
Static Single Assignment Form
(and dominators, post-dominators,
dominance frontiers…)

CS252r Spring 2011
(Almost all slides shamelessly stolen from

Jeff Foster)

© 2010 Stephen Chong, Harvard University
2

•Data flow analysis needs to represent facts at
every program point

•What if
•There are a lot of facts and
•There are a lot of program points?
•⇒ potentially takes a lot of space/time

•Most likely, we’re keeping track of irrelevant facts

Motivation

© 2010 Stephen Chong, Harvard University
3

Example
x := 3

y := a + b

z := 2 * y

w := y + z

a > b

y := a - b

y := y * 10

w := w + y

z := w + x

x = 3

x = 3

x = 3

x = 3

x = 3

x = 3

x = 3

x = 3
x = 3

© 2010 Stephen Chong, Harvard University
4

•Instead, we’d like to use a sparse representation
•Only propagate facts about x where they’re needed

•Enter static single assignment form
•Each variable is defined (assigned to) exactly once
•But may be used multiple times

Sparse Representation

© 2010 Stephen Chong, Harvard University
5

•Add SSA edges from definitions to uses
•No intervening statements define variable
•Safe to propagate facts about x only along SSA

edges

Example: SSA
x1 := 3

y1 := a1 + b1

z1 := 2 * y1

w2 := y1 + z1

a1 > b1

y2 := a1 - b1

y3 := y2 * 10

w3 := w1 + y3

z1 := w? + x1

© 2010 Stephen Chong, Harvard University
6

•Add Φ functions/nodes to model joins
•One argument for each incoming branch
•Operationally: selects one of the arguments based on how

control flow reach this node
•Dataflow analysis: Intuitively, takes meet of arguments
•At code generation time, need to eliminate Φ nodes

What About Joins?
x1 := 3

y1 := a1 + b1

z1 := 2 * y1

w2 := y1 + z1

a1 > b1

y2 := a1 - b1

y3 := y2 * 10

w3 := w1 + y3

w4 := Φ(w2, w3)

z1 := w4 + x1

© 2010 Stephen Chong, Harvard University
7

•Initialize facts at each program point
•C(n) := ⊤

•Add all SSA edges to the worklist
•While the worklist isn’t empty,

•Remove an edge (x, y) from the worklist
•C(y) := C(y) ⊓ C(x)
•Add to worklist SSA edges from y if C(y) changed

Constant Propagation Revisited

© 2010 Stephen Chong, Harvard University
8

•Alternative: Don’t do renaming; instead,
compute simple def-use chains (reaching
definitions)
•Propagate facts along def-use chains

•Drawback: Potentially quadratic size

Def-Use Chains vs. SSA

© 2010 Stephen Chong, Harvard University
9

case (...) of
 0: a := 1;
 1: a := 2;
 2: a := 3;
end
case (...) of
 0: b := a;
 1: c := a;
 2: d := a;
end

Def-Use Chains vs. SSA (cont’d)

a := 1 a := 2 a := 3

b := a c := a d := a

Def-Use Chains

a1 := 1 a2 := 2 a3 := 3

b1 := a4 c1 := a4 d1 := a4

a4 := Φ(a1, a2, a3)

SSA Form

Quadratic vs. (in practice) linear behavior

© 2010 Stephen Chong, Harvard University
10

•So far, we assume that all branches can be taken
•But what if some branches are never taken in practice?
•Debugging code that can be enabled/disabled at run time
•Macro expanded code with constants
•Optimizations

•Idea: use constant propagation to decide which
branches might be taken
•Fits in neatly with SSA form

Conditional Constant Propagation

© 2010 Stephen Chong, Harvard University
11

•So far, we’ve been hazy about whether data flow
facts are associated with nodes or edges
•Advantage of nodes: may be fewer of them
•Advantage of edges: can trace differences on multiple

paths to same node

•For this problem, we’ll associate facts with edges

Nodes versus Edges

© 2010 Stephen Chong, Harvard University
12

•Keep track of whether edges may be executed
•Some may not be because they’re on not-taken branch
•Initially, assume no edges taken
•At joins, don’t propagate information from not-taken

in-edges

•Side comment: Notice that we always, always
start with the optimistic assumption
•We need proof that a pessimistic fact holds
•We’re computing a greatest fixpoint

