HARVARD

School of Engineering and Applied Sciences

Static Single Assignment Form (and dominators, post-dominators, dominance frontiers...)

CS252r Spring 2011 (Almost all slides shamelessly stolen from Jeff Foster)

Motivation

• Data flow analysis needs to represent facts at every program point

•What if

- There are a lot of facts and
- There are a lot of program points?
- $\bullet \Rightarrow$ potentially takes a lot of space/time

Most likely, we're keeping track of irrelevant facts

Example

Sparse Representation

Instead, we'd like to use a sparse representation
Only propagate facts about x where they're needed

• Enter static single assignment form

- Each variable is defined (assigned to) exactly once
- But may be used multiple times

Example: SSA

Add SSA edges from definitions to uses
No intervening statements define variable
Safe to propagate facts about x only along SSA edges

What About Joins?

- - One argument for each incoming branch
 - Operationally: selects one of the arguments based on how control flow reach this node
 - Dataflow analysis: Intuitively, takes meet of arguments
 - At code generation time, need to eliminate Φ nodes

Constant Propagation Revisited

- Initialize facts at each program point
 C(n) := ⊤
- Add all SSA edges to the worklist
- •While the worklist isn't empty,
 - Remove an edge (x, y) from the worklist
 - $\bullet C(y) := C(y) \sqcap C(x)$
 - Add to worklist SSA edges from y if C(y) changed

Def-Use Chains vs. SSA

- Alternative: Don't do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains
- Drawback: Potentially quadratic size

Def-Use Chains vs. SSA (cont'd)

Def-Use Chains

case (...) of 0: a := 1; 1: a := 2; 2: a := 3; end case (...) of 0: b := a; 1: c := a; 2: d := a; end

SSA Form

Quadratic vs. (in practice) linear behavior

Conditional Constant Propagation

• So far, we assume that all branches can be taken

- But what if some branches are never taken in practice?
 - Debugging code that can be enabled/disabled at run time
 - Macro expanded code with constants
 - Optimizations

Idea: use constant propagation to decide which branches might be taken
Fits in neatly with SSA form

Nodes versus Edges

- So far, we've been hazy about whether data flow facts are associated with nodes or edges
 - Advantage of nodes: may be fewer of them
 - Advantage of edges: can trace differences on multiple paths to same node

• For this problem, we'll associate facts with edges

Conditional Execution

- Keep track of whether edges may be executed
 - Some may not be because they're on not-taken branch
 - Initially, assume no edges taken
 - At joins, don't propagate information from not-taken in-edges
- Side comment: Notice that we always, always start with the optimistic assumption
 - •We need proof that a pessimistic fact holds
 - •We're computing a greatest fixpoint

Example

Computing SSA Form

• Step 1: Place Φ nodes

- Step 2: Rename variables so only one definition per name

Computing SSA Form

- Step 1a: Compute the dominance frontier
- Step 1b: Use dominance frontier to place nodes
 - If node X contains assignment to a, put Φ function for a in dominance frontier of X
- Adding Φ fn may require introducing additional Φ fn
 Step 2: Rename variables so only one definition per name

Dominators

- Let X and Y be nodes in the CFG
 Assume single entry point Entry
- X dominates Y (written X≥Y) if
 X appears on every path from Entry to Y
- Write X>Y (X strictly dominates Y) when X dominates Y but X≠Y
 Note ≥ is reflexive

Dominator Tree

• The dominator relationship forms a tree

- Edge from parent to child = parent dominates child
- Note: edges are not same as CFG edges!

Computing Dominator Tree

• An algorithm due to Lengauer and Tarjan

- Runs in time $O(E\alpha(E, N))$
 - E = # of edges, N = # of nodes
 - where $\alpha(\cdot)$ is the inverse Ackerman's function
 - Very slow growing; effectively constant in practice
- Algorithm quite difficult to understand
 - But lots of pseudo-code available

Computing Dominator Tree

- "A Simple, Fast Dominance Algorithm" by Cooper, Harvey, Kennedy, 2001
 - \bullet Shows $O(N^2)$ algorithm runs faster in practice than Lengauer and Tarjan
 - Intuitive algorithm, phrased as dataflow equations, solved with standard (reverse-postorder) iterative dataflow
 - Requires carefully engineered data structures

		Iterative	e Algorit	hm	Lengauer-Tarjan/Cytron et al.			
Number	Dominance		Postdominance		Dominance		Postdominance	
of Nodes	Dom	DF	Dom	DF	Dom	DF	Dom	DF
> 400	3148	1446	2753	1416	7332	2241	6845	1921
201 - 400	1551	716	1486	674	3315	1043	3108	883
101-200	711	309	600	295	1486	446	1392	388
51 - 100	289	160	297	151	744	219	700	191
26 - 50	156	86	165	94	418	119	412	99
<= 25	49	26	52	25	140	32	134	26

Average times by graph size, measured in $\frac{1}{100}$'s of a second

Table 1: Runtimes for 10,000 Runs of Our Fortran Test Suite, aggregated by Graph Size © 2010 Stephen Chong, Harvard University

Why Are Dominators Useful?

