
Shape Analysis

CS252r Spring 2011

© 2011 Stephen Chong, Harvard University

Outline

•Motivation for shape analysis
•Three-valued logic
•Region-based with tracked locations

2

© 2011 Stephen Chong, Harvard University

Shape analysis

• [Wilhelm, Sagiv, and Reps, CC 2000]

• Shape analysis: static program analyses for reasoning about
properties of the heap

• Kinds of questions:
• Null pointers: Is pointer expression maybe null at program point?

• May-Alias: Can two pointer expressions reference same heap cell?

• Must-alias: two pointer expression always reference same heap cell

• Sharing: is there more than one pointer expression referencing a heap cell?

• Reachability: is the heap cell reachable from a specific variable? any variable?

• Disjointness: Do two data structures have any common elements?

• Cyclicity: Can a heap cell be part of a cycle?

• Program understanding, debugging, and verification

3

© 2011 Stephen Chong, Harvard University

Shape analysis

•Shape analysis is flow-sensitive
•Computes for each point in program “a finite,

conservative representation of the heap-allocated data
structures that could arise when a path to the program
point is executed”

•Finite representation means must be approximate
•E.g., generally lose info about lengths of lists, depths of

trees

4

© 2011 Stephen Chong, Harvard University

Shape Analysis via 3-valued logic

•[Sagiv, Reps, Wilhelm, POPL 99]
•Framework for shape analysis

•Instantiate by specifying predicates about the heap
•In concrete execution, these predicates are either true

or false
•In static analysis, approximate the predicates using 3-

valued logic
• True, False, Don’t know

5

© 2011 Stephen Chong, Harvard University

3-valued logic

6

OR 0 1 ⊥

0 0 1 ⊥

1 1 1 1
⊥ ⊥ 1 ⊥

And 0 1 ⊥

0 0 0 0
1 0 1 ⊥

⊥ 0 ⊥ ⊥

© 2011 Stephen Chong, Harvard University

3-valued logic

7

OR 0 ½ 1

0 0 ½ 1
½ ½ ½ 1
1 1 1 1

And 0 ½ 1

0 0 0 0
½ 0 ½ ½
1 0 ½ 1

© 2011 Stephen Chong, Harvard University

Individuals and Predicates

• Universe of individuals U
• u∈U represents is an abstract location
• Represents one or more concrete locations

• Each concrete location is represented by exactly one abstract location

• Some predicates
• pointed-to-by-variable-x(u)
• Abbreviated to x(u), means that stack variable x points to a concrete location

represented by u

• pointer-component-f-points-to(u1, u2)
• Abbreviated to f(u1, u2), means a concrete object rep. by u1 has field f that points

to concrete object rep by u2

• sm(u)
• u is summary node, i.e., represents more than 1 concrete location

8

© 2011 Stephen Chong, Harvard University

Meaning of predicates

• ⟨U,ι⟩ is a 3-valued structure
• U is universe of individuals

• ι gives valuation to predicates

• ι : p:Pred × Uarity(p) → {0, ½, 1}

• A 3-valued structure represents zero or more concrete states

• If formula φ evaluates in ⟨U,ι⟩ to 1, then
 φ holds in every concrete store ⟨U,ι⟩ represents

• If formula φ evaluates in ⟨U,ι⟩ to 0, then
 φ never holds in any concrete store ⟨U,ι⟩ represents

• If formula φ evaluates in ⟨U,ι⟩ to ½, then
 we don’t know anything about φ in any concrete
 store ⟨U,ι⟩ represents

9

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

!
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) a rro w s.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

" The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

" The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

" If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

" If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

" If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

and abstract worlds via the same formula-the same syntac-
tic expression can be interpreted either as statement about
the two-valued world or the three-valued world.

In this paper, shape graphs are represented as “three-valued
logical structures” that provide truth values for every formula.
Therefore, by evaluating formulae, one obtains simple algo-
rithms for: (i) executing statements abstractly, and (ii) (con-
servatively) extracting store properties from a shape graph.
For example, formula (2) evaluates to true for an abstract
store in which x and y do not point to the same shape-node.
In this case, we know that z and y cannot be aliases. For-
mula (2) evaluates to false for an abstract store in which z
and y point to the same non-summary node. In this case,
we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-
node. In this case, the analysis does not know if x and y can
be aliases.

In Sections 2 and 4, we show how these mechanisms can be
exploited to create a parametric framework for shape-analysis.
This technique suffices to explain the algorithms of [ll, 10, 2,
211.

1.1.3 Materialization of New Nodes from Summary Nodes

One of the magical aspects of [19] is “materialization”, in
which a transfer function splits a summary-node into two sep-
arate nodes. (This operation is also discussed in [2, 161.) This
turns out to be important for maintaining accuracy in the
analysis of loops that advance pointers through data struc-
tures. The parametric framework provides insight into the
workings of materialization. It shows that the essence of ma-
terialization involves a step (called focus, discussed in Sec-
tion 5.1) that forces the values of certain formulae from un-
known to true or false. This has the effect of converting a
shape graph into one with finer distinctions.

In [19], it was observed that node materialization is com-
plicated because various kinds of shape-graph properties are
interdependent. For instance, the connections between heap
cells constrain the sets of potential aliases, and vice versa. In
this paper, we introduce a mechanism for expressing (three-
valued) constraints on shape graphs, which we use to capture
such dependences between properties.

1.2 Limitations

The results reported in the paper are limited in the following
ways:

! The framework creates intraprocedural shape-analysis
algorithms, not interprocedural ones. Methods for han-
dling procedures are presented in [2, 1, 191. Because
these are instances of the framework, their methods for
handling procedures should generalize to the parametric
case.

! The number of possible shape-nodes that may arise dur-
ing abstract interpretation is potentially exponential in
the size of the specification. We do not know how severe
this problem is in practice. However, it is possible to de-
fine a widening operator that converts a shape graph into
a more compact, but possibly less precise, shape graph
by collapsing more nodes into summary nodes. This can
be used to make a shape-analysis algorithm polynomial,
at the cost of making the results less accurate.

! The number of shape graphs may be quite large (as
in [ll, lo]). This problem was avoided in [15, 2, 16, 191
by keeping a single merged shape graph at every point.

/* reverse.c */
#include “1ist.h”
List reversetlist x> {

List y, t;

/* 1ist.h */
assert (acyclic-list (x1 > ;

typedef struct node {
y=NuLL;

struct node *n;
while (x != NULL) {

int data;
t = y;

} *List;
y = x;
x = x->n;

(a)

y-h = t;
1
return y;

1
(b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A
C function that uses destructive updating to reverse the list
pointed to by parameter x.

This measure has not been employed in this paper in
order to simplify the presentation.

1.3 Organization of the Paper

We explain our work by presenting two versions of the shape-
analysis framework. The first version is used to introduce
many of the key ideas, but in a simplified setting: Section 2
provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details.
Section 3 presents technical details of how three-valued logic is
used to define abstractions of concrete stores (which is needed
for Section 4 and subsequent sections). Section 5 defines the
more elaborate version of the shape-analysis framework. Due
to space constraints, some aspects of the abstract semantics
are omitted (see [18]). Section 6 contains a short account of
related work.

2 An Overview of the Parametric Framework

Figure l(a) shows the declaration of a linked-list data type in
C, and Figure l(b) shows a C program that reverses a list via
destructive updating. The analysis of the shapes of the data
structures that arise at the different points in the reverse
program will serve as the subject of the examples given in the
remainder of the paper. The reverse program allows us to
demonstrate many aspects of the shape-analysis framework in
a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via Three-Valued Structures

In Section 1, we couched the discussion in terms of shape-
graphs for the convenience of readers who are familiar with
previous work. Formally, we do not work with shape-graphs;
instead, the abstractions of stores will be what logicians call
three-valued logical structures, denoted by (U, L). There is a
vocabulary of predicate symbols (with given arities); each log-
ical structure has a universe of individuals U, and L maps each
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p,
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and
unknown, respectively). Logical structures are used to pro-
vide a uniform representation of stores: Individuals represent
abstractions of memory locations; pointers from the stack into
the heap are represented by unary “pointed-to-by-variable-x”
predicates; and pointer-valued fields of data structures are rep-
resented by binary “pointer-component-points-to” predicates.

106

© 2011 Stephen Chong, Harvard University 10

and abstract worlds via the same formula-the same syntac-
tic expression can be interpreted either as statement about
the two-valued world or the three-valued world.

In this paper, shape graphs are represented as “three-valued
logical structures” that provide truth values for every formula.
Therefore, by evaluating formulae, one obtains simple algo-
rithms for: (i) executing statements abstractly, and (ii) (con-
servatively) extracting store properties from a shape graph.
For example, formula (2) evaluates to true for an abstract
store in which x and y do not point to the same shape-node.
In this case, we know that z and y cannot be aliases. For-
mula (2) evaluates to false for an abstract store in which z
and y point to the same non-summary node. In this case,
we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-
node. In this case, the analysis does not know if x and y can
be aliases.

In Sections 2 and 4, we show how these mechanisms can be
exploited to create a parametric framework for shape-analysis.
This technique suffices to explain the algorithms of [ll, 10, 2,
211.

1.1.3 Materialization of New Nodes from Summary Nodes

One of the magical aspects of [19] is “materialization”, in
which a transfer function splits a summary-node into two sep-
arate nodes. (This operation is also discussed in [2, 161.) This
turns out to be important for maintaining accuracy in the
analysis of loops that advance pointers through data struc-
tures. The parametric framework provides insight into the
workings of materialization. It shows that the essence of ma-
terialization involves a step (called focus, discussed in Sec-
tion 5.1) that forces the values of certain formulae from un-
known to true or false. This has the effect of converting a
shape graph into one with finer distinctions.

In [19], it was observed that node materialization is com-
plicated because various kinds of shape-graph properties are
interdependent. For instance, the connections between heap
cells constrain the sets of potential aliases, and vice versa. In
this paper, we introduce a mechanism for expressing (three-
valued) constraints on shape graphs, which we use to capture
such dependences between properties.

1.2 Limitations

The results reported in the paper are limited in the following
ways:

! The framework creates intraprocedural shape-analysis
algorithms, not interprocedural ones. Methods for han-
dling procedures are presented in [2, 1, 191. Because
these are instances of the framework, their methods for
handling procedures should generalize to the parametric
case.

! The number of possible shape-nodes that may arise dur-
ing abstract interpretation is potentially exponential in
the size of the specification. We do not know how severe
this problem is in practice. However, it is possible to de-
fine a widening operator that converts a shape graph into
a more compact, but possibly less precise, shape graph
by collapsing more nodes into summary nodes. This can
be used to make a shape-analysis algorithm polynomial,
at the cost of making the results less accurate.

! The number of shape graphs may be quite large (as
in [ll, lo]). This problem was avoided in [15, 2, 16, 191
by keeping a single merged shape graph at every point.

/* reverse.c */
#include “1ist.h”
List reversetlist x> {

List y, t;

/* 1ist.h */
assert (acyclic-list (x1 > ;

typedef struct node {
y=NuLL;

struct node *n;
while (x != NULL) {

int data;
t = y;

} *List;
y = x;
x = x->n;

(a)

y-h = t;
1
return y;

1
(b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A
C function that uses destructive updating to reverse the list
pointed to by parameter x.

This measure has not been employed in this paper in
order to simplify the presentation.

1.3 Organization of the Paper

We explain our work by presenting two versions of the shape-
analysis framework. The first version is used to introduce
many of the key ideas, but in a simplified setting: Section 2
provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details.
Section 3 presents technical details of how three-valued logic is
used to define abstractions of concrete stores (which is needed
for Section 4 and subsequent sections). Section 5 defines the
more elaborate version of the shape-analysis framework. Due
to space constraints, some aspects of the abstract semantics
are omitted (see [18]). Section 6 contains a short account of
related work.

2 An Overview of the Parametric Framework

Figure l(a) shows the declaration of a linked-list data type in
C, and Figure l(b) shows a C program that reverses a list via
destructive updating. The analysis of the shapes of the data
structures that arise at the different points in the reverse
program will serve as the subject of the examples given in the
remainder of the paper. The reverse program allows us to
demonstrate many aspects of the shape-analysis framework in
a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via Three-Valued Structures

In Section 1, we couched the discussion in terms of shape-
graphs for the convenience of readers who are familiar with
previous work. Formally, we do not work with shape-graphs;
instead, the abstractions of stores will be what logicians call
three-valued logical structures, denoted by (U, L). There is a
vocabulary of predicate symbols (with given arities); each log-
ical structure has a universe of individuals U, and L maps each
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p,
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and
unknown, respectively). Logical structures are used to pro-
vide a uniform representation of stores: Individuals represent
abstractions of memory locations; pointers from the stack into
the heap are represented by unary “pointed-to-by-variable-x”
predicates; and pointer-valued fields of data structures are rep-
resented by binary “pointer-component-points-to” predicates.

106

Graphical representation

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

!
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) a rro w s.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

" The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

" The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

" If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

" If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

" If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

and abstract worlds via the same formula-the same syntac-
tic expression can be interpreted either as statement about
the two-valued world or the three-valued world.