Conditional Execution

© 2010 Stephen Chong, Harvard University
13

Example

x1 := 3

x1 > 2

j1 := 1 j2 := 4

j3 := Φ(j1, j2)

z

x1 = 3

j1 = 1

j3 = 1

© 2010 Stephen Chong, Harvard University

Computing SSA Form

•Step 1: Place Φ nodes
•Naive, impractical step 1: put a Φ function for every

variable at the beginning of every block
•Step 2: Rename variables so only one definition

per name

14

© 2010 Stephen Chong, Harvard University
15

•Step 1a: Compute the dominance frontier
•Step 1b: Use dominance frontier to place Φ

nodes
•If node X contains assignment to a, put Φ function for

a in dominance frontier of X
•Adding Φ fn may require introducing additional Φ fn

•Step 2: Rename variables so only one definition
per name

Computing SSA Form

© 2010 Stephen Chong, Harvard University
16

•Let X and Y be nodes in the CFG
•Assume single entry point Entry

•X dominates Y (written X≥Y) if
•X appears on every path from Entry to Y

•Write X>Y (X strictly dominates Y) when X
dominates Y but X≠Y
•Note ≥ is reflexive

Dominators

© 2010 Stephen Chong, Harvard University
17

•The dominator relationship forms a tree
•Edge from parent to child = parent dominates child
•Note: edges are not same as CFG edges!

Dominator Tree

1

2

3 4 5

6

7

1

2

3 4 6

75

© 2010 Stephen Chong, Harvard University
18

•An algorithm due to Lengauer and Tarjan
•Runs in time O(Eα(E, N))
• E = # of edges, N = # of nodes
•where α(·) is the inverse Ackerman’s function
•Very slow growing; effectively constant in practice

•Algorithm quite difficult to understand
•But lots of pseudo-code available

Computing Dominator Tree

© 2010 Stephen Chong, Harvard University
19

•“A Simple, Fast Dominance Algorithm” by Cooper,
Harvey, Kennedy, 2001
•Shows O(N2) algorithm runs faster in practice than Lengauer and

Tarjan
•Intuitive algorithm, phrased as dataflow equations, solved with

standard (reverse-postorder) iterative dataflow
•Requires carefully engineered data structures

Computing Dominator Tree

Iterative Algorithm Lengauer-Tarjan/Cytron et al.
Number Dominance Postdominance Dominance Postdominance
of Nodes Dom DF Dom DF Dom DF Dom DF
> 400 3148 1446 2753 1416 7332 2241 6845 1921

201–400 1551 716 1486 674 3315 1043 3108 883
101–200 711 309 600 295 1486 446 1392 388
51–100 289 160 297 151 744 219 700 191
26–50 156 86 165 94 418 119 412 99
<= 25 49 26 52 25 140 32 134 26

Average times by graph size, measured in 1
100 ’s of a second

Table 1: Runtimes for 10, 000 Runs of Our Fortran Test Suite, aggregated by Graph Size

The timing results are shown in Table 1. For the dominance calculation, the iterative algorithm runs
about 2.5 times faster than Lengauer-Tarjan, on average. The improvement slowly decreases as the number
of blocks increases. This is what we would expect: the Lengauer and Tarjan algorithm has a greater startup
cost, which gets amortized in larger graphs. Of course, the Lengauer-Tarjan results should catch up quickly
based on the relative asymptotic complexity. That this is not the case argues strongly that real-world codes
have low connectivity of irreducible loops and their shapes allow for comparatively fast intersections.

