
Pointer Analysis

CS252r Spring 2011

© 2010 Stephen Chong, Harvard University

Today: pointer analysis

•What is it? Why? Different dimensions
•Andersen analysis
•Steensgard analysis
•One-level flow
•Pointer analysis for Java

2

© 2010 Stephen Chong, Harvard University

Pointer analysis

•What memory locations can a pointer expression
refer to?

•Alias analysis: When do two pointer expressions
refer to the same storage location?

•E.g.,
 int x;
 p = &x;
 q = p;
•*p and *q alias,

as do x and *p, and x and *q
3

© 2010 Stephen Chong, Harvard University

Aliases

•Aliasing can arise due to
•Pointers
• e.g., int *p, i; p = &i;

•Call-by-reference
• void m(Object a, Object b) { … }
m(x,x); // a and b alias in body of m
m(x,y); // y and b alias in body of m

•Array indexing
• int i,j,a[100];
i = j; // a[i] and a[j] alias

4

© 2010 Stephen Chong, Harvard University

Why do we want to know?

• Pointer analysis tells us what memory locations code uses
or modifies

• Useful in many analyses

• E.g., Available expressions
• *p = a + b;

 y = a + b;

• If *p aliases a or b, then second computation of a+b is not redundent

• E.g., Constant propagation
• x = 3; *p = 4; y = x;

• Is y constant? If *p and x do not alias each other, then yes. If *p and x
always alias each other, then yes. If *p and x sometimes alias each
other, then no.

5

© 2010 Stephen Chong, Harvard University

Some dimensions of pointer analysis

•Intraprocedural / interprocedural
•Flow-sensitive / flow-insensitive
•Context-sensitive / context-insensitive
•Definiteness

•May versus must

•Heap modeling
•Representation

6

© 2010 Stephen Chong, Harvard University

Flow-sensitive vs flow-insensitive

• Flow-sensitive pointer analysis computes for each program
point what memory locations pointer expressions may refer to

• Flow-insensitive pointer analysis computes what memory
locations pointer expressions may refer to, at any time in
program execution

• Flow-sensitive pointer analysis is (traditionally) too expensive
to perform for whole program

•Flow-insensitive pointer analyses typically used for whole
program analyses

7

© 2010 Stephen Chong, Harvard University

Flow-sensitive pointer analysis is
hard

8

Intraprocedural Intraprocedural Interprocedural Interprocedural

Alias Mechanism May Alias Must Alias May Alias Must Alias

Reference Formals, Polynomial[l, 5] Polynomial [l, 5]

No Pointers,
No Structures
Single level pointers, Polynomial Polynomial Polynomial Polynomial

No Reference Formals,
No Structures

Single level pointers, Polynomial Polynomial

Reference Formals,
No Pointer Reference Formals,
No Structures
Multiple level pointers, Af~-hard Complement ALP-hard Complement

No Reference Formals, is AfP-hard
No Structures

is hfP-hard

Single level pointers, hfP-hard Complement

Pointer Reference Formals, is N?-hard

No Structures
Single level pointers, Af’P-hard[14] Complement NP-hard[14] Complement

Structures, is Afp-hard is hfp-hard

No Reference Formals

Table 1: Alias problem decomposition and classification

some path to t and <*z, *y> also holds on some path to these two problems are, surprisingly, fairly disparate).

t. If both <p, q> and <*x, *Y> occur on the same path,

then <*q, *y> holds at t;therefore, to be safe we must

conclude this, even though it may not be true. Thus, to

solve for alias pairs precisely, we need information about

multiple alias pairs on a path. Unfortunately, this prop-

ert y generalizes; that is, to determine precisely if there

is a single path on which a set of i alias pairs hold, you

need information about sets of more than i alias pairs.

Since it is hf~-hard even in the presence of single level

pointers to determine if there is an intraprocedural path

on which a set of O(n) (n, the number of variables in

a program) aliases hold [13], some approximate ion must

occur.