In this paper, shape graphs are represented as “three-valued
logical structures” that provide truth values for every formula.
Therefore, by evaluating formulae, one obtains simple algo-
rithms for: (i) executing statements abstractly, and (ii) (con-
servatively) extracting store properties from a shape graph.
For example, formula (2) evaluates to true for an abstract
store in which x and y do not point to the same shape-node.
In this case, we know that z and y cannot be aliases. For-
mula (2) evaluates to false for an abstract store in which z
and y point to the same non-summary node. In this case,
we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-
node. In this case, the analysis does not know if x and y can
be aliases.

In Sections 2 and 4, we show how these mechanisms can be
exploited to create a parametric framework for shape-analysis.
This technique suffices to explain the algorithms of [ll, 10, 2,
211.

1.1.3 Materialization of New Nodes from Summary Nodes

One of the magical aspects of [19] is “materialization”, in
which a transfer function splits a summary-node into two sep-
arate nodes. (This operation is also discussed in [2, 161.) This
turns out to be important for maintaining accuracy in the
analysis of loops that advance pointers through data struc-
tures. The parametric framework provides insight into the
workings of materialization. It shows that the essence of ma-
terialization involves a step (called focus, discussed in Sec-
tion 5.1) that forces the values of certain formulae from un-
known to true or false. This has the effect of converting a
shape graph into one with finer distinctions.

In [19], it was observed that node materialization is com-
plicated because various kinds of shape-graph properties are
interdependent. For instance, the connections between heap
cells constrain the sets of potential aliases, and vice versa. In
this paper, we introduce a mechanism for expressing (three-
valued) constraints on shape graphs, which we use to capture
such dependences between properties.

1.2 Limitations

The results reported in the paper are limited in the following
ways:

! The framework creates intraprocedural shape-analysis
algorithms, not interprocedural ones. Methods for han-
dling procedures are presented in [2, 1, 191. Because
these are instances of the framework, their methods for
handling procedures should generalize to the parametric
case.

! The number of possible shape-nodes that may arise dur-
ing abstract interpretation is potentially exponential in
the size of the specification. We do not know how severe
this problem is in practice. However, it is possible to de-
fine a widening operator that converts a shape graph into
a more compact, but possibly less precise, shape graph
by collapsing more nodes into summary nodes. This can
be used to make a shape-analysis algorithm polynomial,
at the cost of making the results less accurate.

! The number of shape graphs may be quite large (as
in [ll, lo]). This problem was avoided in [15, 2, 16, 191
by keeping a single merged shape graph at every point.

/* reverse.c */
#include “1ist.h”
List reversetlist x> {

List y, t;

/* 1ist.h */
assert (acyclic-list (x1 > ;

typedef struct node {
y=NuLL;

struct node *n;
while (x != NULL) {

int data;
t = y;

} *List;
y = x;
x = x->n;

(a)

y-h = t;
1
return y;

1
(b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A
C function that uses destructive updating to reverse the list
pointed to by parameter x.

This measure has not been employed in this paper in
order to simplify the presentation.

1.3 Organization of the Paper

We explain our work by presenting two versions of the shape-
analysis framework. The first version is used to introduce
many of the key ideas, but in a simplified setting: Section 2
provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details.
Section 3 presents technical details of how three-valued logic is
used to define abstractions of concrete stores (which is needed
for Section 4 and subsequent sections). Section 5 defines the
more elaborate version of the shape-analysis framework. Due
to space constraints, some aspects of the abstract semantics
are omitted (see [18]). Section 6 contains a short account of
related work.

2 An Overview of the Parametric Framework

Figure l(a) shows the declaration of a linked-list data type in
C, and Figure l(b) shows a C program that reverses a list via
destructive updating. The analysis of the shapes of the data
structures that arise at the different points in the reverse
program will serve as the subject of the examples given in the
remainder of the paper. The reverse program allows us to
demonstrate many aspects of the shape-analysis framework in
a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via Three-Valued Structures

In Section 1, we couched the discussion in terms of shape-
graphs for the convenience of readers who are familiar with
previous work. Formally, we do not work with shape-graphs;
instead, the abstractions of stores will be what logicians call
three-valued logical structures, denoted by (U, L). There is a
vocabulary of predicate symbols (with given arities); each log-
ical structure has a universe of individuals U, and L maps each
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p,
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and
unknown, respectively). Logical structures are used to pro-
vide a uniform representation of stores: Individuals represent
abstractions of memory locations; pointers from the stack into
the heap are represented by unary “pointed-to-by-variable-x”
predicates; and pointer-valued fields of data structures are rep-
resented by binary “pointer-component-points-to” predicates.

106

© 2011 Stephen Chong, Harvard University 11

and abstract worlds via the same formula-the same syntac-
tic expression can be interpreted either as statement about
the two-valued world or the three-valued world.

In this paper, shape graphs are represented as “three-valued
logical structures” that provide truth values for every formula.
Therefore, by evaluating formulae, one obtains simple algo-
rithms for: (i) executing statements abstractly, and (ii) (con-
servatively) extracting store properties from a shape graph.
For example, formula (2) evaluates to true for an abstract
store in which x and y do not point to the same shape-node.
In this case, we know that z and y cannot be aliases. For-
mula (2) evaluates to false for an abstract store in which z
and y point to the same non-summary node. In this case,
we know that x and y are aliases. However, the formula can
evaluate to unknown when both x and y point to a summary-
node. In this case, the analysis does not know if x and y can
be aliases.

In Sections 2 and 4, we show how these mechanisms can be
exploited to create a parametric framework for shape-analysis.
This technique suffices to explain the algorithms of [ll, 10, 2,
211.

1.1.3 Materialization of New Nodes from Summary Nodes

One of the magical aspects of [19] is “materialization”, in
which a transfer function splits a summary-node into two sep-
arate nodes. (This operation is also discussed in [2, 161.) This
turns out to be important for maintaining accuracy in the
analysis of loops that advance pointers through data struc-
tures. The parametric framework provides insight into the
workings of materialization. It shows that the essence of ma-
terialization involves a step (called focus, discussed in Sec-
tion 5.1) that forces the values of certain formulae from un-
known to true or false. This has the effect of converting a
shape graph into one with finer distinctions.

In [19], it was observed that node materialization is com-
plicated because various kinds of shape-graph properties are
interdependent. For instance, the connections between heap
cells constrain the sets of potential aliases, and vice versa. In
this paper, we introduce a mechanism for expressing (three-
valued) constraints on shape graphs, which we use to capture
such dependences between properties.

1.2 Limitations

The results reported in the paper are limited in the following
ways:

! The framework creates intraprocedural shape-analysis
algorithms, not interprocedural ones. Methods for han-
dling procedures are presented in [2, 1, 191. Because
these are instances of the framework, their methods for
handling procedures should generalize to the parametric
case.

! The number of possible shape-nodes that may arise dur-
ing abstract interpretation is potentially exponential in
the size of the specification. We do not know how severe
this problem is in practice. However, it is possible to de-
fine a widening operator that converts a shape graph into
a more compact, but possibly less precise, shape graph
by collapsing more nodes into summary nodes. This can
be used to make a shape-analysis algorithm polynomial,
at the cost of making the results less accurate.

! The number of shape graphs may be quite large (as
in [ll, lo]). This problem was avoided in [15, 2, 16, 191
by keeping a single merged shape graph at every point.

/* reverse.c */
#include “1ist.h”
List reversetlist x> {

List y, t;

/* 1ist.h */
assert (acyclic-list (x1 > ;

typedef struct node {
y=NuLL;

struct node *n;
while (x != NULL) {

int data;
t = y;

} *List;
y = x;
x = x->n;

(a)

y-h = t;
1
return y;

1
(b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A
C function that uses destructive updating to reverse the list
pointed to by parameter x.

This measure has not been employed in this paper in
order to simplify the presentation.

1.3 Organization of the Paper

We explain our work by presenting two versions of the shape-
analysis framework. The first version is used to introduce
many of the key ideas, but in a simplified setting: Section 2
provides an overview of the simplified version and presents an
example of it in action; Section 4 gives the technical details.
Section 3 presents technical details of how three-valued logic is
used to define abstractions of concrete stores (which is needed
for Section 4 and subsequent sections). Section 5 defines the
more elaborate version of the shape-analysis framework. Due
to space constraints, some aspects of the abstract semantics
are omitted (see [18]). Section 6 contains a short account of
related work.

2 An Overview of the Parametric Framework

Figure l(a) shows the declaration of a linked-list data type in
C, and Figure l(b) shows a C program that reverses a list via
destructive updating. The analysis of the shapes of the data
structures that arise at the different points in the reverse
program will serve as the subject of the examples given in the
remainder of the paper. The reverse program allows us to
demonstrate many aspects of the shape-analysis framework in
a nontrivial, but still relatively digestible, fashion.

2.1 Representing Stores via Three-Valued Structures

In Section 1, we couched the discussion in terms of shape-
graphs for the convenience of readers who are familiar with
previous work. Formally, we do not work with shape-graphs;
instead, the abstractions of stores will be what logicians call
three-valued logical structures, denoted by (U, L). There is a
vocabulary of predicate symbols (with given arities); each log-
ical structure has a universe of individuals U, and L maps each
possible tuple ~(2~1, . . . , uk) of an arity-k predicate symbol p,
where ui E U, to the value 0, 1, or l/2, (i.e., false, true, and
unknown, respectively). Logical structures are used to pro-
vide a uniform representation of stores: Individuals represent
abstractions of memory locations; pointers from the stack into
the heap are represented by unary “pointed-to-by-variable-x”
predicates; and pointer-valued fields of data structures are rep-
resented by binary “pointer-component-points-to” predicates.

106

Graphical representation

st1: y = NULL; y’(v) = 0

st2: t = y; t’(v) = Y(V)

stg: y = x; Y’(V) = 4u)

st4: x = x->n; z’(v) = 3Vl : Z(Q) A n(w1, v)

12’(Ol,212) = (n(v1,vz) A -y(w)) v (Y(W) A t(v2))

sts: y-al = t;
is’(w) =

is(v) A 3Vl,D2 : Ul # 212 An(v1,v) A7qv2,v)

A -y(w) A -y(vz) >
V (t(v) A 3~1 : n(w , v) A ‘y(w))

:..-.
4 :;

@. x s*
,_. ._,

stz: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = dV>

st4: x = x->n; z’(v) = 3Vl : z(q) A n(v1, v)
I

n v1,v2) = (?z(Vl, v2) A -y(v1)) v (y(w) A t(v2))

sts: y-al = t;
is’(v) =

is(v) A 3~1,212 :
(

VI #aAn(vl,v)An(w,v)
A-y(w) A -7y(v2) >

V (t(v) A 31 : n(w,~) A -y(w))

st2: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = 4V)

st4: x = x->n; z’(w) = 3Vl : 2?(Q) A n(m, tJ)

n’(m, ~2) = (n(vl, ~2) A my) V (y(w) A t(w))
st5: y-h = t;

is’(v) =
is(v) A 3~1, v2 :

(

~1 # ~2 An(w,v) An(vz,v)

A ly(m) A T&Z) >
V (t(v) A 3~1 : n(w,v) A l!/(w))

iS

via
I

‘igure 3: The first three iterations of the abstract interpretation of reverse (7 I the simplified framework described in Section 4).

statement 1 formula structure that arises just after statement
_. . .

In this example, reverse is applied to structure Sz from Figure 2, which represents lists of length two or more.

by the execution of the statement. The shape-analysis al- are traversed. As we will see, this allows us to determine the
gorithm illustrated in Figure 3 is essentially that of Chase et correct shape descriptors for the data structures used in the
al. [2]. reverse program.

Unfortunately, there is also bad news: The method de-
scribed above and illustrated in Figure 3 can be very impre-
cise. For instance, statement st4 sets x to x->n; i.e., it makes
x point to the next element in the list. In the abstract inter-
pretation, the following things occur:

! In the first abstract execution of st4, z'(u) is set to l/2
because z(ui) A n(ul,u) = 1 A l/2 = l/2. In other
words, x may point to one of the cells represented by the
summary node u (see the structure Ss).

! This eventually leads to the situation that occurs after
the third abstract execution of st5, which produces struc-
ture Sis. Structure $5 indicates that “x, y, and t may
all point to the same (possibly shared) list”.

In Section 5, we show how it is possible to go beyond the
simplified approach described above by “materializing” new
non-summary nodes from summary nodes as data structures

3 Three-Valued Logic and Embedding

This section defines a three-valued first-order logic with equal-
ity and transitive closure.

We say that the values 0 and 1 are definite values and that
l/2 is an indefinite value, and define a partial order C on truth
values to reflect information content: Ii & 1s denotes that Ii
has more definite information than 12:

Definition 3.1 For 11,12 E {0,1/2, l}, we define the infor-
mation order on truth values as follows: 11 C 12 if 11 = 12 or
12 = I/2. The symbol U denotes the least-upper bound opera-
tion with respect to 5. El

Kleene’s semantics of three-valued logic is monotonic in the
information order (see Definition 3.4).