For computing dominance frontiers, the times begin to diverge as the number of blocks increases. It
appears that the advantage of our algorithm over Cytron et al.’s algorithm increases as the cfg gets larger,
ultimately resulting in an approximately 30% speedup for the largest graphs. We believe this is because, in
general, larger graphs have more complicated control flow. The amount of work done by the Cytron et al.
algorithm grows as a function of the size of the dominance-frontier sets, whereas our formulation grows with
the size of the cfg.

Larger Graphs

We believe that the sizeable improvement in running time only tells part of the story. While the advantage in
asymptotic complexity of Lengauer-Tarjan should give it better running times over the iterative algorithm,
we need to ask the question of when the asymptotic advantage takes over. To answer this, we built huge
graphs which, as we will show, provide an insight into the value of the iterative algorithm.

Building Random Graphs

To obtain appropriate cfgs, we had to design a mechanism that generates large random cfgs.4 Since
we were primarily interested in understanding the behavior of the algorithms on programs, as opposed to
arbitrary graphs, we measured the characteristics of the cfgs of the programs in our test suite and used
these statistics to generate random graphs with similar properties.

Our test suite contains, in total, 11,644 blocks and 16,494 edges. Eleven percent of the edges are back
edges. Sixty-one percent of the blocks have only one outgoing edge, and fifty-five percent of the blocks have
only one incoming edge. Blocks with two incoming or outgoing edges were thirty-four percent and forty-three
percent of the total, respectively. The remaining incoming and outgoing edges were grouped in sets of three
or more per block.

Using these measurements, we built a program that performs a preorder walk over an imaginary graph.
As the “walk” progresses, it instantiates nodes as it reaches them. It starts by creating a single, initial block,
n0. It randomly determines the number of edges coming out of that block, based on the statistics from our
test suite, and instantiates those edges. Next, it walks those edges in a recursive depth-first search. Each

4Note that this analysis concerns only the structure of the cfg, so the basic blocks in our random graphs contain nothing except
branching operations.

11

© 2010 Stephen Chong, Harvard University
20

•Computing static single assignment form

•Computing control dependencies

•Identify (natural) loops in CFG
•All nodes X dominated by entry node H, where X can

reach H, and there is exactly one back edge (head
dominates tail) in loop

Why Are Dominators Useful?

© 2010 Stephen Chong, Harvard University
21

•We need a Φ function at node Z if
•Two non-null CFG paths that both define v
•Such that both paths start at two distinct nodes and

end at Z

Where do Φ Functions Go?

v := 3 v := 4

Z

© 2010 Stephen Chong, Harvard University
22

Dominance Frontiers: Illustration

XDominated by X

Dominance Frontier of X

X

P

Y

© 2010 Stephen Chong, Harvard University
23

•Y is in the dominance frontier of X iff
•There exists a path from X to Exit through Y such that

Y is the first node not strictly dominated by X
•Equivalently:

•Y is the first node where a path from X to Exit and a
path from Entry to Exit (not going through X) meet

•Equivalently:
•X dominates a predecessor of Y
•X does not strictly dominate Y

Dominance Frontiers

© 2010 Stephen Chong, Harvard University
24

DF(1) =

DF(2) =

DF(3) =

DF(4) =

DF(5) =

DF(6) =

DF(7) =

Example

1

2

3 4 5

6

7

Entry

Exit

{1}

{7}

{6}

{6}

{1, 7}

{7}

∅

© 2010 Stephen Chong, Harvard University
25

•Step 1a: Compute the dominance frontier

•Step 1b: Use dominance frontier to place Φ
nodes

•Step 2: Rename variables so only one definition
per name

Computing SSA Form

© 2010 Stephen Chong, Harvard University
26

•Let S be the set of nodes that define v
•Need to place Φ function in every node in DF(S)

•Recall, those are all the places where the definition of
v in S and some other definition of v may meet

•But a Φ function adds another definition of v!
•v := Φ(v, ..., v)

•So, iterate
•DF1 = DF(S)

•DFi+1 = DF(S ∪ DFi)

