HARVARD
School of Engineering and Applied Sciences

Shape Analysis

CS252r Spring 2011

Outline

- Motivation for shape analysis
- Three-valued logic
- Region-based with tracked locations

Shape analysis

- [Wilhelm, Sagiv, and Reps, CC 2000]
- Shape analysis: static program analyses for reasoning about properties of the heap
- Kinds of questions:
- Null pointers: Is pointer expression maybe null at program point?
- May-Alias: Can two pointer expressions reference same heap cell?
- Must-alias: two pointer expression always reference same heap cell
- Sharing: is there more than one pointer expression referencing a heap cell?
- Reachability: is the heap cell reachable from a specific variable? any variable?
- Disjointness: Do two data structures have any common elements?
- Cyclicity: Can a heap cell be part of a cycle?
- Program understanding, debugging, and verification

Shape analysis

- Shape analysis is flow-sensitive
-Computes for each point in program "a finite, conservative representation of the heap-allocated data structures that could arise when a path to the program point is executed"
- Finite representation means must be approximate
-E.g., generally lose info about lengths of lists, depths of trees

Shape Analysis via 3-valued logic

- [Sagiv, Reps, Wilhelm, POPL 99]
- Framework for shape analysis
- Instantiate by specifying predicates about the heap
- In concrete execution, these predicates are either true or false
- In static analysis, approximate the predicates using 3valued logic
- True, False, Don’t know

3-valued logic

And	$\mathbf{0}$	\mathbf{I}	\perp
$\mathbf{0}$	0	0	0
\mathbf{I}	0	$\mathbf{1}$	\perp
\perp	0	\perp	\perp

$\mathbf{O R}$	$\mathbf{0}$	\mathbf{I}	\perp
$\mathbf{0}$	0	\mathbf{I}	\perp
\mathbf{I}	I	I	I
\perp	\perp	I	\perp

3 -valued logic

And	$\mathbf{0}$	$1 / 2$	$\mathbf{1}$
$\mathbf{0}$	0	0	0
$1 / 2$	0	$1 / 2$	$1 / 2$
\mathbf{I}	0	$1 / 2$	1

OR	$\mathbf{0}$	$1 / 2$	\mathbf{I}
$\mathbf{0}$	0	$1 / 2$	I
$1 / 2$	$1 / 2$	$1 / 2$	I
\mathbf{I}	I	I	I

Individuals and Predicates

- Universe of individuals U
- $u \in U$ represents is an abstract location
- Represents one or more concrete locations
- Each concrete location is represented by exactly one abstract location
- Some predicates
- pointed-to-by-variable-x(u)
- Abbreviated to $x(u)$, means that stack variable x points to a concrete location represented by u
- pointer-component-f-points-to($\mathrm{u}_{1}, \mathrm{u}_{2}$)
- Abbreviated to $f\left(u_{1}, u_{2}\right)$, means a concrete object rep. by u_{1} has field f that points to concrete object rep by u_{2}
- $\mathrm{sm}(\mathrm{u})$
- u is summary node, i.e., represents more than 1 concrete location

Meaning of predicates

- $\langle\mathrm{U}, \mathrm{L}\rangle$ is a 3-valued structure
- U is universe of individuals
- 1 gives valuation to predicates
- $\imath: p:$ Pred \times Urity $^{\text {(p) }} \rightarrow\{0,1 / 2,1\}$
- A 3-valued structure represents zero or more concrete states
- If formula φ evaluates in $\langle U, \iota\rangle$ to 1 , then
φ holds in every concrete store $\langle U, \iota\rangle$ represents
- If formula φ evaluates in $\langle U, \iota\rangle$ to 0 , then
φ never holds in any concrete store $\langle U, \mathrm{l}\rangle$ represents
- If formula φ evaluates in $\langle U, l\rangle$ to $1 / 2$, then
we don't know anything about φ in any concrete store $\langle U, l\rangle$ represents

Graphical representation

```
```

typedef struct node {

```
```

typedef struct node {
struct node *n;
struct node *n;
int data;
int data;
} *List;
} *List;
/* reverse.c */
/* reverse.c */
\#include ''list.h''
\#include ''list.h''
List reverse(List x) {
List reverse(List x) {
List y, t;
List y, t;
assert(acyclic_list(x));
assert(acyclic_list(x));
y = NULL;
y = NULL;
while (x != NULL) {
while (x != NULL) {
t = y;
t = y;
y = x;
y = x;
x = x->n;
x = x->n;
y->n = t;
y->n = t;
}
}
return y;
return y;
}

```
```

}

```
```

Figure 2: The three-valued logical structures that describe all possible acyclic inputs to reverse.