108

© 2011 Stephen Chong, Harvard University

Updating formula

•Key idea: track state of formula at each program point.
•Just like dataflow

12

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

!
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) a rro w s.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

" The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

" The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

" If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

" If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

" If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

st1: y = NULL; y’(v) = 0

st2: t = y; t’(v) = Y(V)

stg: y = x; Y’(V) = 4u)

st4: x = x->n; z’(v) = 3Vl : Z(Q) A n(w1, v)

12’(Ol,212) = (n(v1,vz) A -y(w)) v (Y(W) A t(v2))

sts: y-al = t;
is’(w) =

is(v) A 3Vl,D2 : Ul # 212 An(v1,v) A7qv2,v)

A -y(w) A -y(vz) >
V (t(v) A 3~1 : n(w , v) A ‘y(w))

:..-.
4 :;

@. x s*
,_. ._,

stz: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = dV>

st4: x = x->n; z’(v) = 3Vl : z(q) A n(v1, v)
I

n v1,v2) = (?z(Vl, v2) A -y(v1)) v (y(w) A t(v2))

sts: y-al = t;
is’(v) =

is(v) A 3~1,212 :
(

VI #aAn(vl,v)An(w,v)
A-y(w) A -7y(v2) >

V (t(v) A 31 : n(w,~) A -y(w))

st2: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = 4V)

st4: x = x->n; z’(w) = 3Vl : 2?(Q) A n(m, tJ)

n’(m, ~2) = (n(vl, ~2) A my) V (y(w) A t(w))
st5: y-h = t;

is’(v) =
is(v) A 3~1, v2 :

(

~1 # ~2 An(w,v) An(vz,v)

A ly(m) A T&Z) >
V (t(v) A 3~1 : n(w,v) A l!/(w))

iS

via
I

‘igure 3: The first three iterations of the abstract interpretation of reverse (7 I the simplified framework described in Section 4).

statement 1 formula structure that arises just after statement
_. . .

In this example, reverse is applied to structure Sz from Figure 2, which represents lists of length two or more.

by the execution of the statement. The shape-analysis al- are traversed. As we will see, this allows us to determine the
gorithm illustrated in Figure 3 is essentially that of Chase et correct shape descriptors for the data structures used in the
al. [2]. reverse program.

Unfortunately, there is also bad news: The method de-
scribed above and illustrated in Figure 3 can be very impre-
cise. For instance, statement st4 sets x to x->n; i.e., it makes
x point to the next element in the list. In the abstract inter-
pretation, the following things occur:

! In the first abstract execution of st4, z'(u) is set to l/2
because z(ui) A n(ul,u) = 1 A l/2 = l/2. In other
words, x may point to one of the cells represented by the
summary node u (see the structure Ss).

! This eventually leads to the situation that occurs after
the third abstract execution of st5, which produces struc-
ture Sis. Structure $5 indicates that “x, y, and t may
all point to the same (possibly shared) list”.

In Section 5, we show how it is possible to go beyond the
simplified approach described above by “materializing” new
non-summary nodes from summary nodes as data structures

3 Three-Valued Logic and Embedding

This section defines a three-valued first-order logic with equal-
ity and transitive closure.

We say that the values 0 and 1 are definite values and that
l/2 is an indefinite value, and define a partial order C on truth
values to reflect information content: Ii & 1s denotes that Ii
has more definite information than 12:

Definition 3.1 For 11,12 E {0,1/2, l}, we define the infor-
mation order on truth values as follows: 11 C 12 if 11 = 12 or
12 = I/2. The symbol U denotes the least-upper bound opera-
tion with respect to 5. El

Kleene’s semantics of three-valued logic is monotonic in the
information order (see Definition 3.4).

108

© 2011 Stephen Chong, Harvard University

Updating formula

13

© 2011 Stephen Chong, Harvard University

Instrumentation predicates

•Consider formula
 φ(v) = ∃v1,v2 : n(v1,v) ∧ n(v2, v) ∧ v1≠v2

•“There are at least two different objects pointing to v”

•What does φ(u) evaluate to, for shape graph above?
•With v1 = u1, v2=u, we have

 n(u1,u) ∧ n(u, u) ∧ u1≠u ≡ ½ ∧ ½ ∧ 1 ≡ ½

•Implies that tail of linked list might be shared

•But this is not the case for a linked list!

14

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

!
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) a rro w s.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

" The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

" The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

" If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

" If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

" If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

© 2011 Stephen Chong, Harvard University

Instrumentation predicates

•Maintain precision by using instrumentation
predicates
•predicate is(u) represents truth of predicate for nodes

represented by abstract location
• Is Shared

•is(u)=0 implies that S2 can only represent acyclic lists

15

S Structure
Graphical
Representation

unary predicates:
indiv. x y t sm is

so binary predicates:

!
unary predicates:

binary predicates:

unary predicates:

Figure 2: The three-valued logical structures that describe all
possible acyclic inputs to reverse.

Assuming that reverse is invoked on acyclic lists, the
three-valued structures that describe all possible inputs to
reverse are shown in Figure 2. The following graphical no-
tation is used for three-valued logical structures: Individuals
of the universe are represented by circles with names inside.
Summary nodes (i.e., nodes for which the value of predicate
sm is l/2) are represented by double circles. Other unary
predicates with value 1 (l/2) and binary pointer-component-
points-to predicates are represented by solid (dotted) a rro w s.

Thus, in structure S2, pointer variable x points to element ~1,
whose n field may point to a location represented by element
u. u is a summary node, i.e., it may represent more than one
location. Possibly there is an n field in one of these locations
that points to another location represented by u.

S2 corresponds to stores in which program variable x points
to an acyclic list of two or more elements:

" The abstract element u1 represents the head of the list,
and u represents all the tail elements.

a The unary predicates x, y, and t are used to characterize
the list elements pointed to by program variables x, y,
and t, respectively.

" The unary predicate sm indicates whether abstract el-
ements are - “summary elements”, i.e., represent more
than one concrete list element in a given store. Thus,
sm(ul) = 0 because u1 represents a unique list element,
the list head. In contrast, sm(u) = l/2, because u repre-
sents a single list element when the input list has exactly
two elements, and more than one list element when the
input list is of length three or more.

The unaxy predicate is is explained in Section 2.2.

The binary predicate n represents the n fields of list el-
ements. The value of n(u1, u) is l/2 because there are
list elements represented by u that are not immediate
n-successors of 741.

The structures SO and S1 represent the simpler cases of lists
of length zero and one, respectively.

2.2 Conservative Extraction of Store Properties

Three-valued structures offer a systematic way to answer ques-
tions about properties of stores:

Observation 2.1 [Property-Extraction Principle]. Ques-
tions about properties of stores can be answered by evaluating
formulae using Kleene’s semantics of three-valued logic:

" If a formula evaluates to 1, then the formula holds in
every store represented by the three-valued structure.

" If a formula evaluates to 0, then the formula never holds
in any store represented by the three-valued structure.

" If a formula evaluates to l/2, then we do not know if this
formula always holds, never holds, or sometimes holds
and sometimes does not hold.

In Section 3.3, we give the Embedding Theorem (Theo-
rem 3.7), which states that the three-valued Kleene interpre-
tation in S of every formula is consistent with the formula’s
two-valued interpretation in every concrete store that S rep-
resents.

Now consider the formula

p(v) def 3vl,v2 : n(vl,v) A n(v2,v) A 211 # v2, (3)
which expresses the property “Do two or more different cells
point to v. 7” Formula q(v) evaluates to l/2 in 5% for v c+ u,
v1 t+ u, and 212 C) ~1, because n(u, u) A n(u,, u) A u # UI =
l/2 A l/2 A 1, which equals l/2. The intuition is that because
the values of n(u,u) and n(u1,u) are unknown, we do not
know whether or not two different cells point to u.

This uncertainty implies that the tail of the list pointed to
by x might be shared (and the list could be cyclic, as well).
In fact, neither of these conditions ever holds in the concrete
stores that arise in the reverse program.

To avoid this imprecision, our abstract structures have an
extra “instrumentation predicate”, is(v), that represents the
truth values of formula (3) for the elements of concrete struc-
tures that v represents. In particular, is(u) = 0 in SZ. This
fact implies that S2 can only represent acyclic, unshared lists
even though formula (3) evaluates to l/2 on u.

The preceding discussion illustrates the following principle:

Observation 2.2 [Instrumentation Principle]. Suppose
S is a three-valued structure that represents concrete store Sb .
By explicitly “storing” in S the values that a formula cp has
in 9, we can maintain finer distinctions in S than can be
obtained by evaluating cp in S. 0

2.3 Simple Abstract Interpretation of Program Statements

Our main tool for expressing the semantics of program state-
ments is based on the Property-Extraction Principle:

Observation 2.3 [Expressing Semantics of Statements
via Logical Formulae]. Suppose a structure S represents a
set of stores that arise before statement st. A structure that
represents the corresponding set of stores that arise after st
can be obtained by extmcting a suitable collection of properties
from S (i.e., by evaluating a suitable collection of formulae
that capture the semantics of st). 0

Figure 3 illustrates the first two iterations of an abstract
interpretation of reverse on the structure S2 from Figure 2.
The value of a predicate p(v) after a statement executes is
obtained by evaluating a predicate-update formula p’(v). The
appropriate predicate-update formulae for each statement are
shown in the second column of Figure 3. Figure 3 lists a
predicate-update formula p’(v) only if predicate p is affected

107

Does pointer variable x point to element v? Cl Does element v represent more than one

Table 1: The core predicates that correspond to the List data-
type declaration from Figure l(a).

3.1 First-Order Formulae with Transitive Closure

Let P = {pi,... ,p,} be a finite set of predicate symbols.
We write first-order formulae over P using the logical con-
nectives A, V, 1, and the quantifiers V and 3. The sym-
bol = denotes the equality predicate. The operator ‘TC’
denotes transitive closure on formulae. We also use several
shorthand notations: For a binary predicate p, P+(v~,v~) is
a shorthand for (TC VI, us : p(v1,va))(vs, ~4); cpl =S 92 is a
shorthand for (-cpr V ~2); and (pi * ‘ps is a shorthand for
(91 * 92) A ($72 * cpl).

Formally, the syntax of first-order formulae with equality
and transitive closure is defined as follows:

Definition 3.2 A formula offer a vocabulary
P= {Pl,... ,Pn} is defined inductively, as follows:

Atomic Formulae The logical-literals 0, 1, and l/2 are
atomic formulae with no free variables.

For every predicate symbol p E P of arity k, p(vl, . . . , vk)
is an atomic formula with free variables ~1, . . . , vk .

The formula (~1 = va) is an atomic formula with free
variables v1 and vs.

Logical Connectives If (~1 and cp2 are formulae whose sets
of free variables are VI and Vz, respectively, then (cpl A
(p2), (cpl Vqa), and (-rrpi) are formulae with free variables
VI U Va, VI U Va, and VI, respectively.

Quantiflers If cp is a formula with free variables VI, ~2,. . . , vk,
then (3vl : cp) and (Vvi : cp) are both formulae with free
variables us, vs, . . . , vk.

Transitive Closure If cp is a formula with free variables V
such that VI, va E V and ‘us, 214 # V, then (TC VI, v2 :
(P)(Q, ~4) is a formula with free variables (V-{VI, v2))U

(213,214).

A formula is closed when it has no free variables. • I

In our application, the set of predicates P is partitioned
into two disjoint sets: the “core-predicates”, C, and the
Ynstrumentation-predicates”, Z. The core-predicates are part
of the programming-language semantics. In contrast, the in-
strumentation predicates are introduced in order to improve
the precision of the analysis (as described by Observation 2.2).

Example 3.3 Table 1 contains the core-predicates for the
List data-type declaration from Figure l(a) and the reverse
program of Figure l(b). 0

Table 2 lists some interesting instrumentation predicates,
and Table 3 lists their defining formulae.

.

.

The sharing predicate is was introduced in [2] and also
used in [19] to capture list and tree data structures.

The reachability-from-x predicate rr was mentioned in [19,
p.381. It drastically improves the precision of shape anal-
ysis, even for programs that manipulate simple list and
tree data structures, since it keeps separate the abstract
representations of data structures that are disjoint in the
concrete world.

1 Pred. I Intended Meaning I Puruose I Ref.]
qq--

TX(v)

44
Cf.6 (v>

Cb.f (v)

Do two or more fields of
heap elements point to v?
Is v (transitively)
reachable from
pointer variable x?
Is v reachable from some
pointer variable (i.e., is v
a non-garbage element)?
Is v on a directed cycle?
Does a field-f dereference
from v, followed by a
field-b dereference, yield v?
Does a field-b dereference
from v, followed by a
field-f dereference, yield v?

lists *and
trees
separating WI
disjoint data
structures
compile-time
garbage
collection
ref. counting [ll]
doubly-linked [7],
lists [I61

doubly-linked [7],
lists [16]

Table 2: Examples of instrumentation predicates.

def
@J(V) = 3v1,v2 : n(v1,v)An(v2,v) Au1 # v2

def
cp,,(v) = z(v)V% : Z(Q) An+(vl,v)

(p,(v) dzf // (z(v) V 3vi : z(w) A n+(vl,v))

xEPVor

cpc(v) tsf n+(z), v)

def

(4)

(5)

(6)

(7)

(~c~,~ (v) = VW, v2 : f (v, ~1) A b(vl, 212) =S v2 = 2, (8)

(pcb.f (v> ef VW, 212 : b(v, VI) A f (VI, v2) * ~2 = 2, (9)

Table 3: Formulae that define the meaning of the instrumen-
tation predicates listed in Table 2.

