Vgt HARVARD

School of Engineering
and Applied Sciences

Static Single Assignment Form

(and dominators, post-dominators,
dominance frontiers...)

C5252r Spring 2011

(Almost all slides shamelessly stolen from
Jeff Foster)

Motivation

e Data flow analysis needs to represent facts at
every program point

nere are a lot of facts and
nere are a lot of program points?
. = potentially takes a lot of space/time

* Most likely, we're keeping track of irrelevant facts

© 2010 Stephen Chong, Harvard University

Sparse Representation

*|nstead, we’d like to use a sparse representation
* Only propagate facts about x where they’re needed

* Enter static single assignment form
eEach variable is defined (assigned to) exactly once
e But may be used multiple times

Example:

=

S5/

Yo-=24-

:= =W

zy=2"Yy, ‘ =Y, *10 i

* Add SSA edges from definitions to uses

* No interve
e Safe to pro
edges

© 2010 Stephen Chong, Harvard University

ning statements ¢

pagate facts abou

efine variable
t x only along SSA

What About Joins'’

* Add ® functions/nodes to model joins
* One argument for each incoming branch
e Operationally: selects one of the arguments based on how
control flow reach this node
e Dataflow analysis: Intuitively, takes meet of arguments
* At code generation time, need to eliminate ® nodes

© 2010 Stephen Chong, Harvard University

Constant Propagation Revisited

e|nitialize facts at each program point
oC(n):=T
e Add all SSA edges to the worklist
e While the worklist isn’t empty,
eRemove an edge (x, y) from the worklist
*C(y) := Cly) n C(x)
e Add to worklist SSA edges from vy if C(y) changed

Def-Use Chains vs. SSA

e Alternative: Don’t do renaming; instead,
compute simple def-use chains (reaching

definitions)
* Propagate facts along def-use chains

e Drawback: Potentially quadratic size

y
Det-Use Chains vs. SE

case (...) of Def-Use Chai
O0: a:=1; :
1: a:=2;
2: a:=3;
end

case (...) of
0: b:=a; SSA Form

1: c:=a; ay =1 a, =2
2: d:=a;

end

Quadratic vs. (in practice) linear behavior

© 2010 Stephen Chong, Harvard University

Conditional Constant Propagation

eSo far, we assume that all branches can be taken

e But what if some branches are never taken in practice?
* Debugging code that can be enabled/disabled at run time
* Macro expanded code with constants
» Optimizations

e|dea: use constant propagation to decide which

branches might be taken
eFits in neatly with SSA form

Nodes versus Edges

*So far, we've been hazy about whether data flow

facts are associated with nodes or edges

e Advantage of nodes: may be fewer of them

e Advantage of edges: can trace differences on multiple
paths to same node

e For this problem, we’ll associate facts with edges

Conditional Execution

* Keep track of whether edges may be executed

e Some may not be because they’re on not-taken branch

e|nitially, assume no edges taken

* At joins, don’t propagate information from not-taken
in-edges

*Side comment: Notice that we always, always

start with the optimistic assumption

*\We need proof that a pessimistic fact holds
*\We're computing a greatest fixpoint

© 2010 Stephen Chong, Harvard University

=

Computing S5

*Step 1: Place @ nodes

*Naive, impractical step 1: put a ® function for every
variable at the beginning of every block

eStep 2: Rename variables so only one definition
per name

© 2010 Stephen Chong, Harvard University

Computing SSA Form

eStep Ta: Compute the dominance frontier
*Step 1b: Use dominance frontier to place ®

nodes

*|f node X contains assignment to a, put ® function for

aino

* Adc

ominance frontier of X
ing ® fn may require introducing additional ® fn

eStep 2: Rename variables so only one definition
per name

Dominators

elet X and Y be nodes in the CFG

e Assume single entry point Entry

o X dominates Y (written X>Y) if
e X appears on every path from Entry to'Y

*Write X>Y (X strictly dominates Y) when X
dominates Y but X£Y

e Note > is reflexive

Dominator 1

* The dominator relationship forms a tree

e Edge from parent to child = parent dominates child
*Note: edges are not same as CFG edges!