Step 1b: Placing Φ Functions for v

© 2010 Stephen Chong, Harvard University
27

Example

1

2

3 4

5 6 7 89 10

11

Entry

1: x := 3

2

3

5: x := 4 6

9

11

4

7 8: x := 5

10

Exit

= need Φ function

© 2010 Stephen Chong, Harvard University
28

•Top-down (DFS) traversal of dominator tree
•At definition of v, push new # for v onto the stack
•When leaving node with definition of v, pop stack
•Intuitively: Works because there’s a Φ function, hence

a new definition of v, just beyond region dominated by
definition

•Can be done in O(E+|DF|) time
•Linear in size of CFG with Φ functions

Step 2: Renaming Variables

© 2010 Stephen Chong, Harvard University
29

•Basic idea: Φ represents facts that value of join
may come from different paths
•So just set along each possible path

Eliminating Φ Functions

w2 := y1 + z1 w3 := w1 + y3

w4 := Φ(w2, w3)

z

w2 := y1 + z1 w3 := w1 + y3

w4 := w2 w4 := w3

z

© 2010 Stephen Chong, Harvard University
30

•Copies performed at Φ fns may not be useful
•Joined value may not be used later in the program
• (So why leave it in?)

•Use dead code elimination to kill useless Φs

•Subsequent register allocation will map the (now
very large) number of variables onto the actual
set of machine register

Eliminating Φ Functions in Practice

© 2010 Stephen Chong, Harvard University
31

•Claimed:
•SSA grows linearly with size of program
•No correlation between ratio and program size

Efficiency in Practice

484 . Ron Cytron et al.

Table 1. Summary Statistics of Our Experiment

Statements

in all

Package name procedures

EISPACK 7,034

FL052 2,054

SPICE 14,093

Totals 23,181

Statements

per procedure

Min Median Max Description

22 89 327 Dense matrix eigenvectors and values

9 54 351 Flow past an airfoil

8 43 753 Circuit simulation

8 55 753 221 FORTRAN procedures

itself a structured control flow graph for some program P’. For all Y in

RCFG, DF(Y) contains at most two nodes by Theorem 4. By Corollary 1, Y

is then control dependent on at most two nodes. !

Unfortunately, these linearity results do not hold for all program struc-

tures. In particular, consider the nest of repeat-until loops illustrated in

Figure 5. For each loop, the dominance frontier of the entrance to that loop

includes each of the entrances to surrounding loops. For n nested loops, this

leads to a dominance frontier mapping whose total size is 0(nz), yet each

variable needs at most 0(n) d-functions. Most of the dominance frontier

mapping is not actually used in placing @functions, so it seems that the

computation of dominance frontiers might take excessive time with respect to

the resulting number of actual @functions. We therefore wish to measure the

number of dominance frontier nodes as a function of program size over a

diverse set of programs.

We implemented our algorithms for constructing dominance frontiers and

placing ~-functions in the PTRAN system, which already offered the required

local data flow and control flow analysis [2]. We ran these algorithms on 61

library procedures from EISPACK [46] and 160 procedures from two “Perfect”

[391 benchmarks. Some summary statistics of these procedures are shown in

Table I. These FORTRAN programs were chosen because they contain irre-

ducible intervals and other unstructured constructs. As the plot in Figure 20

shows, the size of the dominance frontier mapping appears to vary linearly

with program size. The ratio of these sizes ranged from 0.6 (the Entry node

has an empty dominance frontier) to 2.1.

For the programs we tested, the plot in Figure 21 shows that the number of

~-functions is also linear in the size of the original program. The ratio of

these sizes ranged from 0.5 to 5.2. The largest ratio occurred for a procedure

of only 12 statements, and 95 percent of the procedures had a ratio under 2.3.

All but one of the remaining procedures contained fewer than 60 statements.

Finally, the plot in Figure 22 shows that the size of the control dependence

graph is linear in the size of the original program. The ratio of these sizes

ranged from O.6 to 2.4, which is very close to the range of ratios for

dominance frontiers.