.

.

The reachability predicate r identifies non-garbage cells.
This is useful for determining when compile-time garbage
collection can be performed.

The cyclicity predicate c was introduced by Jones and
Muchnick [ll] to aid in determining when reference count-
ing would be sufficient.

. The special cyclic&y predicates cf.b and c&f are used to
capture doubly-linked lists, in which forward and back-
ward field dereferences cancel each other. This idea was
introduced in [7] and also used in (161.

3.2 Kleene’s Three-Valued Semantics

In this section, we define Kleene’s three-valued semantics for
first-order formulae with transitive closure.

Definition 3.4 A three-valued interpretation of the Zan-
guage of formulae over P is a three-valued logical struc-
ture S = (U’,L’), where Us is a set of individuals and
L’ maps each predicate symbol p of arity k to a truth-valued
function:

LS : P -+ (U S)” -+ (0, 1,1/2}.
An assignment Z is a function that maps free variables to

individuals (i.e., an assignment has the functionality
2: {v1,v2,...} + Us). An assignment that is defined on
all free variables of a formula cp is called complete for cp. In
the sequel, we assume that euery assignment 2 that arises in
connection with the discussion of some formula cp is complete
for cp.

The meaning of a formula cp, denoted by [&(Z), yields
a truth value in (0, 1,1/2}. The meaning of cp is defined in-
ductively as follows:

109

© 2011 Stephen Chong, Harvard University

Other useful instrumentation predicates

16

© 2011 Stephen Chong, Harvard University

Focus for precision

17

st1: y = NULL; y’(v) = 0

st2: t = y; t’(v) = Y(V)

stg: y = x; Y’(V) = 4u)

st4: x = x->n; z’(v) = 3Vl : Z(Q) A n(w1, v)

12’(Ol,212) = (n(v1,vz) A -y(w)) v (Y(W) A t(v2))

sts: y-al = t;
is’(w) =

is(v) A 3Vl,D2 : Ul # 212 An(v1,v) A7qv2,v)

A -y(w) A -y(vz) >
V (t(v) A 3~1 : n(w , v) A ‘y(w))

:..-.
4 :;

@. x s*
,_. ._,

stz: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = dV>

st4: x = x->n; z’(v) = 3Vl : z(q) A n(v1, v)
I

n v1,v2) = (?z(Vl, v2) A -y(v1)) v (y(w) A t(v2))

sts: y-al = t;
is’(v) =

is(v) A 3~1,212 :
(

VI #aAn(vl,v)An(w,v)
A-y(w) A -7y(v2) >

V (t(v) A 31 : n(w,~) A -y(w))

st2: t = y; t’(v) = Y(V)

st3: y = x; Y’(V) = 4V)

st4: x = x->n; z’(w) = 3Vl : 2?(Q) A n(m, tJ)

n’(m, ~2) = (n(vl, ~2) A my) V (y(w) A t(w))
st5: y-h = t;

is’(v) =
is(v) A 3~1, v2 :

(

~1 # ~2 An(w,v) An(vz,v)

A ly(m) A T&Z) >
V (t(v) A 3~1 : n(w,v) A l!/(w))

iS

via
I

‘igure 3: The first three iterations of the abstract interpretation of reverse (7 I the simplified framework described in Section 4).

statement 1 formula structure that arises just after statement
_. . .

In this example, reverse is applied to structure Sz from Figure 2, which represents lists of length two or more.

by the execution of the statement. The shape-analysis al- are traversed. As we will see, this allows us to determine the
gorithm illustrated in Figure 3 is essentially that of Chase et correct shape descriptors for the data structures used in the
al. [2]. reverse program.

Unfortunately, there is also bad news: The method de-
scribed above and illustrated in Figure 3 can be very impre-
cise. For instance, statement st4 sets x to x->n; i.e., it makes
x point to the next element in the list. In the abstract inter-
pretation, the following things occur:

! In the first abstract execution of st4, z'(u) is set to l/2
because z(ui) A n(ul,u) = 1 A l/2 = l/2. In other
words, x may point to one of the cells represented by the
summary node u (see the structure Ss).

! This eventually leads to the situation that occurs after
the third abstract execution of st5, which produces struc-
ture Sis. Structure $5 indicates that “x, y, and t may
all point to the same (possibly shared) list”.

In Section 5, we show how it is possible to go beyond the
simplified approach described above by “materializing” new
non-summary nodes from summary nodes as data structures

3 Three-Valued Logic and Embedding

This section defines a three-valued first-order logic with equal-
ity and transitive closure.

We say that the values 0 and 1 are definite values and that
l/2 is an indefinite value, and define a partial order C on truth
values to reflect information content: Ii & 1s denotes that Ii
has more definite information than 12:

Definition 3.1 For 11,12 E {0,1/2, l}, we define the infor-
mation order on truth values as follows: 11 C 12 if 11 = 12 or
12 = I/2. The symbol U denotes the least-upper bound opera-
tion with respect to 5. El

Kleene’s semantics of three-valued logic is monotonic in the
information order (see Definition 3.4).

108

•Once the value of a formula is ½, it can be easy
to lose precision.

•Focusing may allow us to maintain precision
•Key idea: if update formula evaluates to ½, try

instantiating it to 0 and 1
•Focus attention on each of the possible cases
•May need to make sure rest of structure is consistent

. .
input 4 ;

struct. s5

focus
a

formulae {$+(2)) = 31 : 2(w) A n(tJ1, v), &qv) = y(v), cp;“yv> = t(v)}

focused
struct. %f,O &4(u) = 0 %f,l ‘pg4 (u) = 1 S&f,2 cp:t’(u) = 1 &‘(21) = 0

..m.

x,,_@ 4d x,y_@_R x,y_o~~-_:::::::::~.~

update ‘pct4 (v) PO; t 4(v) $4 t
formulae

4(v) t t (PL4 (v) cp:4 (v) t cp; 4 (211, v2)

31 : 2(Vl) A n(v1, v)ly(v) It(v) lis(v) m(v) jTz(v1, v2)

output
struct . ss,o,o SS,o,l X s5,0,2 X

. ..?a...

y+@ j& 0-A
..*.. 4 .:

y-u1 n @ Y - ‘111 n, u.1 i). 0 (I ,:;:;,::r. 21.0
‘. b 0 ‘.. . ..’ ,:

coerced
struct. St?,0 &,l X se,2

y+@ 4& 0-A Y- Ul
n

U y-o-Q . . ?L@

Figure 5: The first application of the improved transformer for statement st4: x = x->n in reverse.

ure 5, and individual u E lJs5, we have:

4&“)(~5, bJ -+ ul)
= Z(3Vl : z(w) A n(v1, v))(S5, [v --) U])

= n Z(Z(Vl) A n(v1, v))(S5, [v + U, Vl + 21’1)

u’E{u,u1)

+(m) A n(vl, v))(s5, [v -+ U, VI + U])

= I-I .+(vl) A n(w, v)>(s5, [v + U, VI + UI])

(

42(Vl)(S5, [v -+ U, VI + U])

= u z(n(v1, v))(S5, [v + U, Vl + U])) >

I-I z(z(w) A ~(vI, v))(ss, [v + U, VI + ~11)

({Ss) u ({U, Ul), +[n(U, 4 * 01))

= n r+(w) A n(w, v))(Ss, [v + u, VI + UI])

= {Ss} n z(~(vr) A n(v1, v))(Ss, [v + u, vi + ~11)

= {ss] I-I (u *(n(vr, v),(&, [v + L, vr + u1]))
(z(z(vl))(ss [v + U 211 --) Ul])

= (Ss} l-l +qVl, 4)(S5, [v --) U, Vl + w])

>

= {Ss} n ({U, Ul}, +(Ul, U) I-+ 01)

= {({U,%}, +[n(Ul,U) I+ 01))
= {%f,Ol

Similarly, 0((0:~~)(S5, [v + ~1) = {&,f,l}. Cl

Remark. In Definition 5.6 we have ignored the case of for-
mulae that include the transitive-closure operator. This was
done both for notational simplicity, and because such formu-
lae are not useful in the various predicate-update formulae cpi”
employed by the abstract semantics. It is possible to handle
such formulae by enumerating structures in which formulae
evaluate to definite values. 0

The algorithm for focus, called Focus, is shown in Figure 6.
When all of structure S’s individuals have definite values for
I&(V), Focus returns {S}; when S has an individual u that has
an indefinite value for cp:“(v), Focus applies z and o to gener-
ate structures in which the indefiniteness is removed, and then
recursively applies Focus to each of the structures generated.
The call on auxiliary function Expand creates a structure in

function Focus(S : 3-STRUCT[P], 9$(v): Formula)
returns 2s-CsTnrJCW~s(FN
begin

if there exists u E Us s.t. [&“]z([v C) u]) = l/2 then

let u.0 and u.l be individuals not in Us
and S’ = o(cp:“(v))(z(cp:t(v))(Expand(S, q~0,u.l)

[v c) u.11)
[v +) 4>,

and XS =
z($u))(S, [v H 4)

; $“= (u))(S, [u I+ 4

in return u Focus(S)‘, cp$ (v))
S”EXS

else return {S}
end

function Expand(S : 3-STRUCT[P], u, ~0, u.1: elements)
returns 3-STRUCT[P]

if u’ = 21.0 V u’ = u.1 let m = Xu’. :I otherwise
{

in

return (VS - {?J}) u (u.0, ‘1L.l)
xp.xui,. . . 7 m.LSb)(m(Ul), . . . T m(Uk)) >

Figure 6: An algorithm for ~ocus~:~(,).

which individual u is bifurcated into two individuals; this cap-
tures the essence of shape-node materialization (cf. [19]).

Example 5.8 Consider the application of Focus to the struc-
ture S5 from Figure 5 and the formula ‘pzt4. By Example 5.7,
z(cpgt4)(Ss, 2) yields the singleton set {Ss,f,o} and o(&“~)(SS, 2)
yields the singleton set {Ss,f,i}. By a similar derivation,
o(pzt4 (v))(z((p:t4(v))(Expand(S, 21, u.0, u.l), [v I+ u.O]), [v I+
u.11) yields the singleton set {Ss,f,2}. Thus, the result of
Focus(Sa, cp$‘) is the set {Ss,f,o,Ss,f,l,S5,f,2}. 0

115

© 2011 Stephen Chong, Harvard University

Focus example

18

. .
input 4 ;

struct. s5

focus
a

formulae {$+(2)) = 31 : 2(w) A n(tJ1, v), &qv) = y(v), cp;“yv> = t(v)}

focused
struct. %f,O &4(u) = 0 %f,l ‘pg4 (u) = 1 S&f,2 cp:t’(u) = 1 &‘(21) = 0

..m.

x,,_@ 4d x,y_@_R x,y_o~~-_:::::::::~.~

update ‘pct4 (v) PO; t 4(v) $4 t
formulae

4(v) t t (PL4 (v) cp:4 (v) t cp; 4 (211, v2)

31 : 2(Vl) A n(v1, v)ly(v) It(v) lis(v) m(v) jTz(v1, v2)

output
struct . ss,o,o SS,o,l X s5,0,2 X

. ..?a...

y+@ j& 0-A
..*.. 4 .:

y-u1 n @ Y - ‘111 n, u.1 i). 0 (I ,:;:;,::r. 21.0
‘. b 0 ‘.. . ..’ ,:

coerced
struct. St?,0 &,l X se,2

y+@ 4& 0-A Y- Ul
n

U y-o-Q . . ?L@

Figure 5: The first application of the improved transformer for statement st4: x = x->n in reverse.

ure 5, and individual u E lJs5, we have:

4&“)(~5, bJ -+ ul)
= Z(3Vl : z(w) A n(v1, v))(S5, [v --) U])

= n Z(Z(Vl) A n(v1, v))(S5, [v + U, Vl + 21’1)

u’E{u,u1)

+(m) A n(vl, v))(s5, [v -+ U, VI + U])

= I-I .+(vl) A n(w, v)>(s5, [v + U, VI + UI])

(

42(Vl)(S5, [v -+ U, VI + U])

= u z(n(v1, v))(S5, [v + U, Vl + U])) >

I-I z(z(w) A ~(vI, v))(ss, [v + U, VI + ~11)

({Ss) u ({U, Ul), +[n(U, 4 * 01))

= n r+(w) A n(w, v))(Ss, [v + u, VI + UI])