All the A.fP-hardness proofs are variations of proofs

by Myers [18]; a similar, although independently discov-

ered, proof for recursive structure aliasing (as indicated

in Table 1) was developed by Larus [14]. All problems

which are categorized as polynomial are corollaries of

proofs that the Interprocedural May Alias and Interpro-

cedural Must Alias problems in the presence of single

level pointers are polynomially solvable (the proofs for

The key ideas used in the proof that the Interprocedural

May Alias problem in the presence of single level point-

ers is in P are presented in Section 3. The proof that the

Intraprocedural May Alias problem is NP-hard is given

in Section 4. This proof is representative of all those for

hf~-hard problems. Other proofs are omitted but can

be found in [13].

3 Inteqxocedural May Alias
with Single Level Pointers

The main difficulty in solving Interprocedural May Alias

is to determine how to restrict information propagation

only to realizable paths. To accomplish this, we solve

data flow problems for a procedure assuming an alias

condition on entry; that is, we solve data flow condition.

ally based on some assumption at procedure entry. This

is somewhat reminiscent of Lomet’s approach to solving

data flow problems under different aliasing conditions

[16] and Marlowe’s notion of a representative data flow

problem within a region[17].

We use a two step algorithm to solve for aliases. In

the first step, we solve for conditional aliases, that is,

Pointer-induced Aliasing: A Problem Classification, Landi and Ryder, POPL 1990

© 2010 Stephen Chong, Harvard University

Context sensitivity

•Also difficult, but success in scaling up to
hundreds of thousands LOC
•BDDs see Whaley and Lam PLDI 2004
•Doop, Bravenboer and Smaragdakis OOPSLA 2009

(see Thurs)

9

© 2010 Stephen Chong, Harvard University

Definiteness

•May analysis: aliasing that may occur during
execution
•(cf. must-not alias, although often has different

representation)

•Must analysis: aliasing that must occur during
execution

•Sometimes both are useful
•E.g., Consider liveness analysis for *p = *q + 4;
•If *p must alias x, then x in kill set for statement
•If *q may alias y, then y in gen set for statement

10

© 2010 Stephen Chong, Harvard University

Representation

•Possible representations
•Points-to pairs: first element points to the second
• e.g., (p → b), (q → b)

*p and b alias, as do *q and b, as do *p and *q

•Pairs that refer to the same memory
• e.g., (*p,b), (*q,b), (*p,*q), (**r, b)

• General, may be less concise than points-to pairs

•Equivalence sets: sets that are aliases
• e.g., {*p,*q,b}

11

© 2010 Stephen Chong, Harvard University

Modeling memory locations

•We want to describe what memory locations a
pointer expression may refer to

•How do we model memory locations?
•For global variables, no trouble, use a single “node”
•For local variables, use a single “node” per context
• i.e., just one node if context insensitive

•For dynamically allocated memory
• Problem: Potentially unbounded locations created at
runtime
•Need to model locations with some finite abstraction

12

© 2010 Stephen Chong, Harvard University

Modeling dynamic memory locations

•Common solution:
•For each allocation statement, use one node per context
•(Note: could choose context-sensitivity for modeling heap

locations to be less precise than context-sensitivity for
modeling procedure invocation)

•Other solutions:
•One node for entire heap

•One node for each type
•Nodes based on analysis of “shape” of heap
•More on this in later lecture

13

© 2010 Stephen Chong, Harvard University

Problem statement

• Let’s consider flow-insensitive may pointer analysis

• Assume program consists of statements of form
• p = &a (address of, includes allocation statements)

• p = q

• *p = q

• p = *q

• Assume pointers p,q∈P and address-taken variables a,b∈A are disjoint

• Can transform program to make this true

• For any variable v for which this isn’t true, add statement pv = &av, and
replace v with *pv

• Want to compute relation pts : P∪A → 2A

• Essentially points to pairs

14

© 2010 Stephen Chong, Harvard University

Andersen-style pointer analysis

•View pointer assignments as subset constraints
•Use constraints to propagate points-to

information

15

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a ⊇ b pts(a) ⊇ pts(b)

