centuries.

Additional proxy evidence, discussed below, that the boreal summer
monsoon was weaker during the LIA than during the Medieval Warm
Period suggests that the colder surface waters implied by our record
were not caused by greater monsoon-driven upwelling. El Niño events,
as recorded in lake sediments from high-altitude Ecuador20 and
Galapagos21, may have been subdued during the LIA, suggesting that
neither a higher frequency/greater intensity of El Niño events nor a
more El Niño-like mean Pacific state caused cold LIA SSTs. Rather,
cooling of North Pacific surface water, which enters the southern
Makassar Strait in boreal winter via the South China Sea/ Java Sea
pathway to the west4,22, is the likely proximal cause of LIA cooling.

Our interpretation of a more winter-like rainfall regime during the
LIA is substantiated by records from Wanxiang cave, subtropical
China23 (r2 5 0.2, P= 0.0001) and Lake Huguang Maar, coastal
southeast China24 (r2 5 0.1, P= 0.0001) (Fig. 3c and d), which
indicate weaker summer and stronger winter Asian monsoons,
respectively, during the LIA. Low Indian summer monsoon rainfall25

also corresponds to low d18Osw (greater Indonesian rainfall) on

multi-decadal timescales (Fig. 4) (r2 5 0.6, P , 0.0005). These results,
suggesting alternating precipitation maxima in the Northern
Hemisphere Asian monsoon regions and over Indonesia, add to a
growing body of evidence that monsoon/intertropical convergence
zone variations profoundly influenced the tropical hydrology of the
past two millennia7,23,24,26,27.

Modern observations and modelling studies indicate that small
changes in IPWP SSTs strongly influence the global hydrologic cycle4.
For example, cooler SSTs in some areas of the IPWP might dampen
intense deep atmospheric convection, reducing global precipita-
tion28. However, our finding that d18Osw was lowest (and by
inference, net regional precipitation greatest) when SSTs were
cold—during the LIA (Fig. 3) and the early AD 1900s (Fig. 4)—
suggests that on multi-decadal through to millennial timescales,
IPWP precipitation anomalies are not driven by local SST anomalies,
but are remotely forced by the Asian monsoon/intertropical con-
vergence zone.

METHODS SUMMARY

d18O and Mg/Ca were collected on G. ruber in the 212–250mm and 250–300mm

size-fraction, respectively. d18O was measured at WHOI on a Finnigan MAT253

stable isotope mass spectrometer with the Kiel III Carbonate Device. Long-term

precision of d18O measurements of standards is 0.07%. Mg/Ca measurements were

made at Rutgers Inorganic Analytical Laboratory using a sector field inductively

coupled plasma mass spectrometer (Thermo Element XR). Additional details,

including interlaboratory offsets and corrections, are discussed in Methods.

To construct composite records, we binned data from all four cores in 10-

year-overlapping 50-year-long bins. We estimated errors in two ways. First, we

took the standard error of the SST or d18Osw in each 50-year bin (grey lines in

Fig. 3). Second, we estimated errors by dividing the standard error in the SST and

d18Osw estimate by the square root of the number of data points in each bin. The

standard error in the SST calibration is 0.16 uC. The standard error of the d18Osw

is a function of the error in both d18O of calcite and the error in SST. Assuming

greater variance for geological samples than standards, we use a 0.2% standard

deviation for the d18O of calcite, and knowing the standard error in the SST

calibration, a standard error of 0.24% is estimated for d18Osw. The two methods

gave similar error estimates for SST, but the second method (data not shown;

http://www.ncdc.noaa.gov/paleo/) often suggests larger errors for d18Osw.

To estimate correlation coefficients and P values for the records shown on

Figs 3 and 4, we linearly regressed data from each of the two records, already

averaged within 10-year-overlapping 50-year-long bins.
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Figure 3 | Comparison of composite Indonesia records to hemispheric and
regional records. a, Composite SST and b, d18Osw records (black) versus
Northern Hemisphere land EIV composite temperature (T) anomaly2 (red).
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monsoon record23 (green) and d, Lake Huguang Maar magnetic susceptibility,
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overlapping, 50-year-long bins. Error bars (grey), 61 standard error of data in
each bin. Wanxiang cave and Lake Huguang Maar data were also averaged in
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the Little Ice Age (LIA) is denoted by the horizontal bar in a.
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