= {Ss} n z(~(vr) A n(v1, v))(Ss, [v + u, vi + ~11)

= {ss] I-I (u *(n(vr, v),(&, [v + L, vr + u1]))
(z(z(vl))(ss [v + U 211 --) Ul])

= (Ss} l-l +qVl, 4)(S5, [v --) U, Vl + w])

>

= {Ss} n ({U, Ul}, +(Ul, U) I-+ 01)

= {({U,%}, +[n(Ul,U) I+ 01))
= {%f,Ol

Similarly, 0((0:~~)(S5, [v + ~1) = {&,f,l}. Cl

Remark. In Definition 5.6 we have ignored the case of for-
mulae that include the transitive-closure operator. This was
done both for notational simplicity, and because such formu-
lae are not useful in the various predicate-update formulae cpi”
employed by the abstract semantics. It is possible to handle
such formulae by enumerating structures in which formulae
evaluate to definite values. 0

The algorithm for focus, called Focus, is shown in Figure 6.
When all of structure S’s individuals have definite values for
I&(V), Focus returns {S}; when S has an individual u that has
an indefinite value for cp:“(v), Focus applies z and o to gener-
ate structures in which the indefiniteness is removed, and then
recursively applies Focus to each of the structures generated.
The call on auxiliary function Expand creates a structure in

function Focus(S : 3-STRUCT[P], 9$(v): Formula)
returns 2s-CsTnrJCW~s(FN
begin

if there exists u E Us s.t. [&“]z([v C) u]) = l/2 then

let u.0 and u.l be individuals not in Us
and S’ = o(cp:“(v))(z(cp:t(v))(Expand(S, q~0,u.l)

[v c) u.11)
[v +) 4>,

and XS =
z($u))(S, [v H 4)

; $“= (u))(S, [u I+ 4

in return u Focus(S)‘, cp$ (v))
S”EXS

else return {S}
end

function Expand(S : 3-STRUCT[P], u, ~0, u.1: elements)
returns 3-STRUCT[P]

if u’ = 21.0 V u’ = u.1 let m = Xu’. :I otherwise
{

in

return (VS - {?J}) u (u.0, ‘1L.l)
xp.xui,. . . 7 m.LSb)(m(Ul), . . . T m(Uk)) >

Figure 6: An algorithm for ~ocus~:~(,).

which individual u is bifurcated into two individuals; this cap-
tures the essence of shape-node materialization (cf. [19]).

Example 5.8 Consider the application of Focus to the struc-
ture S5 from Figure 5 and the formula ‘pzt4. By Example 5.7,
z(cpgt4)(Ss, 2) yields the singleton set {Ss,f,o} and o(&“~)(SS, 2)
yields the singleton set {Ss,f,i}. By a similar derivation,
o(pzt4 (v))(z((p:t4(v))(Expand(S, 21, u.0, u.l), [v I+ u.O]), [v I+
u.11) yields the singleton set {Ss,f,2}. Thus, the result of
Focus(Sa, cp$‘) is the set {Ss,f,o,Ss,f,l,S5,f,2}. 0

115

© 2011 Stephen Chong, Harvard University

Focus example

19

© 2011 Stephen Chong, Harvard University

Region-based shape analysis with
tracked locations

•Hackett and Rugina, POPL 05
•Key idea: reason about one location at a time
•Allows a decomposition of a state into a set of

tracked locations
•Reason about each tracked location independently of
others
•Better scalability, compact representation, context-sensitive
analysis
•No need to merge abstractions, or keep multiple
abstractions of entire heap

• Easier on-demand and incremental algorithms
20

© 2011 Stephen Chong, Harvard University

Memory regions

•Analysis builds on top of a region analysis
•Each region represents a set of concrete locations
•Each concrete location represented by exactly one

region
•Points-to relation over regions must be sound
•Can use a variety of region analyses
• E.g., flow-sensitive or insensitive

• In paper, they use a flow-insensitive, context-sensitive
analysis that uses an intra-procedural unification-based
analysis, and uses procedure summaries for an
interprocedural analysis

21

© 2011 Stephen Chong, Harvard University

Configurations and shape abstractions

• A configuration is (i, (e +, e-))
• i is index, a function from regions to {0,…,k,∞}

• i(r) = How many locations in r point to tracked location
‣ ∞ means ≥ k+1

• e+ is hit set: expressions that definitely refer to tracked location

• e- is miss set: expressions that definitely do not refer to tracked location

• A shape abstraction is a set of configurations
• at most one configuration for each index

• each concrete location should be represented by at least one
configuration

• Treat shape abstraction as partial function from indexes to hit/miss sets

22

1: typedef struct list {
2: struct list *n;
3: int data;
4: } List;
5:
6: List *splice(List *x, List *y) {
7: List *t = NULL;
8: List *z = y;
9: while(x != NULL) {

10: t = x;
11: x = t->n;
12: t->n = y->n;
13: y->n = t;
14: y = y->n->n;
15: }
16: return z;
17: }

Figure 2: Example program: splicing lists

one incoming reference from region L, and is referenced by t, but
any expression originating from L (i.e., next pointers) may either
reference it or fail to reference it. Although we could have used
richer sets of miss expressions, these abstractions are sufficient for
our algorithm to prove the shape property.
These abstractions are complete: the set of all configurations in

each abstraction provides a characterization of the entire heap. In-
deed, if the tracked location is any of the five heap cells, there is a
configuration that characterizes it. But although their sum collec-
tively describes the entire heap, configurations are independent: the
state described by any particular configuration is not related to the
other configurations; it characterizes one heap location and has no
knowledge about the state of the rest of the heap (beyond what is
given by the points-to graph). This is the key property that enables
local reasoning.

2.2 Analysis of Splice
Figure 5 shows the analysis result that our algorithm computes

at each point in the program. This shape abstraction builds on the
region points-to abstraction from the previous section. Boxes in the
figure represent individual configurations; each row represents the
entire heap abstraction at a program point; and edges correlate the
state of the tracked location before and after each statement. There-
fore, each path shows how the state of the tracked location changes
during program execution. For readability, we omit wrap-around
edges that connect configurations from the end to the beginning of
the loop. Also, we omit individual variables from hit and miss sets,
and show just the field accesses expressions. We use the abbrevia-
tions: tn≡ t->n and yn≡ y->n, and indicate miss expressions us-
ing overlines. Our algorithm efficiently computes this result using
a worklist algorithm that processes individual configurations (i.e.,
individual nodes), rather full heap abstractions (i.e., entire rows).
The top row shows three configurations, Y1, L1, and X1, that

describe the memory for any input where x and y point to acyclic
lists. The bottom row consists of configurations Z1 and L1, and
shows that at the end of the procedure the returned value z points to
an acyclic list. Hence, the analysis successfully verifies the desired
shape property.
We discuss the analysis of several configurations to illustrate

how the analysis performs local reasoning. Consider the configura-
tion Y1Z1 before the statement at line 11, x=t->n. The compiler
inspects this assignment and tries to determine whether or not the
expressions in the left- and right-hand side reference the tracked lo-

Example concrete input Corresponding output

y

x

t

z

y

x

t

z

Figure 3: Example concrete memories

Region Shape Component
Points-to Configurations Configurations
Component for input memory for output memory

T

X

Y

Z
L

n
(X1, {x}, ∅)
(Y1, {y}, ∅)
(L1, ∅, ∅)

(Z1, {z}, ∅)
(T1 L1, {t}, ∅)
(Y1 L1, {y}, ∅)
(L1, ∅, ∅)

Figure 4: Memory abstraction

cation: if the right side references the location, the assignment may
add a new reference to it; and if the left side points to the tracked lo-
cation, the assignment may remove a reference to it. For x=t->n,
the analysis determines that x represents a location in region X, and
t->n is a location in region L, as indicated by the points-to graph.
But the reference counts in the current configuration show that the
tracked location has no references from regions X or L; hence, it
concludes that neither x, nor t->n reference the tracked location
and this assignment doesn’t affect its reference counts.
Consider now the configuration L1 at the same program point,

before line 11. The compiler can use the same judgment as above to
determine that x does not reference the tracked location. However,
it is not able to determine whether or not t->n references it. At
this point, the compiler bifurcates the current configuration into two
configurations where this fact is precisely known: one where t->n
references the location and one where it doesn’t. In each case, it
adds t->n to the corresponding hit or miss set, and analyzes the
assignment. The resulting two configurations L1 and X1L1 after
line 11 are the successors of the analyzed configuration L1.
Keeping track of hit and miss sets provides invaluable informa-

tion to the analysis. Consider configuration L1 before statement
t->n=y->n. The analysis of this statement yields a configuration
L2, where the tracked location has two incoming references from
L and violates the desired shape property. However, the analysis
identifies that the reference y->n is being copied, so it adds y->n
to the hit set of configuration L2. At the next assignment, y->n=t,
the analysis identifies that the same expression y->n is being over-
written. The presence of y->n in the hit set enables the analysis to
accurately decrease the reference count from L back to 1.

2.3 Cyclic and Shared Inputs
Analyzing the behavior of splice for cyclic or shared input

lists provides key insights about why the local reasoning about the
single location works. The left part of Figure 6 shows an input
store where the list pointed to by y contains a cycle; the right part
shows the resulting memory after running splicewith this input.

312

© 2011 Stephen Chong, Harvard University

Example

23

1: typedef struct list {
2: struct list *n;
3: int data;
4: } List;
5:
6: List *splice(List *x, List *y) {
7: List *t = NULL;
8: List *z = y;
9: while(x != NULL) {

10: t = x;
11: x = t->n;
12: t->n = y->n;
13: y->n = t;
14: y = y->n->n;
15: }
16: return z;
17: }

Figure 2: Example program: splicing lists

one incoming reference from region L, and is referenced by t, but
any expression originating from L (i.e., next pointers) may either
reference it or fail to reference it. Although we could have used
richer sets of miss expressions, these abstractions are sufficient for
our algorithm to prove the shape property.
These abstractions are complete: the set of all configurations in

each abstraction provides a characterization of the entire heap. In-
deed, if the tracked location is any of the five heap cells, there is a
configuration that characterizes it. But although their sum collec-
tively describes the entire heap, configurations are independent: the
state described by any particular configuration is not related to the
other configurations; it characterizes one heap location and has no
knowledge about the state of the rest of the heap (beyond what is
given by the points-to graph). This is the key property that enables
local reasoning.

2.2 Analysis of Splice
Figure 5 shows the analysis result that our algorithm computes

at each point in the program. This shape abstraction builds on the
region points-to abstraction from the previous section. Boxes in the
figure represent individual configurations; each row represents the
entire heap abstraction at a program point; and edges correlate the
state of the tracked location before and after each statement. There-
fore, each path shows how the state of the tracked location changes
during program execution. For readability, we omit wrap-around
edges that connect configurations from the end to the beginning of
the loop. Also, we omit individual variables from hit and miss sets,
and show just the field accesses expressions. We use the abbrevia-
tions: tn≡ t->n and yn≡ y->n, and indicate miss expressions us-
ing overlines. Our algorithm efficiently computes this result using
a worklist algorithm that processes individual configurations (i.e.,
individual nodes), rather full heap abstractions (i.e., entire rows).
The top row shows three configurations, Y1, L1, and X1, that

describe the memory for any input where x and y point to acyclic
lists. The bottom row consists of configurations Z1 and L1, and
shows that at the end of the procedure the returned value z points to
an acyclic list. Hence, the analysis successfully verifies the desired
shape property.
We discuss the analysis of several configurations to illustrate

how the analysis performs local reasoning. Consider the configura-
tion Y1Z1 before the statement at line 11, x=t->n. The compiler
inspects this assignment and tries to determine whether or not the
expressions in the left- and right-hand side reference the tracked lo-

Example concrete input Corresponding output

y

x

t

z

y

x

t

z

Figure 3: Example concrete memories

Region Shape Component
Points-to Configurations Configurations
Component for input memory for output memory

T

X

Y

Z
L

n
(X1, {x}, ∅)
(Y1, {y}, ∅)
(L1, ∅, ∅)

(Z1, {z}, ∅)
(T1 L1, {t}, ∅)
(Y1 L1, {y}, ∅)
(L1, ∅, ∅)

Figure 4: Memory abstraction

cation: if the right side references the location, the assignment may
add a new reference to it; and if the left side points to the tracked lo-
cation, the assignment may remove a reference to it. For x=t->n,
the analysis determines that x represents a location in region X, and
t->n is a location in region L, as indicated by the points-to graph.
But the reference counts in the current configuration show that the
tracked location has no references from regions X or L; hence, it
concludes that neither x, nor t->n reference the tracked location
and this assignment doesn’t affect its reference counts.
Consider now the configuration L1 at the same program point,

before line 11. The compiler can use the same judgment as above to
determine that x does not reference the tracked location. However,
it is not able to determine whether or not t->n references it. At
this point, the compiler bifurcates the current configuration into two
configurations where this fact is precisely known: one where t->n
references the location and one where it doesn’t. In each case, it
adds t->n to the corresponding hit or miss set, and analyzes the
assignment. The resulting two configurations L1 and X1L1 after
line 11 are the successors of the analyzed configuration L1.
Keeping track of hit and miss sets provides invaluable informa-

tion to the analysis. Consider configuration L1 before statement
t->n=y->n. The analysis of this statement yields a configuration
L2, where the tracked location has two incoming references from
L and violates the desired shape property. However, the analysis
identifies that the reference y->n is being copied, so it adds y->n
to the hit set of configuration L2. At the next assignment, y->n=t,
the analysis identifies that the same expression y->n is being over-
written. The presence of y->n in the hit set enables the analysis to
accurately decrease the reference count from L back to 1.