\mathbf{S}	Structure	Graphical Representation
S_{0}	unary predicates:	indiv. $\|x\| y\|t\| s m\|i s\|$
	binary predicates:	
	n	

Graphical representation

```
typedef struct node {
    struct node *n;
        int data;
} *List;
/* reverse.c */
#include ''list.h"'
List reverse(List x) {
    List y, t;
    assert(acyclic_list(x));
    y = NULL;
    while (x != NULL) {
        t = y;
        y = x;
        x = x->n;
        y->n = t;
    }
    return y;
}
```

S	Structure	Graphical Representation
S_{0}	unary predicates: indiv. $\|x\| y\|t\| s m \mid i s$ binary predicates: n	
S_{1}	 binary predicates: $\begin{array}{\|l\|l\|} \hline \mathbf{n} & u_{1} \\ \hline u_{1} & 0 \\ \hline \end{array}$	$\mathrm{x} \longrightarrow u_{1}$
S_{2}	unary predicates: binary predicates:	$x \longrightarrow u_{1} \ldots \ldots{ }^{n}$

Figure 2: The three-valued logical structures that describe all possible acyclic inputs to reverse.

Updating formula

- Key idea: track state of formula at each program point.
- Just like dataflow

statement	formula	structure that arises just after statement
$s t_{1}: \mathrm{y}=$ NULL;	$y^{\prime}(v)=0$	$\mathrm{x} \longrightarrow u_{1} \cdots \cdots \cdots$
$s t_{2}:$ t $=\mathrm{y}$;	$t^{\prime}(v)=y(v)$	
st ${ }_{3}$: $\mathrm{y}=\mathrm{x}$;	$y^{\prime}(v)=x(v)$	
$s t_{4}: \mathrm{x}=\mathrm{x}->\mathrm{n}$;	$x^{\prime}(v)=\exists v_{1}: x\left(v_{1}\right) \wedge n\left(v_{1}, v\right)$	
st ${ }_{5}: \mathrm{y}->\mathrm{n}=\mathrm{t}$;	$\begin{gathered} n^{\prime}\left(v_{1}, v_{2}\right)=\left(n\left(v_{1}, v_{2}\right) \wedge \neg y\left(v_{1}\right)\right) \vee\left(y\left(v_{1}\right) \wedge t\left(v_{2}\right)\right) \\ i s^{\prime}(v)=\begin{array}{c} i s(v) \wedge \exists v_{1}, v_{2}:\binom{v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)}{\wedge \neg y\left(v_{1}\right) \wedge \neg y\left(v_{2}\right)} \\ \vee\left(t(v) \wedge \exists v_{1}: n\left(v_{1}, v\right) \wedge \neg y\left(v_{1}\right)\right) \end{array} \end{gathered}$	

