School of Engineering and Applied Sciences

Abstract Interpretation: Fixpoints, widening, and narrowing

CS252r Spring 2011

Slides from
Principles of Program Analysis by Nielson, Nielson, and Hankin

The need for fix-points

- Let L be complete lattice
- Suppose $f: L \rightarrow L$ is program analysis for some program construct p
-i.e. $p \vdash I_{1} \triangleright I_{2}$ where $f\left(l_{1}\right)=I_{2}$
-monotonic function
- If p is recursive or iterative program construct, want to find least fixed point (lfp) of f.
- Most precise lattice element representing analysis of executing p unbounded number of times

Fixed points

Fixed points

Let $f: L \rightarrow L$ be a monotone function on a complete lattice $L=(L, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$.

Fixed points

Fixed points

Let $f: L \rightarrow L$ be a monotone function on a complete lattice $L=(L, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$.
l is a fixed point iff $f(l)=l$
$\operatorname{Fix}(f)=\{l \mid f(l)=l\}$
f is reductive at l iff $f(l) \sqsubseteq l \quad \operatorname{Red}(f)=\{l \mid f(l) \sqsubseteq l\}$
f is extensive at l iff $f(l) \sqsupseteq l \quad \operatorname{Ext}(f)=\{l \mid f(l) \sqsupseteq l\}$
Tarski's Theorem ensures that

$$
\begin{aligned}
& \operatorname{Ifp}(f)=\Pi \operatorname{Fix}(f)=\Pi \operatorname{Red}(f) \in \operatorname{Fix}(f) \subseteq \operatorname{Red}(f) \\
& \operatorname{gfp}(f)=\sqcup F i x(f)=\sqcup \operatorname{Ext}(f) \in \operatorname{Fix}(f) \subseteq \operatorname{Ext}(f)
\end{aligned}
$$

Fixed points of f

Need for approximation

- How do we find $\operatorname{lfp}(f)$?
- Ideally use iterative sequence
- $\left(f^{n}(\perp)\right)_{n}=\perp, f(\perp), f(f(\perp)), \ldots$
- But:
- may not stabilize
- if L doesn't meet ascending chain condition
- least upper bound of $\left(f^{n}(\perp)\right)_{n}$ may not equal $\operatorname{lfp}(f)$
-Why?
- No guarantee f is continuous, and so Kleene's fixed-point theorem doesn't apply
- Need to approximate...

One possibility

- Start with T and repeatedly apply f
-i.e., $\left(f^{n}(T)\right)_{n}=T, f(T), f(f(T))$, ...
- Even if it doesn't stabilize, will always be a sound approximation
- for all i we have $\operatorname{lfp}(f) \subseteq f{ }^{n}(T)$
- Means that can stop when we run out of patience, and have sound approximation
- But in practice, too imprecise.

Widening operators

- Key idea: replace $\left(f^{n}(\perp)\right)_{n}$ with sequence $\left(f_{\nabla}\right)_{n}$ such that
- $\left(f_{\nabla^{n}}\right)_{n}$ guaranteed to stabilize with safe (upper) approximation of Ifp(f)
$-\nabla$ is a widening operator
- An upper bound operator satisfying a finiteness condition

Upper bound operators

$\square: L \times L \rightarrow L$ is an upper bound operator iff

$$
l_{1} \sqsubseteq l_{1} \sqsubset l_{2} \sqsupseteq l_{2}
$$

for all $l_{1}, l_{2} \in L$.

Upper bound operators

$\sqcup: L \times L \rightarrow L$ is an upper bound operator iff

$$
l_{1} \sqsubseteq l_{1} \sqsubseteq l_{2} \sqsupseteq l_{2}
$$

for all $l_{1}, l_{2} \in L$.
Let $\left(l_{n}\right)_{n}$ be a sequence of elements of L. Define the sequence $\left(l_{n}^{\breve{\breve{u}}}\right)_{n}$ by:

$$
l_{n}^{\square}= \begin{cases}l_{n} & \text { if } n=0 \\ l_{n-1}^{\square} \sqcup l_{n} & \text { if } n>0\end{cases}
$$

Fact: If $\left(l_{n}\right)_{n}$ is a sequence and \sqcup is an upper bound operator then $\left(l_{n}^{\breve{\square}}\right)_{n}$ is an ascending chain; furthermore $l_{n}^{\breve{\square}} \sqsupseteq \sqcup\left\{l_{0}, l_{1}, \cdots, l_{n}\right\}$ for all n.

Example

Let int be an arbitrary but fixed element of Interval.

An upper bound operator:

$$
i n t_{1} \sqcup^{i n t} \text { int }_{2}= \begin{cases}i n t_{1} \sqcup i n t_{2} & \text { if int } t_{1} \sqsubseteq \text { int } \vee \text { int }_{2} \sqsubseteq i n t_{1} \\ {[-\infty, \infty]} & \text { otherwise }\end{cases}
$$

Example

Let int be an arbitrary but fixed element of Interval.