- Computing static single assignment form
- Computing control dependencies
- Identify (natural) loops in CFG
 All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop

Where do **Φ** Functions Go?

- •We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - \bullet Such that both paths start at two distinct nodes and end at Z

Dominance Frontiers: Illustration

Dominance Frontiers

- Y is in the dominance frontier of X iff
 There exists a path from X to Exit through Y such that Y is the first node not strictly dominated by X
 Equivalently:
 - •Y is the first node where a path from X to Exit and a path from Entry to Exit (not going through X) meet
- Equivalently:
 - X dominates a predecessor of Y
 - X does not strictly dominate Y

Example

 $DF(1) = \{1\}$ $DF(2) = \{7\}$ $DF(3) = \{6\}$ $DF(4) = \{6\}$ $DF(5) = \{1, 7\}$ $DF(6) = \{7\}$

 $\mathsf{DF}(7) = \emptyset$

Computing SSA Form

- Step 1a: Compute the dominance frontier
- Step 1b: Use dominance frontier to place nodes
- Step 2: Rename variables so only one definition per name

Step 1b: Placing **\$** Functions for **v**

- \bullet Let S be the set of nodes that define v
- Need to place Φ function in every node in DF(S)
 Recall, those are all the places where the definition of v in S and some other definition of v may meet
- But a Φ function adds another definition of v!
 - $v := \Phi(v, \dots, v)$
- So, iterate
 - $\mathsf{DF}_1 = \mathsf{DF}(\mathsf{S})$
 - $DF_{i+1} = DF(S \cup DF_i)$

Example

Step 2: Renaming Variables

• Top-down (DFS) traversal of dominator tree

- At definition of v, push new # for v onto the stack
- •When leaving node with definition of v, pop stack
- Intuitively: Works because there's a Φ function, hence a new definition of v, just beyond region dominated by definition

Can be done in O(E+|DF|) time Linear in size of CFG with \$\Phi\$ functions

Eliminating **Φ** Functions

- Basic idea: • Represents facts that value of join may come from different paths
 - So just set along each possible path

Eliminating **Φ** Functions in Practice

- Copies performed at \$\Phi\$ fns may not be useful
 Joined value may not be used later in the program
 (So why leave it in?)
- Use dead code elimination to kill useless **\$**

 Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register

Efficiency in Practice

• Claimed:

•SSA grows linearly with size of program

No correlation between ratio and program size

	Statements in all	Statements per procedure			
Package name	procedures	Min	Median	Max	Description
EISPACK	7,034	22	89	327	Dense matrix eigenvectors and values
FLO52	2,054	9	54	351	Flow past an airfoil
SPICE	14,093	8	43	753	Circuit simulation
Totals	23,181	8	55	753	221 FORTRAN procedures

 Table I.
 Summary Statistics of Our Experiment

Cytron, Ferrante, Rosen, Wegman, and Zadeck, <u>Efficiently Computing Static Single</u> <u>Assignment Form and the Control Dependence Graph</u>, TOPLAS 13(4), Oct 1991.

Efficiency in Practice (cont'd)

•Convincing?

Arrays

- Need to handle array accesses
 A[i] := A[j] + B[k]
- Problem: How do we know whether A[i], A[j], and B[k] are all distinct?
 - Could have A=B, e.g., foo(int A[], int B[]){} ... foo(a,a)
 Could have i=j
- History: significant research on determining array dependencies, for parallelizing compilers

Arrays (cont'd)

- One possibility: make arrays immutable
 Then don't need to worry about updates to them
 - * := A(i); A(j) := V; * := A(k) + 2; * := A(k) + 2; * := T + 2; * := A(i); A := Update(A, j, V); T := A(k); * := T + 2;
- Update(A, j, V) makes a copy of A
 Then try to collapse unnecessary copies

• Convincing?

Structures

Can treat structures as sets of variables or as an array
with field name like an index into array

• Problems?

Pointers

• For each statement S, let

- MustMod(S) = variables always modified by S
- MayMod(S) = variables sometimes modified by S
 - So if v∉MayMod(S), then S must not modify v
- MayUse(S) = variables sometimes used by S
- Then assume that statement S
 - writes to MayMod(S)
 - •reads MayUse(S) U (MayMod(S) MustMod(S))

• Convincing? We'll talk more about pointers later in the course

Control Dependence

• Y is control dependent on X if whether Y is executed depends on a test at X

• A, B, and C are control dependent on X

Postdominators and Control Dependence

- Y postdominates X if every path from X to Exit contains Y
 - I.e., if X is executed, then Y is always executed
- Then, Y is control dependent on X if
 There is a path X→Z₁→···→Z_n→Y such that Y postdominates all Z_i and
 - Y does not postdominate X
 - •I.e.,there is some path from X on which Y is always executed, and there is some path on which Y is not executed

Dominance Frontiers, Take 2

 Postdominators are just dominators on the CFG with the edges reversed

• To see what Y is control dependent on, we want to find the Xs such that in the reverse CFG

- There is a path $X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y$ where
 - for all i, $Y \ge Z_i$ and
 - Y≯X

• I.e., we want to find DF(Y) in the reverse CFG!