The ratio avrgDF (defined by (7) in Section 5.1) measures the cost of

placing ~-functions relative to the number of assignments in the resulting

ACM TransactIons on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991

Cytron, Ferrante, Rosen, Wegman, and Zadeck, Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph, TOPLAS 13(4), Oct 1991.

http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320

© 2010 Stephen Chong, Harvard University

Efficiency in Practice (cont’d)

•Convincing?

32

1600-

1500-

140k

1300-

1200-

11oo-

1000--

900 —

800 —

700 — *

600 —
*** *

500 — ***** *
**

400 —
*

300 —

200 — *:*@*?:*:: ‘** *
*

loo—

0
I I I I I 6~o ~~oo

o 100 200 300 400 500

Static Single Assignment Form and the Control Dependence Graph . 485

*

*

*

*
* *

Fig. 20. Size of dominance frontier mapping versus number of program statements.

1300

!

1200 *

110

100

900
*

800
*

700
*

600 *

*

*

*

*

*
*

*
500 — ** *

‘e ***
400 — **

****:*

300 — *** * *
*

*
*

loo—

0
I I I I I I --&-Too

0 100 200 300 400 500 600

Fig, 21. Number of rj-functions versus number of program statements

SSA form program. This ratio varied from 1 to 2, with median 1.3. There was

no correlation with program size.

We also measured the expansion A,., / A.... in the number of assignments

when translating to SSA form. This ratio varied from 1.3 to 3.8. Fina”lly, we

measured the expansion MtOt / MO,,~ in the number of mentions (assignments

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

© 2010 Stephen Chong, Harvard University
33

•Need to handle array accesses
•A[i] := A[j] + B[k]

•Problem: How do we know whether A[i], A[j],
and B[k] are all distinct?
•Could have A=B, e.g., foo(int A[], int B[]){} ... foo(a,a)
•Could have i=j

•History: significant research on determining
array dependencies, for parallelizing compilers

Arrays

© 2010 Stephen Chong, Harvard University
34

•One possibility: make arrays immutable
•Then don’t need to worry about updates to them

•Update(A, j, V) makes a copy of A
•Then try to collapse unnecessary copies

•Convincing?

Arrays (cont’d)

* := A(i);
A(j) := V;
* := A(k) + 2;

* := A(i);
A := Update(A, j, V);
T := A(k);
* := T + 2;

© 2010 Stephen Chong, Harvard University
35

•Can treat structures as sets of variables
or as an array
•with field name like an index into array

•Problems?

Structures

* := A.f;
A.g := V;
* := A.f + A.g

* := X; // X = A.f
Y := V; // Y = A.g
* := X + Y

© 2010 Stephen Chong, Harvard University
36

•For each statement S, let
•MustMod(S) = variables always modified by S
•MayMod(S) = variables sometimes modified by S
• So if v∉MayMod(S), then S must not modify v

•MayUse(S) = variables sometimes used by S
•Then assume that statement S

•writes to MayMod(S)
•reads MayUse(S) ∪ (MayMod(S) - MustMod(S))

•Convincing? We’ll talk more about pointers
later in the course

Pointers

© 2010 Stephen Chong, Harvard University
37

•Y is control dependent on X if whether Y is
executed depends on a test at X

•A, B, and C are control dependent on X

Control Dependence

X

BA

C

© 2010 Stephen Chong, Harvard University
38

•Y postdominates X if every path from X to Exit
contains Y
•I.e., if X is executed, then Y is always executed

•Then, Y is control dependent on X if
•There is a path X→Z1→···→Zn→Y such that Y

postdominates all Zi and

•Y does not postdominate X
•I.e.,there is some path from X on which Y is always

executed, and there is some path on which Y is not
executed

Postdominators and Control Dependence

© 2010 Stephen Chong, Harvard University
39

•Postdominators are just dominators on the CFG
with the edges reversed

•To see what Y is control dependent on, we want
to find the Xs such that in the reverse CFG
•There is a path X←Z1←···←Zn←Y where

• for all i, Y≥Zi and

•Y>X

•I.e., we want to find DF(Y) in the reverse CFG!

Dominance Frontiers, Take 2

