HARVARD

School of Engineering and Applied Sciences

Pointer Analysis

CS252r Spring 2011

Today: pointer analysis

- •What is it? Why? Different dimensions
- Andersen analysis
- Steensgard analysis
- One-level flow
- Pointer analysis for Java

Pointer analysis

- What memory locations can a pointer expression refer to?
- Alias analysis: When do two pointer expressions refer to the same storage location?
- E.g., int x; p = &x; q = p;
 *p and *q alias, as do x and *p, and x and *q

Aliases

- Aliasing can arise due to
 - Pointers
 - e.g., int *p, i; p = &i;
 - Call-by-reference
 - void m(Object a, Object b) { ... } m(x,x); // a and b alias in body of m m(x,y); // y and b alias in body of m
 - Array indexing
 - int i,j,a[100];
 i = j; // a[i] and a[j] alias

Why do we want to know?

- Pointer analysis tells us what memory locations code uses or modifies
- Useful in many analyses
- E.g., Available expressions
 - *p = a + b; y = a + b;
 - If *p aliases a or b, then second computation of a+b is not redundent
- E.g., Constant propagation
 - x = 3; *p = 4; y = x;
 - Is y constant? If *p and x do not alias each other, then yes. If *p and x always alias each other, then yes. If *p and x sometimes alias each other, then no.

© 2010 Stephen Chong, Harvard University

Some dimensions of pointer analysis

- Intraprocedural / interprocedural
- Flow-sensitive / flow-insensitive
- Context-sensitive / context-insensitive

Definiteness

- May versus must
- Heap modeling
- Representation

Flow-sensitive vs flow-insensitive

- Flow-sensitive pointer analysis computes for each program point what memory locations pointer expressions may refer to
- Flow-insensitive pointer analysis computes what memory locations pointer expressions may refer to, at any time in program execution
- Flow-sensitive pointer analysis is (traditionally) too expensive to perform for whole program
 - Flow-insensitive pointer analyses typically used for whole program analyses

Flow-sensitive pointer analysis is hard

Alias Mechanism	Intraprocedural May Alias	Intraprocedural Must Alias	Interprocedural May Alias	Interprocedural Must Alias
Reference Formals, No Pointers, No Structures		-	Polynomial[1, 5]	Polynomial[1, 5]
Single level pointers, No Reference Formals, No Structures	Polynomial	Polynomial	Polynomial	Polynomial
Single level pointers, Reference Formals, No Pointer Reference Formals, No Structures			Polynomial	Polynomial
Multiple level pointers, No Reference Formals, No Structures	$\mathcal{NP} ext{-hard}$	$\begin{array}{c} \text{Complement} \\ \text{is } \mathcal{NP}\text{-hard} \end{array}$	NP-hard	$\begin{array}{c} \text{Complement} \\ \text{is } \mathcal{NP}\text{-hard} \end{array}$
Single level pointers, Pointer Reference Formals, No Structures			NP-hard	$\begin{array}{c} \text{Complement} \\ \text{is } \mathcal{NP}\text{-hard} \end{array}$
Single level pointers, Structures, No Reference Formals	$\mathcal{NP} ext{-hard}[14]$	$\begin{array}{c} \text{Complement} \\ \text{is } \mathcal{NP}\text{-hard} \end{array}$	NP-hard[14]	$\begin{array}{c} \text{Complement} \\ \text{is } \mathcal{NP}\text{-hard} \end{array}$

Table 1: Alias problem decomposition and classification

Pointer-induced Aliasing: A Problem Classification, Landi and Ryder, POPL 1990

Context sensitivity

- Also difficult, but success in scaling up to hundreds of thousands LOC
 - BDDs see Whaley and Lam PLDI 2004
 - Doop, Bravenboer and Smaragdakis OOPSLA 2009 (see Thurs)

Definiteness

- May analysis: aliasing that may occur during execution
 - (cf. **must-not alias**, although often has different representation)
- Must analysis: aliasing that must occur during execution
- Sometimes both are useful
 - E.g., Consider liveness analysis for *p = *q + 4;
 - If *p must alias x, then x in kill set for statement
 - If *q may alias y, then y in gen set for statement

© 2010 Stephen Chong, Harvard University

Representation

- Possible representations
 - Points-to pairs: first element points to the second
 - e.g., $(p \rightarrow b)$, $(q \rightarrow b)$ *p and b alias, as do *q and b, as do *p and *q
 - Pairs that refer to the same memory
 - e.g., (*p,b), (*q,b), (*p,*q), (**r, b)
 - General, may be less concise than points-to pairs
 - Equivalence sets: sets that are aliases
 - e.g., {*p,*q,b}