2.3 Cyclic and Shared Inputs
Analyzing the behavior of splice for cyclic or shared input

lists provides key insights about why the local reasoning about the
single location works. The left part of Figure 6 shows an input
store where the list pointed to by y contains a cycle; the right part
shows the resulting memory after running splicewith this input.

312

1: typedef struct list {
2: struct list *n;
3: int data;
4: } List;
5:
6: List *splice(List *x, List *y) {
7: List *t = NULL;
8: List *z = y;
9: while(x != NULL) {

10: t = x;
11: x = t->n;
12: t->n = y->n;
13: y->n = t;
14: y = y->n->n;
15: }
16: return z;
17: }

Figure 2: Example program: splicing lists

one incoming reference from region L, and is referenced by t, but
any expression originating from L (i.e., next pointers) may either
reference it or fail to reference it. Although we could have used
richer sets of miss expressions, these abstractions are sufficient for
our algorithm to prove the shape property.
These abstractions are complete: the set of all configurations in

each abstraction provides a characterization of the entire heap. In-
deed, if the tracked location is any of the five heap cells, there is a
configuration that characterizes it. But although their sum collec-
tively describes the entire heap, configurations are independent: the
state described by any particular configuration is not related to the
other configurations; it characterizes one heap location and has no
knowledge about the state of the rest of the heap (beyond what is
given by the points-to graph). This is the key property that enables
local reasoning.

2.2 Analysis of Splice
Figure 5 shows the analysis result that our algorithm computes

at each point in the program. This shape abstraction builds on the
region points-to abstraction from the previous section. Boxes in the
figure represent individual configurations; each row represents the
entire heap abstraction at a program point; and edges correlate the
state of the tracked location before and after each statement. There-
fore, each path shows how the state of the tracked location changes
during program execution. For readability, we omit wrap-around
edges that connect configurations from the end to the beginning of
the loop. Also, we omit individual variables from hit and miss sets,
and show just the field accesses expressions. We use the abbrevia-
tions: tn≡ t->n and yn≡ y->n, and indicate miss expressions us-
ing overlines. Our algorithm efficiently computes this result using
a worklist algorithm that processes individual configurations (i.e.,
individual nodes), rather full heap abstractions (i.e., entire rows).
The top row shows three configurations, Y1, L1, and X1, that

describe the memory for any input where x and y point to acyclic
lists. The bottom row consists of configurations Z1 and L1, and
shows that at the end of the procedure the returned value z points to
an acyclic list. Hence, the analysis successfully verifies the desired
shape property.
We discuss the analysis of several configurations to illustrate

how the analysis performs local reasoning. Consider the configura-
tion Y1Z1 before the statement at line 11, x=t->n. The compiler
inspects this assignment and tries to determine whether or not the
expressions in the left- and right-hand side reference the tracked lo-

Example concrete input Corresponding output

y

x

t

z

y

x

t

z

Figure 3: Example concrete memories

Region Shape Component
Points-to Configurations Configurations
Component for input memory for output memory

T

X

Y

Z
L

n
(X1, {x}, ∅)
(Y1, {y}, ∅)
(L1, ∅, ∅)

(Z1, {z}, ∅)
(T1 L1, {t}, ∅)
(Y1 L1, {y}, ∅)
(L1, ∅, ∅)

Figure 4: Memory abstraction

cation: if the right side references the location, the assignment may
add a new reference to it; and if the left side points to the tracked lo-
cation, the assignment may remove a reference to it. For x=t->n,
the analysis determines that x represents a location in region X, and
t->n is a location in region L, as indicated by the points-to graph.
But the reference counts in the current configuration show that the
tracked location has no references from regions X or L; hence, it
concludes that neither x, nor t->n reference the tracked location
and this assignment doesn’t affect its reference counts.
Consider now the configuration L1 at the same program point,

before line 11. The compiler can use the same judgment as above to
determine that x does not reference the tracked location. However,
it is not able to determine whether or not t->n references it. At
this point, the compiler bifurcates the current configuration into two
configurations where this fact is precisely known: one where t->n
references the location and one where it doesn’t. In each case, it
adds t->n to the corresponding hit or miss set, and analyzes the
assignment. The resulting two configurations L1 and X1L1 after
line 11 are the successors of the analyzed configuration L1.
Keeping track of hit and miss sets provides invaluable informa-

tion to the analysis. Consider configuration L1 before statement
t->n=y->n. The analysis of this statement yields a configuration
L2, where the tracked location has two incoming references from
L and violates the desired shape property. However, the analysis
identifies that the reference y->n is being copied, so it adds y->n
to the hit set of configuration L2. At the next assignment, y->n=t,
the analysis identifies that the same expression y->n is being over-
written. The presence of y->n in the hit set enables the analysis to
accurately decrease the reference count from L back to 1.

2.3 Cyclic and Shared Inputs
Analyzing the behavior of splice for cyclic or shared input

lists provides key insights about why the local reasoning about the
single location works. The left part of Figure 6 shows an input
store where the list pointed to by y contains a cycle; the right part
shows the resulting memory after running splicewith this input.

312

function and Ep is the finite set of program expressions, then the
domains are:

Index values: i ∈ I = R → {0, . . . , k,∞}
Secondary values: h ∈ H = P(Ep) × P(Ep)
Configurations: c ∈ C = I × H

Each index value i gives the reference counts for each region. We
bound the reference counts to a fixed value k, to ensure that the
abstraction is finite. For each region r ∈ dom(i), the number i(r)
is the number of references to the tracked location from region r:
if i(r) ∈ 0..k, then the reference count is exactly i(r); otherwise,
if i(r) = ∞, the reference count is k + 1 or greater. In practice,
we found a low value k = 2 to be precise enough for all of the
programs that we experimented with. We emphasize that k is the
maximum reference count from each region; however, there can be
many more references to the tracked object, as long as they come
from different regions. Finally, each secondary value h ∈ H is a
pair h = (e+, e−), where e+ is the hit set and e− is the miss set.
The full shape abstraction consists of a set of configurations, with

at most one configuration for each index value. In other words, the
abstraction is a partial map from index values to secondary values.
We represent it as a total function that maps the undefined indices
to a bottom value ⊥:

Shape abstraction: a ∈ A = I → (H ∪ {⊥})

We define a lattice domain over the abstract domain, as follows.
The bottom element is a⊥ = λi.⊥, meaning that no configuration
is possible. The top element is a# = λi.(∅, ∅), meaning that any
index is feasible and, for each index, any expression can either ref-
erence or fail to reference the tracked location. Given a1, a2 ∈ A,
their join a1 (a2 is:

(a1 (a2)(i) =

8
<

:

a1(i) if i)∈ dom(a2)
a2(i) if i)∈ dom(a1)
a1(i) (a2(i) if i ∈ dom(a1) ∩ dom(a2)

where (e+
1 , e−1) ((e+

2 , e−2) = (e+
1 ∩ e+

2 , e−1 ∩ e−2)
and ⊥ ((e+, e−) = (e+, e−) (⊥ = (e+, e−)

The merge operator (is overloaded and applies to both A andH ∪
{⊥}; one can infer which operator is being used from its context.
We denote by + the partial order that corresponds to (.

5.2 Intra-Procedural Analysis
We present the dataflow equations, the transfer functions for as-

signments, malloc, and free, and then give formal results.

5.2.1 Dataflow Equations
We formulate the analysis of each function in the program as a

dataflow analysis that computes a shape abstraction a ∈ A at each
program point in the function. The algorithm differs from standard
approaches in two ways. First, it uses a system of dataflow equa-
tions and a corresponding worklist algorithm that operate at the
granularity of individual configurations, rather than entire heap ab-
stractions (i.e., sets of configurations). Second, the dataflow infor-
mation is being initialized not only at the entry point in the control-
flow, but also at each allocation site, where the analysis produces a
new configuration for the newly created memory location.
Let Sasgn be the set of assignments in the program, and Salloc ⊆

Sasgn the set of allocation assignments. For each assignment s ∈
Sasgn, we define two program points: •s is the program point be-
fore s and s• is the program point after s. Let Sentry ⊆ Sasgn be
the set of assignments that occur at the beginning of the currently
analyzed function (i.e., assignments reachable from the function

For all s ∈ Sasgn, sa ∈ Salloc, se ∈ Sentry , i ∈ I :

[JOIN] Res(•s) i =
F

s′∈pred(s) Res(s
′•) i

[TRANSF] Res(s•) i =
F

i′∈I([[s]](ρ, (i′, Res(•s) i′))) i

[ALLOC] Res(sa•) ia - ha, where [[sa]]gen(ρ) = (ia, ha)

[ENTRY] Res(•se) i - ao i

Figure 8: Intra-procedural dataflow equations.

entry point without going through other assignments), and let pred
and succmap assignments to their predecessor or successor assign-
ments in the control flow (these can be easily computed from the
syntactic structure of control statements).
We model the analysis of individual assignments using transfer

functions that operate at the level of individual configurations. The
transfer function [[s]] of a statement s ∈ Sasgn takes the current
region abstract store ρ and a configuration c ∈ C before the state-
ment to produce the set of possible configurations after the state-
ment: [[s]](ρ, c) ∈ A. Furthermore, for each allocation s ∈ Salloc,
there is a new configuration [[s]]gen(ρ) ∈ C being generated.
The result of the analysis is a function Res that maps each pro-

gram point to the shape abstraction at that point. Figure 8 shows
the dataflow equations that describe Res. In this figure, ρ is the re-
gion store for the currently analyzed function and a0 ∈ A is the
boundary dataflow information at the function entry point. Equa-
tions [JOIN], [TRANSF], and [ENTRY] are standard dataflow equa-
tions, but are being expressed such that they expose individual con-
figurations and their dependencies. Equation [ALLOC] indicates
that the analysis always generates a configuration for the new loca-
tion, regardless of the abstraction before the allocation statement.
This formulation allows us to build an efficient worklist algo-

rithm for solving the dataflow equations. Instead of computing
transfer functions for entire heap abstractions when the informa-
tion at a program point has changed, we only need to recompute
it for those indices whose secondary values have changed. Rather
than being entire program statements, worklist elements are state-
ments paired with indices. Using a worklist with this finer level of
granularity serves to decrease the amount of work required to find
the least fixed point.
The worklist algorithm is shown in Figure 9. Lines 1-14 perform

the initialization: they set the value of Res at entry points (lines 4-7)
and at allocation sites (lines 8-14), and initialize it to a⊥ at all other
program points (lines 2-3). The algorithm also initializes the work-
list, at lines 1, 7, and 14. Then, it processes the worklist using the
loop between lines 16-22. At each iteration, it removes a statement
and an index from the worklist, and applies the transfer function
of the statement for that particular index. Finally, the algorithm
updates the information for all successors, but only for the indices
whose secondary values have changed (lines 19-21). Then, it adds
the corresponding pair of successor statement and index value to
the worklist, at line 22.

5.2.2 Decision and Stability Functions
To simplify the formal definition of transfer functions, we in-

troduce several evaluation functions for expressions. First, we use
a location evaluation function L[[e]] that evaluates an expression e
to the region that holds the location of e. The function is not de-
fined for expressions that do not represent l-values (&e and null).

315

© 2011 Stephen Chong, Harvard University

Intra-procedural analysis

24

function and Ep is the finite set of program expressions, then the
domains are:

Index values: i ∈ I = R → {0, . . . , k,∞}
Secondary values: h ∈ H = P(Ep) × P(Ep)
Configurations: c ∈ C = I × H

Each index value i gives the reference counts for each region. We
bound the reference counts to a fixed value k, to ensure that the
abstraction is finite. For each region r ∈ dom(i), the number i(r)
is the number of references to the tracked location from region r:
if i(r) ∈ 0..k, then the reference count is exactly i(r); otherwise,
if i(r) = ∞, the reference count is k + 1 or greater. In practice,
we found a low value k = 2 to be precise enough for all of the
programs that we experimented with. We emphasize that k is the
maximum reference count from each region; however, there can be
many more references to the tracked object, as long as they come
from different regions. Finally, each secondary value h ∈ H is a
pair h = (e+, e−), where e+ is the hit set and e− is the miss set.
The full shape abstraction consists of a set of configurations, with

at most one configuration for each index value. In other words, the
abstraction is a partial map from index values to secondary values.
We represent it as a total function that maps the undefined indices
to a bottom value ⊥:

Shape abstraction: a ∈ A = I → (H ∪ {⊥})

We define a lattice domain over the abstract domain, as follows.
The bottom element is a⊥ = λi.⊥, meaning that no configuration
is possible. The top element is a# = λi.(∅, ∅), meaning that any
index is feasible and, for each index, any expression can either ref-
erence or fail to reference the tracked location. Given a1, a2 ∈ A,
their join a1 (a2 is:

(a1 (a2)(i) =

8
<

:

a1(i) if i)∈ dom(a2)
a2(i) if i)∈ dom(a1)
a1(i) (a2(i) if i ∈ dom(a1) ∩ dom(a2)

where (e+
1 , e−1) ((e+

2 , e−2) = (e+
1 ∩ e+

2 , e−1 ∩ e−2)
and ⊥ ((e+, e−) = (e+, e−) (⊥ = (e+, e−)

The merge operator (is overloaded and applies to both A andH ∪
{⊥}; one can infer which operator is being used from its context.
We denote by + the partial order that corresponds to (.