© 2010 Stephen Chong, Harvard University

Computing Dominator Iree

* An algorithm due to Lengauer and Tarjan

*Runs Iin time O(EX(E, N))
*E = # of edges, N = # of nodes

*where OX(-) is the inverse Ackerman’s function
* Very slow growing; effectively constant in practice

e Algorithm quite difficult to understand
* But lots of pseudo-code available

Computing Dominator Iree

e “A Simple, Fast Dominance Algorithm” by Cooper,
Harvey, Kennedy, 2001

e Shows O(N?) algorithm runs faster in practice than Lengauer and
Tarjan

* Intuitive algorithm, phrased as dataflow equations, solved with
standard (reverse-postorder) iterative dataflow

e Requires carefully engineered data structures

Iterative Algorithm Lengauer-Tarjan/Cytron et al.
Number Dominance || Postdominance || Dominance || Postdominance
of Nodes || Dom | DF || Dom DF Dom | DF || Dom DF
> 400 3148 | 1446 || 2753 1416 || 7332 | 2241 || 6845 1921
201-400 1551 | 716 || 1486 674 || 3315 | 1043 || 3108 883
101-200 711 | 309 600 295 || 1486 | 446 || 1392 388
51-100 289 | 160 297 151 744 | 219 700 191
26-50 156 86 165 94 418 | 119 412 99
<= 25 49 26 52 25 140 32 134 26

1

)
o5 S of a second

Average times by graph size, measured in

Table 1: Runtimes for 10,000 Runs of Our Fortran Test Suite, aggregated by Graph Size

Why Are Dominators Useful?

e Computing static single assignment form
e Computing control dependencies

e |dentify (natural) loops in CFG
* All nodes X dominated by entry node H, where X can
reach H, and there is exactly one back edge (head
dominates tail) in loop

y

Where do ® Functic

*\We need a ® function at node Z if
e Two non-null CFG paths that both define v

*Such that both paths start at two distinct nodes and
end at Z

© 2010 Stephen Chong, Harvard University

Dominance Frontie

Dominated by X X

SN Dominance Frontier of X

© 2010 Stephen Chong, Harvard University

Dominance Frontiers

oY is in the dominance frontier of X iff

e There exists a path from X to Exit through Y such that
Y is the first node not strictly dominated by X

e Equivalently:

Y is the first node where a path from X to Exit and a
path from Entry to Exit (not going through X) meet
e Equivalently:
e X dominates a predecessor of Y
e X does not strictly dominate Y

Exe

DF(1) = {1}
DF(2) = {7}

DF(3) = {6}

DF(4) = {6}

DF(5) = {1, 7}

DF(6) = {7}

DF(7) = @&

© 2010 Stephen Chong, Harvard University

Computing SSA F

eStep 1a: Compute the dominance frontier

*Step 1b: Use dominance frontier to place ®
nodes

eStep 2: Rename variables so only one definition
per name

© 2010 Stephen Chong, Harvard University

Step 1b: Placing ® Functions for v

o| et S be the set of nodes that define v

* Need to place ® function in every node in DF(S)

eRecall, those are all the places where the definition of
v in S and some other definition of v may meet

*But a ® function adds another definition of v!
ov =Py, ..., V)

¢SO, Iterate

e DF. = DF(S)

e DF,,, = DF(S U DF)