Modeling memory locations

- •We want to describe what memory locations a pointer expression may refer to
- How do we model memory locations?
 - For global variables, no trouble, use a single "node"
 - For local variables, use a single "node" per context
 - i.e., just one node if context insensitive
 - For dynamically allocated memory
 - Problem: Potentially unbounded locations created at runtime
 - Need to model locations with some finite abstraction

Modeling dynamic memory locations

• Common solution:

- For each allocation statement, use one node per context
- (Note: could choose context-sensitivity for modeling heap locations to be less precise than context-sensitivity for modeling procedure invocation)

• Other solutions:

- One node for entire heap
- One node for each type
- Nodes based on analysis of "shape" of heap
 - More on this in later lecture

Problem statement

- Let's consider flow-insensitive may pointer analysis
- Assume program consists of statements of form
 - p = &a (address of, includes allocation statements)
 - p = q
 - *p = q
 - p = *q
- Assume pointers $p,q \in P$ and address-taken variables $a,b \in A$ are disjoint
 - Can transform program to make this true
 - For any variable v for which this isn't true, add statement $p_v = \&a_v$, and replace v with $*p_v$
- Want to compute relation pts : $P \cup A \rightarrow 2^A$
 - Essentially points to pairs

Andersen-style pointer analysis

• View pointer assignments as **subset constraints**

Use constraints to propagate points-to information

Constraint type	Assignment	Constraint	Meaning
Base	a = &b	a ⊇ {b}	$loc(b) \in pts(a)$
Simple	a = b	a ⊇ b	pts(a) ⊇ pts(b)
Complex	a = *b	a ⊇ *b	$\forall v \in pts(b). pts(a) \supseteq pts(v)$
Complex	*a = b	*a ⊇ b	$\forall v \in pts(a). pts(v) \supseteq pts(b)$

Andersen-style pointer analysis

• Can solve these constraints directly on sets pts(p)

- $p = \&a; \quad p \supseteq \{a\}$
- q = p; $q \supseteq p$
- $p = \&b; \quad p \supseteq \{b\}$
- r = p; $r \supseteq p$
 - $pts(p) = \{a, b\}$ $pts(q) = \{a, b\}$ $pts(r) = \{a, b\}$ $pts(r) = \{a, b\}$ $pts(r) = \{a, b\}$ $pts(r) = \{a, b\}$

© 2010 Stephen Chong, Harvard University

Another example

$$p \supseteq \{a\}$$

$$q \supseteq \{b\}$$
*p \supseteq q
$$r \supseteq \{c\}$$

$$s \supseteq p$$

$$t \supseteq *p$$
*s \supseteq r

$$pts(p) = \{a\}$$

$$pts(q) = \{b\}$$

$$pts(r) = \{c\}$$

$$pts(s) = \{\varnothing\}$$

$$pts(t) = \{\clubsuit\}$$

$$pts(a) = {a}c$$

$$pts(b) = \emptyset$$

$$ots(c) = \emptyset$$

How precise?

 $pts(p) = \{a\}$ $pts(q) = \{b\}$ $pts(r) = \{c\}$ $pts(s) = \{a\}$ $pts(t) = \{b, c\}$ $pts(a) = \{b,c\}$ $pts(b) = \emptyset$ pts(c) =Ø

Andersen-style as graph closure

- Can be cast as a graph closure problem
- One node for each pts(p), pts(a)

Assgmt.	Constraint	Meaning	Edge
a = &b	a ⊇ {b}	b ∈ pts(a)	no edge
a = b	a ⊇ b	pts(a) ⊇ pts(b)	b → a
a = *b	a ⊇ *b	$\forall v \in pts(b). pts(a) \supseteq pts(v)$	no edge
*a = b	*a ⊇ b	$\forall v \in pts(a). pts(v) \supseteq pts(b)$	no edge

- Each node has an associated points-to set
- Compute transitive closure of graph, and add edges according to complex constraints

Workqueue algorithm

- Initialize graph and points to sets using base and simple constraints
- Let $W = \{ v \mid pts(v) \neq \emptyset \}$ (all nodes with non-empty points to sets)
- While W not empty
 - $v \leftarrow$ select from W
 - for each $a \in pts(v)$ do
 - for each constraint $p \supseteq^* v$
 - add edge $a \rightarrow p$, and add a to W if edge is new
 - for each constraint $*v \supseteq q$
 - ▶ add edge $q \rightarrow a$, and add q to W if edge is new
 - for each edge $v \rightarrow q$ do
 - $pts(q) = pts(q) \cup pts(v)$, and add q to W if pts(q) changed

Same example, as graph

$$p = \&a$$
 $p ⊇ \{a\}$
 $q = \&b$
 $q ⊇ \{b\}$

 * $p = q$;
 * $p ⊇ q$
 $r = \&c$;
 $r ⊇ \{c\}$
 $s = p$;
 $s ⊇ p$
 $t = *p$;
 $s ⊇ p$