Updating formula

st ${ }_{5}: \mathrm{y}->\mathrm{n}=\mathrm{t}$;	$\begin{gathered} n^{\prime}\left(v_{1}, v_{2}\right)=\left(n\left(v_{1}, v_{2}\right) \wedge \neg y\left(v_{1}\right)\right) \vee\left(y\left(v_{1}\right) \wedge t\left(v_{2}\right)\right) \\ i s^{\prime}(v)=\quad i s(v) \wedge \exists v_{1}, v_{2}:\binom{v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)}{\wedge \neg y\left(v_{1}\right) \wedge \neg y\left(v_{2}\right)} \\ \vee\left(t(v) \wedge \exists v_{1}: n\left(v_{1}, v\right) \wedge \neg y\left(v_{1}\right)\right) \end{gathered}$	$\mathrm{y} \longrightarrow u_{1}$	S_{7}
$s t_{2}: \mathrm{t}=\mathrm{y}$;	$t^{\prime}(v)=y(v)$		S_{8}
st ${ }_{3}: \mathrm{y}=\mathrm{x}$;	$y^{\prime}(v)=x(v)$	$\mathrm{t} \longrightarrow u_{1}$	S_{9}
$s t_{4}: \mathbf{x}=\mathrm{x}->\mathrm{n}$;	$x^{\prime}(v)=\exists v_{1}: x\left(v_{1}\right) \wedge n\left(v_{1}, v\right)$	$\mathrm{t} \longrightarrow u_{1}$ \mathbf{x}, y	S_{10}
$s t_{5}: \mathrm{y}->\mathrm{n}=\mathrm{t}$;	$\begin{gathered} n^{\prime}\left(v_{1}, v_{2}\right)=\left(n\left(v_{1}, v_{2}\right) \wedge \neg y\left(v_{1}\right)\right) \vee\left(y\left(v_{1}\right) \wedge t\left(v_{2}\right)\right) \\ i s^{\prime}(v)=\begin{array}{c} i s(v) \wedge \exists v_{1}, v_{2}:\binom{v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)}{\wedge \neg y\left(v_{1}\right) \wedge \neg y\left(v_{2}\right)} \\ \vee\left(t(v) \wedge \exists v_{1}: n\left(v_{1}, v\right) \wedge \neg y\left(v_{1}\right)\right) \end{array} \end{gathered}$		S_{11}
$s t_{2}: \mathrm{t}=\mathrm{y}$;	$t^{\prime}(v)=y(v)$		
sta ${ }_{3} \mathrm{y}=\mathrm{x}$;	$y^{\prime}(v)=x(v)$		
stif: $\mathrm{x}=\mathrm{x}->\mathrm{n}$;	$x^{\prime}(v)=\exists v_{1}: x\left(v_{1}\right) \wedge n\left(v_{1}, v\right)$		S_{14}
st $t_{5}: \mathrm{y}->\mathrm{n}=\mathrm{t}$;	$\begin{gathered} n^{\prime}\left(v_{1}, v_{2}\right)=\left(n\left(v_{1}, v_{2}\right) \wedge \neg y\left(v_{1}\right)\right) \vee\left(y\left(v_{1}\right) \wedge t\left(v_{2}\right)\right) \\ i s^{\prime}(v)=\begin{array}{c} i s(v) \wedge \exists v_{1}, v_{2}:\binom{v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)}{\wedge \neg y\left(v_{1}\right) \wedge \neg y\left(v_{2}\right)} \\ \vee\left(t(v) \wedge \exists v_{1}: n\left(v_{1}, v\right) \wedge \neg y\left(v_{1}\right)\right) \end{array} \end{gathered}$		S_{15}

Instrumentation predicates

- Consider formula

$$
\varphi(\mathrm{v})=\exists \mathrm{v}_{1}, \mathrm{v}_{2}: \mathrm{n}\left(\mathrm{v}_{1}, \mathrm{v}\right) \wedge \mathrm{n}\left(\mathrm{v}_{2}, \mathrm{v}\right) \wedge \mathrm{v}_{1} \neq \mathrm{v}_{2}
$$

- "There are at least two different objects pointing to v "

- What does $\varphi(\mathrm{u})$ evaluate to, for shape graph above?
- With $v_{1}=u_{1}, v_{2}=u$, we have

$$
n\left(u_{1}, u\right) \wedge n(u, u) \wedge u_{1} \neq u \equiv 1 / 2 \wedge 1 / 2 \wedge 1 \equiv 1 / 2
$$

- Implies that tail of linked list might be shared
- But this is not the case for a linked list!