Complex a = *b a ⊇ *b ∀v∈pts(b). pts(a) ⊇ pts(v)

Complex *a = b *a ⊇ b ∀v∈pts(a). pts(v) ⊇ pts(b)

© 2010 Stephen Chong, Harvard University

Andersen-style pointer analysis

•Can solve these constraints directly on sets pts(p)

16

p = &a;
q = p;
p = &b;
r = p;

p ⊇ {a}
q ⊇ p
p ⊇ {b}
r ⊇ p

pts(p) =
pts(q) =

pts(r) =

∅

∅

{a, b}
{a, b}

{a, b}

pts(a) = ∅
pts(b) = ∅

© 2010 Stephen Chong, Harvard University

Another example

17

p = &a
q = &b
*p = q;
r = &c;
s = p;
t = *p;
*s = r;

p ⊇ {a}
q ⊇ {b}
*p ⊇ q
r ⊇ {c}
s ⊇ p
t ⊇ *p
*s ⊇ r

pts(p) =

pts(q) =

pts(r) =

∅

{a}

pts(s) =

pts(t) =

{b}

{c}

∅

{b}{b,c}pts(a) =

pts(b) =

pts(c) =

∅

∅

∅

{a}

{b}{b,c}

© 2010 Stephen Chong, Harvard University

How precise?

18

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

pts(p) =

pts(q) =

pts(r) =

{a}

pts(s) =

pts(t) =

{b}

{c}

{b,c}pts(a) =

pts(b) =

pts(c) =

∅

∅

{a}

{b,c}

p a
q b

r c
s
t

p a
q b

r c
s

p a
q b

r c

p a
q b

p a
q b

p a

p a
q b

r c
s
t

© 2010 Stephen Chong, Harvard University

Andersen-style as graph closure

•Can be cast as a graph closure problem

•One node for each pts(p), pts(a)

•Each node has an associated points-to set

•Compute transitive closure of graph, and add edges
according to complex constraints

19

Assgmt. Constraint Meaning Edge

a = &b a ⊇ {b} b ∈ pts(a) no edge

a = b a ⊇ b pts(a) ⊇ pts(b) b → a

a = *b a ⊇ *b ∀v∈pts(b). pts(a) ⊇ pts(v) no edge

*a = b *a ⊇ b ∀v∈pts(a). pts(v) ⊇ pts(b) no edge

© 2010 Stephen Chong, Harvard University

Workqueue algorithm

• Initialize graph and points to sets using base and simple constraints

• Let W = { v | pts(v) ≠∅ } (all nodes with non-empty points to sets)

• While W not empty

•v ← select from W

•for each a ∈ pts(v) do

• for each constraint p ⊇*v

‣add edge a→ p, and add a to W if edge is new

• for each constraint *v ⊇ q

‣add edge q→a, and add q to W if edge is new

•for each edge v→q do

• pts(q) = pts(q) ∪ pts(v), and add q to W if pts(q) changed

20

© 2010 Stephen Chong, Harvard University

Same example, as graph

21

p = &a
q = &b
*p = q;
r = &c;
s = p;
t = *p;
*s = r;

p ⊇ {a}
q ⊇ {b}
*p ⊇ q
r ⊇ {c}
s ⊇ p
t ⊇ *p
*s ⊇ r

p

q
r

s

t

a

b

c
{a}

{b}

{c}

{a}

W: p q r s

{b}

a

© 2010 Stephen Chong, Harvard University

Same example, as graph

22

p = &a
q = &b
*p = q;
r = &c;
s = p;
t = *p;
*s = r;

p ⊇ {a}
q ⊇ {b}
*p ⊇ q
r ⊇ {c}
s ⊇ p
t ⊇ *p
*s ⊇ r

p

q
r

s

t

a

b

c
{a}

{b}

{c}

{a}

{b,c}

{b,c}

© 2010 Stephen Chong, Harvard University

Cycle elimination

•Andersen-style pointer analysis is O(n3), for number of
nodes in graph (Actually, quadratic in practice [Sridharan and Fink,
SAS 09])