 * $s = r$;
 $*s ⊇ r$

W: pqrsa

Same example, as graph

$$p \supseteq \{a\}$$
$$q \supseteq \{b\}$$
$$*p \supseteq q$$
$$r \supseteq \{c\}$$
$$s \supseteq p$$
$$t \supseteq *p$$
$$*s \supseteq r$$

Cycle elimination

- Andersen-style pointer analysis is O(n³), for number of nodes in graph (Actually, quadratic in practice [Sridharan and Fink, SAS 09])
 - Improve scalability by reducing n
- Cycle elimination
 - Important optimization for Andersen-style analysis
 - Detect strongly connected components in points-to graph, collapse to single node
 - Why? All nodes in an SCC will have same points-to relation at end of analysis
 - How to detect cycles efficiently?
 - Some reduction can be done statically, some on-the-fly as new edges added
 - See The Ant and the Grasshopper: Fast and Accurate Pointer Analysis for Millions of Lines of Code, Hardekopf and Lin, PLDI 2007

Steensgaard-style analysis

- Also a constraint-based analysis
- Uses equality constraints instead of subset constraints
 - Originally phrased as a type-inference problem
- Less precise than Andersen-style, thus more scalable

Constraint type	Assignment	Constraint	Meaning
Base	a = &b	a ⊇ {b}	$loc(b) \in pts(a)$
Simple	a = b	a = b	pts(a) = pts(b)
Complex	a = *b	a = *b	$\forall v \in pts(b). pts(a) = pts(v)$
Complex	*a = b	*a = b	$\forall v \in pts(a). pts(v) = pts(b)$

© 2010 Stephen Chong, Harvard University

Implementing Steensgaard-style analysis

- Can be efficiently implemented using Union-Find algorithm
 - Nearly linear time: $O(n\alpha(n))$
 - Each statement needs to be processed just once

One-level flow

- Unification-based Pointer Analysis with Directional Assignment, Das, PLDI 2000
- Observation: common use of pointers in C programs is to pass the address of composite objects or updateable arguments; multi-level use of pointers not as common
- Uses unification (like Steensgaard) but avoids unification of top-level pointers (pointers that are not themselves pointed to by other pointers)
 - i.e., Use Andersen's rules at top level, Steensgaard's elsewhere

Figure 1: Two programs that illustrate the difference between the algorithms of Steensgaard and Andersen. The program in (a) above represents the common case in C programs, while the program in (b) above is a variant of the program without procedure calls. Figures (c), (d) and (e) above show the points-to graphs computed by Steensgaard's algorithm, Andersen's algorithm, and our one level flow algorithm, respectively, for the program in (b) above. The edge labeled with * is a flow edge.

- Precision close to Andersen's, scalability close to Steensgaard's
 - At least, for programs where observation holds.
- Doesn't hold in Java, C++, ...

© 2010 Stephen Chong, Harvard University

Pointer analysis in Java

- Different languages use pointers differently
- Scaling Java Points-To Anlaysis Using SPARK Lhotak & Hendren CC 2003
 - Most C programs have many more occurrences of the address-of (&) operator than dynamic allocation
 - & creates stack-directed pointers; malloc creates heap-directed pointers
 - Java allows no stack-directed pointers, many more dynamic allocaiton sites than similar-sized C programs
 - Java strongly typed, limits set of objects a pointer can point to
 - Can improve precision
 - Call graph in Java depends on pointer analysis, and vice-versa (in context sensitive pointer analysis)
 - Dereference in Java only through field store and load
 - And more...
 - Larger libraries in Java, more entry points in Java, can't alias fields in Java, ...

Object-sensitive pointer analysis

- Milanova, Rountev, and Ryder. *Parameterized object sensitivity for points-to analysis for Java*. ACM Trans. Softw. Eng. Methodol., 2005.
 - Context-sensitive interprocedural pointer analysis
 - For context, use stack of receiver objects
 - (More next week?)
- Lhotak and Hendren. *Context-sensitive points-to analysis: is it worth it*? CC 06
 - Object-sensitive pointer analysis more precise than call-stack contexts for Java
 - Likely to scale better

Closing remarks

- Pointer analysis: important, challenging, active area
 - Many clients, including call-graph construction, live-variable analysis, constant propagation, ...
 - Inclusion-based analyses (aka Andersen-style)
 - Equality-based analyses (aka Steensgaard-style)
- Requires a tradeoff between precision and efficiency
 - Ultimately an empirical question. Which clients, which code bases?
- Recent results promising
 - Scalable flow-sensitivity (see Thurs, and Hardekopf and Lin, POPL 09)
 - Context-sensitive Andersen-style analyses seem scalable (See Thurs)
- Other issues/questions (see Hind, PASTE'01)
 - How to measure/compare pointer analyses? Different clients have different needs
 - Demand-driven analyses? May be more precise/scalable...