Instrumentation predicates

- Maintain precision by using instrumentation predicates
- predicate is(u) represents truth of predicate for nodes represented by abstract location
- Is Shared
- is $(u)=0$ implies that S_{2} can only represent acyclic lists

Other useful instrumentation predicates

Pred.	Intended Meaning	Purpose	Ref.
$i s(v)$	Do two or more fields of heap elements point to v ?	lists and trees	$\left[\begin{array}{l} {[2]} \\ {[19]} \end{array}\right.$
$r_{x}(v)$	Is v (transitively) reachable from pointer variable x ?	separating disjoint data structures	[19]
$r(v)$	Is v reachable from some pointer variable (i.e., is v a non-garbage element)?	compile-time garbage collection	
$c(v)$	Is v on a directed cycle?	ref. counting	[11]
$c_{f, b}(v)$	Does a field-f dereference from v, followed by a field-b dereference, yield v ?	doubly-linked lists	[7], $[16]$
$c_{b . f}(v)$	Does a field-b dereference from v, followed by a field-f dereference, yield v ?	doubly-linked lists	$\begin{aligned} & {[7],} \\ & {[16]} \end{aligned}$

Focus for precision

- Once the value of a formula is $1 / 2$, it can be easy to lose precision.

- Focusing may allow us to maintain precision
- Key idea: if update formula evaluates to $1 / 2$, try instantiating it to 0 and 1
- Focus attention on each of the possible cases
- May need to make sure rest of structure is consistent

Focus example

input struct.	$S_{5} \quad \mathbf{x}, \mathrm{y} \longrightarrow u_{1}$
focus	
formulae	

Figure 5: The first application of the improved transformer for statement $s t_{4}: x=x->_{n}$ in reverse.

Focus example

Figure 5: The first application of the improved transformer for statement $s t_{4}: x=x->_{n}$ in reverse.

Region-based shape analysis with tracked locations

- Hackett and Rugina, POPL 05
- Key idea: reason about one location at a time
- Allows a decomposition of a state into a set of tracked locations
- Reason about each tracked location independently of others
- Better scalability, compact representation, context-sensitive analysis
- No need to merge abstractions, or keep multiple abstractions of entire heap
- Easier on-demand and incremental algorithms

Memory regions

- Analysis builds on top of a region analysis
- Each region represents a set of concrete locations
- Each concrete location represented by exactly one region
- Points-to relation over regions must be sound
- Can use a variety of region analyses
- E.g., flow-sensitive or insensitive
- In paper, they use a flow-insensitive, context-sensitive analysis that uses an intra-procedural unification-based analysis, and uses procedure summaries for an interprocedural analysis

Configurations and shape abstractions

- A configuration is ($\mathrm{i},\left(\mathrm{e}^{+}, \mathrm{e}^{-}\right)$)
- i is index, a function from regions to $\{0, \ldots, k, \infty\}$
- $\mathrm{i}(\mathrm{r})=$ How many locations in r point to tracked location
- ∞ means $\geq k+1$
- e^{+}is hit set: expressions that definitely refer to tracked location
- e^{-}is miss set: expressions that definitely do not refer to tracked location
- A shape abstraction is a set of configurations
- at most one configuration for each index
- each concrete location should be represented by at least one configuration
- Treat shape abstraction as partial function from indexes to hit/miss sets

Example

```
typedef struct list {
        struct list *n;
        int data;
} List;
List *splice(List *x, List *y) {
    List *t = NULL;
    List *z = y;
    while(x != NULL) {
        t = x;
        x = t->n;
        t->n = y->n;
        y->n = t;
        y = y->n->n;
    }
    return z;
}
```


Region		
$\begin{array}{c}\text { Points-to } \\ \text { Component }\end{array}$	Shape Component	
Configurations		
for input memory		

for output memory\end{array}\right]\)	