5.2 Intra-Procedural Analysis
We present the dataflow equations, the transfer functions for as-

signments, malloc, and free, and then give formal results.

5.2.1 Dataflow Equations
We formulate the analysis of each function in the program as a

dataflow analysis that computes a shape abstraction a ∈ A at each
program point in the function. The algorithm differs from standard
approaches in two ways. First, it uses a system of dataflow equa-
tions and a corresponding worklist algorithm that operate at the
granularity of individual configurations, rather than entire heap ab-
stractions (i.e., sets of configurations). Second, the dataflow infor-
mation is being initialized not only at the entry point in the control-
flow, but also at each allocation site, where the analysis produces a
new configuration for the newly created memory location.
Let Sasgn be the set of assignments in the program, and Salloc ⊆

Sasgn the set of allocation assignments. For each assignment s ∈
Sasgn, we define two program points: •s is the program point be-
fore s and s• is the program point after s. Let Sentry ⊆ Sasgn be
the set of assignments that occur at the beginning of the currently
analyzed function (i.e., assignments reachable from the function

For all s ∈ Sasgn, sa ∈ Salloc, se ∈ Sentry , i ∈ I :

[JOIN] Res(•s) i =
F

s′∈pred(s) Res(s
′•) i

[TRANSF] Res(s•) i =
F

i′∈I([[s]](ρ, (i′, Res(•s) i′))) i

[ALLOC] Res(sa•) ia - ha, where [[sa]]gen(ρ) = (ia, ha)

[ENTRY] Res(•se) i - ao i

Figure 8: Intra-procedural dataflow equations.

entry point without going through other assignments), and let pred
and succmap assignments to their predecessor or successor assign-
ments in the control flow (these can be easily computed from the
syntactic structure of control statements).
We model the analysis of individual assignments using transfer

functions that operate at the level of individual configurations. The
transfer function [[s]] of a statement s ∈ Sasgn takes the current
region abstract store ρ and a configuration c ∈ C before the state-
ment to produce the set of possible configurations after the state-
ment: [[s]](ρ, c) ∈ A. Furthermore, for each allocation s ∈ Salloc,
there is a new configuration [[s]]gen(ρ) ∈ C being generated.
The result of the analysis is a function Res that maps each pro-

gram point to the shape abstraction at that point. Figure 8 shows
the dataflow equations that describe Res. In this figure, ρ is the re-
gion store for the currently analyzed function and a0 ∈ A is the
boundary dataflow information at the function entry point. Equa-
tions [JOIN], [TRANSF], and [ENTRY] are standard dataflow equa-
tions, but are being expressed such that they expose individual con-
figurations and their dependencies. Equation [ALLOC] indicates
that the analysis always generates a configuration for the new loca-
tion, regardless of the abstraction before the allocation statement.
This formulation allows us to build an efficient worklist algo-

rithm for solving the dataflow equations. Instead of computing
transfer functions for entire heap abstractions when the informa-
tion at a program point has changed, we only need to recompute
it for those indices whose secondary values have changed. Rather
than being entire program statements, worklist elements are state-
ments paired with indices. Using a worklist with this finer level of
granularity serves to decrease the amount of work required to find
the least fixed point.
The worklist algorithm is shown in Figure 9. Lines 1-14 perform

the initialization: they set the value of Res at entry points (lines 4-7)
and at allocation sites (lines 8-14), and initialize it to a⊥ at all other
program points (lines 2-3). The algorithm also initializes the work-
list, at lines 1, 7, and 14. Then, it processes the worklist using the
loop between lines 16-22. At each iteration, it removes a statement
and an index from the worklist, and applies the transfer function
of the statement for that particular index. Finally, the algorithm
updates the information for all successors, but only for the indices
whose secondary values have changed (lines 19-21). Then, it adds
the corresponding pair of successor statement and index value to
the worklist, at line 22.

5.2.2 Decision and Stability Functions
To simplify the formal definition of transfer functions, we in-

troduce several evaluation functions for expressions. First, we use
a location evaluation function L[[e]] that evaluates an expression e
to the region that holds the location of e. The function is not de-
fined for expressions that do not represent l-values (&e and null).

315

8: z = y;

9: while (x != NULL)

10: t = x;

11: x = t->n;

12: t->n = y->n;

13: y->n = t;

14: y = y->n->n;

16: return z;

Y1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z1

X1

X1

X1

X1T1

T1

T1

T1L1

yn

T1L1

T1L1

L2

tn yn

Y1T1L1

L1

L1

L1

L1

L1

tn

L1

tn yn

L1

yn

L1

L1

Y1L1

Y1L1

Y1L1

tn

Y1L1

tn yn

Y1L1

yn

Y1L1

Y1T1L1

Y1L2

tn yn

X1L1

tn

X1L1

tn yn X1

X1

X1

X1Y1L1

tn

X1Y1L1

tn yn X1Y1

X1Y1

Loop

Figure 5: Shape analysis results for splice. Boxes represent configurations and edges show how the state of the tracked location
changes during the execution. We only show field access expressions in the hit and miss sets. We use the abbreviations: tn≡ t->n
and yn≡ y->n, and we indicate miss expressions using overlines. For readability, back edges from configurations at the end of the
loop to the corresponding configurations at the beginning of the loop are omitted.

A closer look at the input structure reveals that the cycle is caused
by the presence of one shared cell with two incoming references,
the shaded cell. If we inspect the output structure we see that it is
also a cyclic list. The interesting fact is not that splice yields a
cyclic output given a cyclic input; but rather that the shaded cell that
causes the input cycle is exactly the same cell that causes the cycle
in the output. Therefore, reasoning about cycles requires reasoning
just about this particular cell. All of the other cells in this structure
behave as in the acyclic case.
To build the abstraction for the cyclic input from Figure 6, we

can use the previous abstraction, and augment it with one additional
configuration L2 to describe the cell in question. The analysis of
the abstraction for the cyclic input will yield a configuration graph
similar to the one from Figure 5, but augmented with additional
paths that originate at the L2 configuration. These paths describe
the state of the shared cell through the program. One can examine
the input-output relationships in the result graph, and identify that
the shared cell in the input (L2) may remain shared, but all of the
non-shared cells in the input (X1, Y1, and L1) will remain non-
shared in the output.
In fact, the analysis of the cyclic case can reuse all of the analysis

result from the acyclic case. This is possible because the analysis
of each configuration in Figure 5 reasons only about one location,
and makes no assumption about the presence or absence of cycles
in the rest of the structure. Hence, those results directly apply to
cyclic inputs; they characterize the “acyclic portion” of the cyclic
input. Similar situations arise for inputs that have shared sublists,
or inputs where one list is a sublist of the other.
This discussion brings us to the inter-procedural analysis, the

main obstacle in building scalable analyses. The example shows
that our abstraction allows us to efficiently build an inter-procedural
context-sensitive analysis, where the analysis of each calling con-
text can reuse results from other contexts. In our example, the anal-

Cyclic input Corresponding output

y

x

z t

z

x

y t

Figure 6: Example cyclic memory

ysis of splice for a cyclic context can reuse the result from an
acyclic context, and do little additional work. And if the cyclic
context is being analyzed first, the result for the acyclic one is al-
ready available. This is possible because we can break down the
entire heap context into finer-grain contexts that are just individual
configurations.

3. A SIMPLE LANGUAGE
To formalize the description of the algorithm, we use the simple

language shown in Figure 7. This is a typeless C-like imperative
language with procedures, dynamic allocation, and explicit deallo-
cation. A program prog maps each procedure to a pair containing
its formal parameters and its body. The only possible values are
pointers to memory locations and null pointers. Dynamic alloca-
tions create structures that contain one memory location for each
field. There is a distinguished first field f1 in each structure; dy-
namic allocations return a pointer to the first field in the newly al-
located structure. The language supports pointers to variables and
pointers into the middle of structures. An expression e.f requires
e to be an l-value representing the first field of a structure; then
e.f is the f field of that structure. A dereference expression ∗e al-

313

© 2011 Stephen Chong, Harvard University

Splice example

25

[[eo ← e1]](ρ, (i, (e+, e−))) :

case (D[[e0]](ρ, (i, (e+, e−))),D[[e1]](ρ, (i, (e+, e−)))) of

(v0 ∈ {−, +}, v1 ∈ {−, +}) ⇒
assign(e0, e1, ρ, i, e+, e−, v0 = +, v1 = +)

(?, v1 ∈ {+,−}) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e0}, e−, true, v1 = +) &
assign(e0, e1, ρ, i, e+, e− ∪ {e0}, false, v1 = +)

(v0 ∈ {−, +}, ?) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e1}, e−, v0 = +, true) &
assign(e0, e1, ρ, i, e+, e− ∪ {e1}, v0 = +, false)

(?, ?) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e0, e1}, e−, true, true) &
assign(e0, e1, ρ, i, e+ ∪ {e0}, e− ∪ {e1}, true, false) &
assign(e0, e1, ρ, i, e+ ∪ {e1}, e− ∪ {e0}, false, true) &
assign(e0, e1, ρ, i, e+, e− ∪ {e0, e1}, false, false)

Figure 10: Transfer function for assignments [[e0 ← e1]].

Next, the analysis derives new hit and miss sets, using the com-
putation between lines 10-20. First, at lines 10 and 11, the analysis
filters out expressions whose referencing relations to the tracked
location no longer hold after the update. For instance, the filtered
set e−n includes from e− only those expressions e that meet one of
the following two conditions:
• S [[e]]v(ρ, r): the value of e is stable with respect to the updated
region r. In that case, e has the same value before and after the
assignment, so it remains in e−;

• S [[e]]l(ρ, r) ∧ ¬b1: the location of e is stable with respect to
r and the assigned value misses the tracked location (i.e., b1 =
false). Hence, the location of e is the same before and after
the assignment, but its value may or may not change. If the
value doesn’t change, e will not reference the tracked location
after the assignment because it didn’t before (e ∈ e−). If the
value changes, the location gets overwritten with a value that
still doesn’t reference the tracked location (as indicated by b1 =
false). Hence, the analysis can conclude that in either case e will
not reference the tracked location and can safely keep e in e−n .

At lines 13 and 14, the analysis tries to add the left-hand side
expression e0 to the hit or miss set. It uses a similar reasoning as
above to determines that e0 is a hit (or miss) expression only if it
is location-stable and the written value hits (or misses) the tracked
location. At lines 16-18, the analysis derives new expressions in
e+

n and e−n by substituting occurrences of ∗e1 with ∗e0 in expres-
sions that do not contain address-of subexpressions. The set E′

p in
this figure represents all program expression that don’t contain the
address-of operator. Once again, substitutions are safe only when
certain stability conditions are met, in this case that e0 and e1 are
both location-stable.
At line 20, the analysis discards from the miss set all those ex-

pressions whose referencing relations can be inferred by the deci-
sion function using region information alone. This allows the anal-
ysis to keep smaller miss sets without losing precision. At the end,
assign produces one configuration for each index in Si. We use the
following notation: if S is a set of indices and h a secondary value,
then (S, h) = λi ∈ I . if (i ∈ S) then h else ⊥.

assign(e0, e1, ρ, i, e+, e−, b0, b1) :

1 r = L[[e0]](ρ)
2 if (b0 ∧ ¬b1) then
3 if (i(r) ≤ k) then Si = { i[r +→ i(r) − 1] }
4 else Si = { i[r +→ k], i[r +→ ∞] }
5 else if (¬b0 ∧ b1) then
6 if (i(r) < k) then Si = { i[r +→ i(r) + 1] }
7 else Si = { i[r +→ ∞] }
8 else Si = { i }
9

10 e+
n = {e ∈ e+ | S [[e]]v(ρ, r) ∨ (S [[e]]l(ρ, r) ∧ b1)}

11 e−n = {e ∈ e− | S [[e]]v(ρ, r) ∨ (S [[e]]l(ρ, r) ∧ ¬b1)}
12
13 if (S [[e0]]l(ρ, r) ∧ b1) then e+

n ∪= {e0}
14 if (S [[e0]]l(ρ, r) ∧ ¬b1) then e−n ∪= {e0}
15
16 if (S [[e0]]l(ρ, r) ∧ S [[e1]]l(ρ, r)) then
17 e+

n ∪= (e+
n [∗e0/∗e1] ∩ E′

p)
18 e−n ∪= (e−n [∗e0/∗e1] ∩ E′

p)
19
20 e−n = {e ∈ e−n | ∀i′ ∈ Si . i′(L[[e]]ρ) = 0}
21

22 return (Si, (e
+
n , e−n))

Figure 11: Helper function assign.