= need ® function

© 2010 Stephen Chong, Harvard Universi

Step 2: Renaming Variables

e Top-down (DFS) traversal of dominator tree
e At definition of v, push new # for v onto the stack
When leaving node with definition of v, pop stack
*|ntuitively: Works because there’s a ® function, hence
a new definition of v, just beyond region dominated by
definition

eCan be done in O(E+|DF|) time

e[inear in size of CFG with ® functions

Eliminating ® Functi

*Basic idea: ® represents facts that value of join

may come from different paths
*So just set along each possible path

‘ Wo =Y + Z4 i ‘W33=W1+Y3 i W2 Y1+ 24 W3—W1+y3

© 2010 Stephen Chong, Harvard University

Eliminating ® Functions in Practice

* Copies performed at ® fns may not be useful

*Joined value may not be used later in the program
* (So why leave it in?)

e Use dead code elimination to kill useless ®s

e Subsequent register allocation will map the (now
very large) number of variables onto the actual
set of machine register

Efficiency in Practice

e Claimed:

*SSA grows linearly with size of program
* No correlation between ratio and program size

Table I. Summary Statistics of Our Experiment

Statements
per procedure

Statements
in all
Package name procedures Min Median Max Description

EISPACK 7,034 22 89 327 Dense matrix eigenvectors and values
FLO52 2,054 9 54 351 Flow past an airfoil
SPICE 14,093 8 43 763 Circuit simulation

Totals 23,181 8 55 763 221 FORTRAN procedures

Cytron, Ferrante, Rosen, Wegman, and Zadeck, Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph, TOPLAS 13(4), Oct 1991.

http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320

Efficiency in Pre

| I I |
100 200 300 400 500 600 700

Fig. 21. Number of ¢-functions versus number of program statements.

e Convincing?

© 2010 Stephen Chong, Harvard University

Arrays

* Need to handle array accesses
e Ali] := A[jl + B[k

e Problem: How do we know whether A[i], Alj],
and B[k] are all distinct?

e(Cou
eCou

C

C

nave A=B, e.g., foo(int A[], int B[]){} ... foo(a,a)

nave =]

e History: significant research on determining
array dependencies, for parallelizing compilers

Arrays (cont’c

*One possibility: make arrays immutable
e Then don't need to worry about updates to them

= A(); = A);
A(j) :=V; A := Update(A, j,V);
= A(k) + 2; T = A(k);

=T + 2

e Update(A, j, V) makes a copy of A

*Then try to collapse unnecessary copies

e Convincingy¢

© 2010 Stephen Chong, Harvard University

Struc

e Can treat structures as sets of variables

Or as an array
ewith field name like an index into array

*.= Af; *
A.g =V, Y
*F=Af+Ag s

X; [l X =Af
V; Y =A.g
X+Y

e Problems?

© 2010 Stephen Chong, Harvard University

Pointers

e For each statement S, let

e MustMod(S) = variables always modified by S
e MayMod(S) = variables sometimes modified by S

* So if véMayMod(S), then S must not moc

e MayUse(S) = variables sometimes usec

e Then assume that statement S
ewrites to MayMod(S)

ify v
by S

ereads MayUse(S) U (MayMod(S) - MustMod(S))

e Convincing? We’'ll talk more about pointers
later in the course

Control Deper

*Y is control dependent on X if whetherY is
executed depends on a test at X

A/X\B

v

C
eA, B, and C are control dependent on X

© 2010 Stephen Chong, Harvard University

Postdominators and Control Dependence

*Y postdominates X if every path from X to Exit

contains Y

e|.e., if X is executed, thenY is always executed

*Then, Y is control dependent on X if
o There is a path X—=Z, —=---—=7 —Y such thatY

postdominates a

*Y does not postc

| Z and

ominate X

*|.e.,there is some path from X on which Y is always
executed, and there is some path on whichY is not

executec

Dominance Frontiers, Take 2

* Postdominators are just dominators on the CFG
with the edges reversed

*To see what Y is control dependent on, we want
to find the Xs such that in the reverse CFG
o There is a path X« Z -7 <Y where
. for all i, Y>Z. and
¢ Y£X
o|.e., we want to find DF(Y) in the reverse CFG!