Intra-procedural analysis

$$
\left(a_{1} \sqcup a_{2}\right)(i)= \begin{cases}a_{1}(i) & \text { if } i \notin \operatorname{dom}\left(a_{2}\right) \\ a_{2}(i) & \text { if } i \notin \operatorname{dom}\left(a_{1}\right) \\ a_{1}(i) \sqcup a_{2}(i) & \text { if } i \in \operatorname{dom}\left(a_{1}\right) \cap \operatorname{dom}\left(a_{2}\right)\end{cases}
$$

$$
\begin{array}{ll}
\text { where } & \left(e_{1}^{+}, e_{1}^{-}\right) \sqcup\left(e_{2}^{+}, e_{2}^{-}\right)=\left(e_{1}^{+} \cap e_{2}^{+}, e_{1}^{-} \cap e_{2}^{-}\right) \\
\text {and } & \perp \sqcup\left(e^{+}, e^{-}\right)=\left(e^{+}, e^{-}\right) \sqcup \perp=\left(e^{+}, e^{-}\right)
\end{array}
$$

For all $s \in S_{\text {asgn }}, s_{a} \in S_{\text {alloc }}, s_{e} \in S_{\text {entry }}, i \in I$:
[JOIN] $\quad \operatorname{Res}(\bullet s) i=\bigsqcup_{s^{\prime} \in \operatorname{pred}(s)} \operatorname{Res}\left(s^{\prime} \bullet\right) i$
[TRANSF] $\quad \operatorname{Res}(s \bullet) i=\bigsqcup_{i^{\prime} \in I}\left(\llbracket s \rrbracket\left(\rho,\left(i^{\prime}, \operatorname{Res}(\bullet s) i^{\prime}\right)\right)\right) i$
[ALLOC] $\operatorname{Res}\left(s_{a} \bullet\right) i_{a} \sqsupseteq h_{a}$, where $\llbracket s_{a} \rrbracket^{g e n}(\rho)=\left(i_{a}, h_{a}\right)$
[ENTRY] $\operatorname{Res}\left(\bullet s_{e}\right) i \sqsupseteq a_{o} i$

Splice example

8: $z=y ;$	
9: while $(x \quad!=$ NULL $)$	
$10:$	$t=x ;$
$11:$	$x=t->n ;$
$12:$	$t->n=y->n ;$
$13:$	$y->n=t ;$
$14:$	$y=y->n->n ;$
$16:$	return $z ;$

Figure 5: Shape analysis results for splice. Boxes represent configurations and edges show how the state of the tracked location changes during the execution. We only show field access expressions in the hit and miss sets. We use the abbreviations: $t n \equiv \mathrm{t}->\mathrm{n}$ and $y n \equiv y->n$, and we indicate miss expressions using overlines. For readability, back edges from configurations at the end of the loop to the corresponding configurations at the beginning of the loop are omitted.

Transfer function for assign

$$
\llbracket e_{o} \leftarrow e_{1} \rrbracket\left(\rho,\left(i,\left(e^{+}, e^{-}\right)\right)\right):
$$

$$
\text { case }\left(\mathcal{D} \llbracket e_{0} \rrbracket\left(\rho,\left(i,\left(e^{+}, e^{-}\right)\right)\right), \mathcal{D} \llbracket e_{1} \rrbracket\left(\rho,\left(i,\left(e^{+}, e^{-}\right)\right)\right)\right) \text {of }
$$

$$
\left(v_{0} \in\{-,+\}, v_{1} \in\{-,+\}\right) \Rightarrow
$$

$$
\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+}, e^{-}, v_{0}=+, v_{1}=+\right)
$$

$$
\left(?, v_{1} \in\{+,-\}\right) \Rightarrow
$$

$$
\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{0}\right\}, e^{-}, \text {true }, v_{1}=+\right) \sqcup
$$

$$
\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+}, e^{-} \cup\left\{e_{0}\right\}, \text { false }, v_{1}=+\right)
$$

$$
\left(v_{0} \in\{-,+\}, ?\right) \Rightarrow
$$

$$
\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{1}\right\}, e^{-}, v_{0}=+, \text { true }\right) \sqcup
$$

$$
\begin{aligned}
& \operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{1}\right\}, e^{-}, v_{0}=+, \text { true }\right)\llcorner \\
& \operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+}, e^{-} \cup\left\{e_{1}\right\}, v_{0}=+, \text { false }\right)
\end{aligned}
$$