An upper bound operator:

$$
i n t_{1} \sqcup^{i n t} \text { int }_{2}= \begin{cases}i n t_{1} \sqcup i n t_{2} & \text { if int } t_{1} \sqsubseteq i n t \vee i n t_{2} \sqsubseteq i n t_{1} \\ {[-\infty, \infty]} & \text { otherwise }\end{cases}
$$

Example: $[1,2] ธ^{[0,2]}[2,3]=[1,3]$ and $[2,3] ธ^{[0,2]}[1,2]=[-\infty, \infty]$.

Transformation of: $[0,0],[1,1],[2,2],[3,3],[4,4],[5,5], \ldots$

$$
\begin{array}{ll}
\text { If int }=[0, \infty]: & {[0,0],[0,1],[0,2],[0,3],[0,4],[0,5], \cdots} \\
\text { If int }=[0,2]: & {[0,0],[0,1],[0,2],[0,3],[-\infty, \infty],[-\infty, \infty], \cdots}
\end{array}
$$

Widening operators

- Operator $\nabla: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{L}$ is a widening operator iff
$-\nabla$ is an upper bound operator
\bullet for all ascending chains $\left(I_{n}\right)_{n}$ the ascending chain $\left(\nabla_{n}\right)_{n}$ eventually stabilizes
- $\nabla_{n}=I_{n} \quad$ if $n=0$
- $\nabla_{n}=\nabla_{n-1} \nabla I_{n}$ otherwise

Widening operators

- For monotonic function $f: L \rightarrow L$ and widening operator ∇ define $\left(f_{\nabla^{n}}\right)_{n}$ by
- $f_{\nabla}{ }^{n}=\perp$
if $n=0$
- $f_{\nabla^{n}}=f_{\nabla^{n-1}}$
if $n>0$ and $f\left(f_{\nabla^{n-1}}\right) \sqsubseteq f_{\nabla^{n-1}}$
- $f_{\nabla}{ }^{n}=f_{\nabla} \nabla^{n-1} \nabla f\left(f_{\nabla}{ }^{n-1}\right)$ otherwise
- This is an ascending chain that eventually stabilizes
- when $f\left(f_{\nabla}^{m}\right) \sqsubseteq f_{\nabla}{ }^{m}$ for some m
- Tarski's Thm then gives $f_{\nabla}{ }^{m} \sqsupseteq \operatorname{Ifp}(f)$

Diagrammatically

Example

Let K be a finite set of integers, e.g. the set of integers explicitly mentioned in a given program.

Example

Let K be a finite set of integers, e.g. the set of integers explicitly mentioned in a given program.

We shall define a widening operator ∇ based on K.
Idea: $\left[z_{1}, z_{2}\right] \nabla\left[z_{3}, z_{4}\right]$ is

$$
\left[\operatorname{LB}\left(z_{1}, z_{3}\right), \operatorname{UB}\left(z_{2}, z_{4}\right)\right]
$$

where

- $\operatorname{LB}\left(z_{1}, z_{3}\right) \in\left\{z_{1}\right\} \cup K \cup\{-\infty\}$ is the best possible lower bound, and
- $\mathrm{UB}\left(z_{2}, z_{4}\right) \in\left\{z_{2}\right\} \cup K \cup\{\infty\}$ is the best possible upper bound.

The effect: a change in any of the bounds of the interval $\left[z_{1}, z_{2}\right.$] can only take place finitely many times - corresponding to the cardinality of K.

Example

Let $z_{i} \in \mathbf{Z}^{\prime}=\mathbf{Z} \cup\{-\infty, \infty\}$ and write:

$$
\begin{aligned}
& \operatorname{LB}_{K}\left(z_{1}, z_{3}\right)= \begin{cases}z_{1} & \text { if } z_{1} \leq z_{3} \\
k & \text { if } z_{3}<z_{1} \wedge k=\max \left\{k \in K \mid k \leq z_{3}\right\} \\
-\infty & \text { if } z_{3}<z_{1} \wedge \forall k \in K: z_{3}<k\end{cases} \\
& \operatorname{UB}_{K}\left(z_{2}, z_{4}\right)= \begin{cases}z_{2} & \text { if } z_{4} \leq z_{2} \\
k & \text { if } z_{2}<z_{4} \wedge k=\min \left\{k \in K \mid z_{4} \leq k\right\} \\
\infty & \text { if } z_{2}<z_{4} \wedge \forall k \in K: k<z_{4}\end{cases}
\end{aligned}
$$

int $_{1} \nabla \operatorname{int}_{2}=\left\{\begin{array}{l}\left.\perp \quad \begin{array}{l}\text { if } \text { int }_{1}=\operatorname{int}_{2}=\perp \\ {\left[\begin{array}{c}\operatorname{LB}_{K}\left(\text { inf }^{\prime}\left(\text { int }_{1}\right), \inf \left(i n t_{2}\right)\right) \\ \text { otherwise }\end{array}\right.}\end{array}, \mathrm{UB}_{K}\left(\sup \left(i n t_{1}\right), \sup \left(\text { int }_{2}\right)\right)\right]\end{array}\right.$

Example

Consider the ascending chain $\left(i n t_{n}\right)_{n}$

$$
[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7], \cdots
$$

and assume that $K=\{3,5\}$.
Then $\left(i n t_{n}^{\nabla}\right)_{n}$ is the chain

$$
[0,1],[0,3],[0,3],[0,5],[0,5],[0, \infty],[0, \infty], \cdots
$$

which eventually stabilises.