Note that bifurcation can produce up to four cases and each case
may yield up to two configurations. However, there can be at
most three resulting configurations after each assignment, since we
merge configurations with the same index, and the reference count
from the updated region can only increase by one, decrease by one,
or remain unchanged. In the example from Section 2 the analy-
sis of each statement and configuration produces either one or two
configurations.
Finally, transfer functions map configurations with a secondary

value of ⊥ to bottom abstractions a⊥. The same is true for all of
the other transfer functions in the algorithm.

5.2.4 Analysis of Malloc and Free
Figure 12 shows the analysis of dynamic allocation and deallo-

cation statements. The transfer function [[e ← malloc]] works as
follows. First, the effect of the allocation is equivalent to that of a
nullification [[e ← null]] because the tracked location is guaranteed
to be distinct from the fresh location returned by malloc (even if it
happens to be allocated at the same site). Second, since the con-
tents of the fresh location are not initialized, its fields become miss
expressions provided that e is location-stable.
The generating function [[e ← malloc]]gen yields a configuration

(i, c) for the newly created location such that the index i records
a reference count of 1 from the region of e and 0 from all other
regions. The secondary value h records e as a hit expression, and
adds field expressions to the miss set if e is stable.
Finally, the analysis models the transfer function for deallocation

statements [[free(e)]] as a sequence of assignments that nullify each
field of the deallocated structure. This ensures that the analysis
counts references only from valid, allocated locations.

5.2.5 Conditional Branches
The analysis extracts useful information from test conditions in

if and while statements. On the branch where the tested expression

317

© 2011 Stephen Chong, Harvard University

Transfer function for assign

26

[[eo ← e1]](ρ, (i, (e+, e−))) :

case (D[[e0]](ρ, (i, (e+, e−))),D[[e1]](ρ, (i, (e+, e−)))) of

(v0 ∈ {−, +}, v1 ∈ {−, +}) ⇒
assign(e0, e1, ρ, i, e+, e−, v0 = +, v1 = +)

(?, v1 ∈ {+,−}) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e0}, e−, true, v1 = +) &
assign(e0, e1, ρ, i, e+, e− ∪ {e0}, false, v1 = +)

(v0 ∈ {−, +}, ?) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e1}, e−, v0 = +, true) &
assign(e0, e1, ρ, i, e+, e− ∪ {e1}, v0 = +, false)

(?, ?) ⇒
assign(e0, e1, ρ, i, e+ ∪ {e0, e1}, e−, true, true) &
assign(e0, e1, ρ, i, e+ ∪ {e0}, e− ∪ {e1}, true, false) &
assign(e0, e1, ρ, i, e+ ∪ {e1}, e− ∪ {e0}, false, true) &
assign(e0, e1, ρ, i, e+, e− ∪ {e0, e1}, false, false)

Figure 10: Transfer function for assignments [[e0 ← e1]].

Next, the analysis derives new hit and miss sets, using the com-
putation between lines 10-20. First, at lines 10 and 11, the analysis
filters out expressions whose referencing relations to the tracked
location no longer hold after the update. For instance, the filtered
set e−n includes from e− only those expressions e that meet one of
the following two conditions:
• S [[e]]v(ρ, r): the value of e is stable with respect to the updated
region r. In that case, e has the same value before and after the
assignment, so it remains in e−;

• S [[e]]l(ρ, r) ∧ ¬b1: the location of e is stable with respect to
r and the assigned value misses the tracked location (i.e., b1 =
false). Hence, the location of e is the same before and after
the assignment, but its value may or may not change. If the
value doesn’t change, e will not reference the tracked location
after the assignment because it didn’t before (e ∈ e−). If the
value changes, the location gets overwritten with a value that
still doesn’t reference the tracked location (as indicated by b1 =
false). Hence, the analysis can conclude that in either case e will
not reference the tracked location and can safely keep e in e−n .

At lines 13 and 14, the analysis tries to add the left-hand side
expression e0 to the hit or miss set. It uses a similar reasoning as
above to determines that e0 is a hit (or miss) expression only if it
is location-stable and the written value hits (or misses) the tracked
location. At lines 16-18, the analysis derives new expressions in
e+

n and e−n by substituting occurrences of ∗e1 with ∗e0 in expres-
sions that do not contain address-of subexpressions. The set E′

p in
this figure represents all program expression that don’t contain the
address-of operator. Once again, substitutions are safe only when
certain stability conditions are met, in this case that e0 and e1 are
both location-stable.
At line 20, the analysis discards from the miss set all those ex-

pressions whose referencing relations can be inferred by the deci-
sion function using region information alone. This allows the anal-
ysis to keep smaller miss sets without losing precision. At the end,
assign produces one configuration for each index in Si. We use the
following notation: if S is a set of indices and h a secondary value,
then (S, h) = λi ∈ I . if (i ∈ S) then h else ⊥.

assign(e0, e1, ρ, i, e+, e−, b0, b1) :

1 r = L[[e0]](ρ)
2 if (b0 ∧ ¬b1) then
3 if (i(r) ≤ k) then Si = { i[r +→ i(r) − 1] }
4 else Si = { i[r +→ k], i[r +→ ∞] }
5 else if (¬b0 ∧ b1) then
6 if (i(r) < k) then Si = { i[r +→ i(r) + 1] }
7 else Si = { i[r +→ ∞] }
8 else Si = { i }
9

10 e+
n = {e ∈ e+ | S [[e]]v(ρ, r) ∨ (S [[e]]l(ρ, r) ∧ b1)}

11 e−n = {e ∈ e− | S [[e]]v(ρ, r) ∨ (S [[e]]l(ρ, r) ∧ ¬b1)}
12
13 if (S [[e0]]l(ρ, r) ∧ b1) then e+

n ∪= {e0}
14 if (S [[e0]]l(ρ, r) ∧ ¬b1) then e−n ∪= {e0}
15
16 if (S [[e0]]l(ρ, r) ∧ S [[e1]]l(ρ, r)) then
17 e+

n ∪= (e+
n [∗e0/∗e1] ∩ E′

p)
18 e−n ∪= (e−n [∗e0/∗e1] ∩ E′

p)
19
20 e−n = {e ∈ e−n | ∀i′ ∈ Si . i′(L[[e]]ρ) = 0}
21

22 return (Si, (e
+
n , e−n))

Figure 11: Helper function assign.

Note that bifurcation can produce up to four cases and each case
may yield up to two configurations. However, there can be at
most three resulting configurations after each assignment, since we
merge configurations with the same index, and the reference count
from the updated region can only increase by one, decrease by one,
or remain unchanged. In the example from Section 2 the analy-
sis of each statement and configuration produces either one or two
configurations.
Finally, transfer functions map configurations with a secondary

value of ⊥ to bottom abstractions a⊥. The same is true for all of
the other transfer functions in the algorithm.

5.2.4 Analysis of Malloc and Free
Figure 12 shows the analysis of dynamic allocation and deallo-

cation statements. The transfer function [[e ← malloc]] works as
follows. First, the effect of the allocation is equivalent to that of a
nullification [[e ← null]] because the tracked location is guaranteed
to be distinct from the fresh location returned by malloc (even if it
happens to be allocated at the same site). Second, since the con-
tents of the fresh location are not initialized, its fields become miss
expressions provided that e is location-stable.
The generating function [[e ← malloc]]gen yields a configuration

(i, c) for the newly created location such that the index i records
a reference count of 1 from the region of e and 0 from all other
regions. The secondary value h records e as a hit expression, and
adds field expressions to the miss set if e is stable.
Finally, the analysis models the transfer function for deallocation

statements [[free(e)]] as a sequence of assignments that nullify each
field of the deallocated structure. This ensures that the analysis
counts references only from valid, allocated locations.

5.2.5 Conditional Branches
The analysis extracts useful information from test conditions in

if and while statements. On the branch where the tested expression

317

© 2011 Stephen Chong, Harvard University

Interprocedural analysis

•Context-sensitive interprocedural analysis
•A context for a procedure is a single

configuration, output is a set of contexts
•Fine granularity helps scalability
• Less redundant computation
•Allows “incremental” analysis
‣ E.g., now calling splice with a cyclic list

- Just one new configuration: L2

27

8: z = y;

9: while (x != NULL)

10: t = x;

11: x = t->n;

12: t->n = y->n;

13: y->n = t;

14: y = y->n->n;

16: return z;

Y1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Y1Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z1

X1

X1

X1

X1T1

T1

T1

T1L1

yn

T1L1

T1L1

L2

tn yn

Y1T1L1

L1

L1

L1

L1

L1

tn

L1

tn yn

L1

yn

L1

L1

Y1L1

Y1L1

Y1L1

tn

Y1L1

tn yn

Y1L1

yn

Y1L1

Y1T1L1

Y1L2

tn yn

X1L1

tn

X1L1

tn yn X1

X1

X1

X1Y1L1

tn

X1Y1L1

tn yn X1Y1

X1Y1

Loop

Figure 5: Shape analysis results for splice. Boxes represent configurations and edges show how the state of the tracked location
changes during the execution. We only show field access expressions in the hit and miss sets. We use the abbreviations: tn≡ t->n
and yn≡ y->n, and we indicate miss expressions using overlines. For readability, back edges from configurations at the end of the
loop to the corresponding configurations at the beginning of the loop are omitted.

A closer look at the input structure reveals that the cycle is caused
by the presence of one shared cell with two incoming references,
the shaded cell. If we inspect the output structure we see that it is
also a cyclic list. The interesting fact is not that splice yields a
cyclic output given a cyclic input; but rather that the shaded cell that
causes the input cycle is exactly the same cell that causes the cycle
in the output. Therefore, reasoning about cycles requires reasoning
just about this particular cell. All of the other cells in this structure
behave as in the acyclic case.
To build the abstraction for the cyclic input from Figure 6, we

can use the previous abstraction, and augment it with one additional
configuration L2 to describe the cell in question. The analysis of
the abstraction for the cyclic input will yield a configuration graph
similar to the one from Figure 5, but augmented with additional
paths that originate at the L2 configuration. These paths describe
the state of the shared cell through the program. One can examine
the input-output relationships in the result graph, and identify that
the shared cell in the input (L2) may remain shared, but all of the
non-shared cells in the input (X1, Y1, and L1) will remain non-
shared in the output.
In fact, the analysis of the cyclic case can reuse all of the analysis

result from the acyclic case. This is possible because the analysis
of each configuration in Figure 5 reasons only about one location,
and makes no assumption about the presence or absence of cycles
in the rest of the structure. Hence, those results directly apply to
cyclic inputs; they characterize the “acyclic portion” of the cyclic
input. Similar situations arise for inputs that have shared sublists,
or inputs where one list is a sublist of the other.
This discussion brings us to the inter-procedural analysis, the

main obstacle in building scalable analyses. The example shows
that our abstraction allows us to efficiently build an inter-procedural
context-sensitive analysis, where the analysis of each calling con-
text can reuse results from other contexts. In our example, the anal-

Cyclic input Corresponding output

y

x

z t

z

x

y t

Figure 6: Example cyclic memory

ysis of splice for a cyclic context can reuse the result from an
acyclic context, and do little additional work. And if the cyclic
context is being analyzed first, the result for the acyclic one is al-
ready available. This is possible because we can break down the
entire heap context into finer-grain contexts that are just individual
configurations.

3. A SIMPLE LANGUAGE
To formalize the description of the algorithm, we use the simple

language shown in Figure 7. This is a typeless C-like imperative
language with procedures, dynamic allocation, and explicit deallo-
cation. A program prog maps each procedure to a pair containing
its formal parameters and its body. The only possible values are
pointers to memory locations and null pointers. Dynamic alloca-
tions create structures that contain one memory location for each
field. There is a distinguished first field f1 in each structure; dy-
namic allocations return a pointer to the first field in the newly al-
located structure. The language supports pointers to variables and
pointers into the middle of structures. An expression e.f requires
e to be an l-value representing the first field of a structure; then
e.f is the f field of that structure. A dereference expression ∗e al-

313

© 2011 Stephen Chong, Harvard University

Uses and limitations

• Can be used for memory error detection
• Double frees, dangling pointer access, memory leak

• Spurious configurations
• Configuration that represents concrete states that cannot occur at

runtime

• Better decision procedure would help

• Complex structural invariants
• e.g., double linked lists

• Sensitive to how program is written
• e.g., x = t->n vs x = x->n treated differently, since analysis doesn’t

know x = t

• Exponential
28

© 2011 Stephen Chong, Harvard University

Verification vs. inference

•Separation logic has shown a lot of success at
verifying programs that destructively update heap

•To what extent can separation logic be used in
inference of heap properties?

29