$(?, ?) \Rightarrow$
$\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{0}, e_{1}\right\}, e^{-}\right.$, true, true $) \sqcup$ $\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{0}\right\}, e^{-} \cup\left\{e_{1}\right\}\right.$, true, false $) \sqcup$ $\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+} \cup\left\{e_{1}\right\}, e^{-} \cup\left\{e_{0}\right\}\right.$, false, true) \sqcup $\operatorname{assign}\left(e_{0}, e_{1}, \rho, i, e^{+}, e^{-} \cup\left\{e_{0}, e_{1}\right\}\right.$, false, false $)$

Figure 10: Transfer function for assignments $\llbracket e_{0} \leftarrow e_{1} \rrbracket$.

```
assign(e}\mp@subsup{e}{0}{},\mp@subsup{e}{1}{},\rho,i,\mp@subsup{e}{}{+},\mp@subsup{e}{}{-},\mp@subsup{b}{0}{},\mp@subsup{b}{1}{})
    r=\mathcal{L}\llbracket\mp@subsup{e}{0}{}\rrbracket(\rho)
    if (b
        if (i(r)\leqk) then S}\mp@subsup{S}{i}{}={i[r\mapstoi(r)-1]
            else }\mp@subsup{S}{i}{}={i[r\mapstok],i[r\mapsto\infty]
    else if (\neg\mp@subsup{b}{0}{}\wedge\mp@subsup{b}{1}{})\mathrm{ then}
        if (i(r)<k) then S}\mp@subsup{S}{i}{}={i[r\mapstoi(r)+1]
            else S}\mp@subsup{S}{i}{}={i[r\mapsto\infty]
    else }\mp@subsup{S}{i}{}={i
    e}+n={e\in\mp@subsup{e}{}{+}|\mathcal{S}\llbrackete\mp@subsup{\rrbracket}{v}{}(\rho,r)\vee(\mathcal{S}\llbrackete\mp@subsup{\rrbracket}{l}{}(\rho,r)\wedge\mp@subsup{b}{1}{})
    e
    if }(\mathcal{S}\llbracket\mp@subsup{e}{0}{}\mp@subsup{\rrbracket}{l}{}(\rho,r)\wedge\mp@subsup{b}{1}{})\mathrm{ then }\mp@subsup{e}{n}{+}\cup={\mp@subsup{e}{0}{}
    if }(\mathcal{S}\llbracket\mp@subsup{e}{0}{}\mp@subsup{\rrbracket}{l}{}(\rho,r)\wedge\neg\mp@subsup{b}{1}{})\mathrm{ then }\mp@subsup{e}{n}{-}\cup={\mp@subsup{e}{0}{}
    if }(\mathcal{S}\llbracket\mp@subsup{e}{0}{}\mp@subsup{\rrbracket}{l}{}(\rho,r)\wedge\mathcal{S}\llbracket\mp@subsup{e}{1}{}\mp@subsup{\rrbracket}{l}{}(\rho,r))\mathrm{ then
    e}+n=(\mp@subsup{e}{n}{+}[*\mp@subsup{e}{0}{}/*\mp@subsup{e}{1}{}]\cap\mp@subsup{E}{p}{\prime}
    e
    e
    return}\overline{(\mp@subsup{S}{i}{},(\mp@subsup{e}{n}{+},\mp@subsup{e}{n}{-}))
```

Figure 11: Helper function assign.

Interprocedural analysis

- Context-sensitive interprocedural analysis
- A context for a procedure is a single configuration, output is a set of contexts
-Fine granularity helps scalability
- Less redundant computation
- Allows "incremental" analysis
- E.g., now calling splice with a cyclic list
- Just one new configuration: L²

Uses and limitations

- Can be used for memory error detection
- Double frees, dangling pointer access, memory leak
- Spurious configurations
- Configuration that represents concrete states that cannot occur at runtime
- Better decision procedure would help
- Complex structural invariants
- e.g., double linked lists
- Sensitive to how program is written
- e.g., $x=t->n$ vs $x=x->n$ treated differently, since analysis doesn't know $x=t$
- Exponential

Verification vs. inference

- Separation logic has shown a lot of success at verifying programs that destructively update heap
- To what extent can separation logic be used in inference of heap properties?