• Improve scalability by reducing n

•Cycle elimination
•Important optimization for Andersen-style analysis

•Detect strongly connected components in points-to graph, collapse
to single node
• Why? All nodes in an SCC will have same points-to relation at end of analysis

•How to detect cycles efficiently?
• Some reduction can be done statically, some on-the-fly as new edges added

• See The Ant and the Grasshopper: Fast and Accurate Pointer Analysis for Millions
of Lines of Code, Hardekopf and Lin, PLDI 2007

23

© 2010 Stephen Chong, Harvard University

Steensgaard-style analysis

•Also a constraint-based analysis
•Uses equality constraints instead of subset constraints

•Originally phrased as a type-inference problem

•Less precise than Andersen-style, thus more scalable

24

Constraint type Assignment Constraint Meaning

Base a = &b a ⊇ {b} loc(b) ∈ pts(a)

Simple a = b a = b pts(a) = pts(b)

Complex a = *b a = *b ∀v∈pts(b). pts(a) = pts(v)

Complex *a = b *a = b ∀v∈pts(a). pts(v) = pts(b)

© 2010 Stephen Chong, Harvard University

Implementing Steensgaard-style analysis

•Can be efficiently implemented using Union-
Find algorithm
•Nearly linear time: O(nα(n))
•Each statement needs to be processed just once

25

© 2010 Stephen Chong, Harvard University

One-level flow

•Unification-based Pointer Analysis with Directional
Assignment, Das, PLDI 2000

•Observation: common use of pointers in C programs is
to pass the address of composite objects or updateable
arguments; multi-level use of pointers not as common

•Uses unification (like Steensgaard) but avoids unification
of top-level pointers (pointers that are not themselves
pointed to by other pointers)
•i.e., Use Andersen’s rules at top level, Steensgaard’s elsewhere

26

© 2010 Stephen Chong, Harvard University

One-level flow

• Precision close to Andersen’s, scalability close to Steensgaard’s
• At least, for programs where observation holds.

• Doesn’t hold in Java, C++, ...
27

36

© 2010 Stephen Chong, Harvard University

Pointer analysis in Java

• Different languages use pointers differently

• Scaling Java Points-To Anlaysis Using SPARK Lhotak & Hendren CC 2003
• Most C programs have many more occurrences of the address-of (&) operator than

dynamic allocation
• & creates stack-directed pointers; malloc creates heap-directed pointers

• Java allows no stack-directed pointers, many more dynamic allocaiton sites than
similar-sized C programs

• Java strongly typed, limits set of objects a pointer can point to
• Can improve precision

• Call graph in Java depends on pointer analysis, and vice-versa (in context sensitive
pointer analysis)

• Dereference in Java only through field store and load

• And more…
• Larger libraries in Java, more entry points in Java, can’t alias fields in Java, ...

28

© 2010 Stephen Chong, Harvard University

Object-sensitive pointer analysis

• Milanova, Rountev, and Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Trans. Softw.
Eng. Methodol., 2005.
• Context-sensitive interprocedural pointer analysis

• For context, use stack of receiver objects

• (More next week?)

• Lhotak and Hendren. Context-sensitive points-to analysis: is it
worth it? CC 06
• Object-sensitive pointer analysis more precise than call-stack contexts

for Java

• Likely to scale better

29

© 2010 Stephen Chong, Harvard University

Closing remarks

• Pointer analysis: important, challenging, active area
• Many clients, including call-graph construction, live-variable analysis, constant

propagation, …

• Inclusion-based analyses (aka Andersen-style)

• Equality-based analyses (aka Steensgaard-style)

• Requires a tradeoff between precision and efficiency
• Ultimately an empirical question. Which clients, which code bases?

• Recent results promising
• Scalable flow-sensitivity (see Thurs, and Hardekopf and Lin, POPL 09)

• Context-sensitive Andersen-style analyses seem scalable (See Thurs)

• Other issues/questions (see Hind, PASTE’01)
• How to measure/compare pointer analyses? Different clients have different needs

• Demand-driven analyses? May be more precise/scalable…

30