Defining widening operators

- Suppose we have two complete lattices, L and M, and a Galois connection ($L, \boldsymbol{\alpha}, \gamma, M$) between them
- One possibility: replace analysis $f: L \rightarrow L$ with analysis $g: M \rightarrow M$
- Can induce g from f
- But may reduce precision of analysis
- Another possibility
- Use M just to ensure convergence of fixedpoints
- Assume upper bound operator ∇_{M} for M
- Define $I_{1} \nabla_{L} I_{2}=\boldsymbol{\gamma}\left(\boldsymbol{\alpha}\left(I_{1}\right) \nabla_{M} \boldsymbol{\alpha}\left(l_{2}\right)\right)$
- ∇_{L} is widening operator if either
(i) M has no infinite ascending chains or
(ii) (L, α, γ, M) is Galois insertion and ∇_{M} is widening operator

Improving on $\operatorname{lf} p_{\nabla}(f)$

- Widening gives upper approximation $\operatorname{Ifp}(f)$ of $\operatorname{Ifp}(f)$
- But $f\left(\operatorname{lfp} p_{\nabla}(f)\right) \sqsubseteq \operatorname{lf} p_{\nabla}(f)$ so we can improve approximation by considering sequence $\left(f f^{n}(\operatorname{lfp} \nabla(f))\right)_{n}$
- For all i we have $\operatorname{lfp}(f) \sqsubseteq f\left(\operatorname{lfp} p_{\nabla}(f)\right) \subseteq \operatorname{If} p_{\nabla}(f)$
- So can stop anytime with an upper approximation
- Defining a narrowing operator gives a way to describe when to stop

Narrowing operator

An operator $\triangle: L \times L \rightarrow L$ is a narrowing operator iff

- $l_{2} \sqsubseteq l_{1} \Rightarrow l_{2} \sqsubseteq\left(l_{1} \triangle l_{2}\right) \sqsubseteq l_{1}$ for all $l_{1}, l_{2} \in L$, and
- for all descending chains $\left(l_{n}\right)_{n}$ the sequence $\left(l_{n}^{\triangle}\right)_{n}$ eventually stabilises.

We construct the sequence $\left([f]_{\triangle}^{n}\right)_{n}$

$$
[f]_{\triangle}^{n}= \begin{cases}\operatorname{Ifp_{\nabla }(f)} & \text { if } n=0 \\ {[f]_{\triangle}^{n-1} \triangle f\left([f]_{\triangle}^{n-1}\right)} & \text { if } n>0\end{cases}
$$

One can show that:

- $\left([f]_{\Delta}^{n}\right)_{n}$ is a descending chain where all elements satisfy Ifp $(f) \sqsubseteq[f]_{\Delta}^{n}$
- the chain eventually stabilises so $[f]_{\Delta}^{m^{\prime}}=[f]_{\Delta}^{m^{\prime}+1}$ for some value m^{\prime}

Diagrammatically

$$
\begin{aligned}
& {[f]_{\Delta}^{0}=I f p_{\nabla}(f)} \\
& {[f]_{\Delta}^{1}} \\
& \quad \vdots \\
& {[f]_{\Delta}^{m^{\prime}-1}} \\
& {[f]_{\Delta}^{m^{\prime}}=[f]_{\Delta}^{m^{\prime}+1}=I f p_{\nabla}}
\end{aligned}
$$

Example

The complete lattice (Interval, \sqsubseteq) has two kinds of infinite descending chains:

- those with elements of the form $[-\infty, z], z \in \mathbf{Z}$
- those with elements of the form $[z, \infty], z \in \mathbf{Z}$

Idea: Given some fixed non-negative number N the narrowing operator Δ_{N} will force an infinite descending chain

$$
\left[z_{1}, \infty\right],\left[z_{2}, \infty\right],\left[z_{3}, \infty\right], \cdots
$$

(where $z_{1}<z_{2}<z_{3}<\cdots$) to stabilise when $z_{i}>N$
Similarly, for a descending chain with elements of the form $\left[-\infty, z_{i}\right]$ the narrowing operator will force it to stabilise when $z_{i}<-N$

Example

Define $\triangle=\triangle_{N}$ by

$$
i n t_{1} \triangle i n t_{2}= \begin{cases}\perp & \text { if int } t_{1}=\perp \vee \text { int }_{2}=\perp \\ {\left[z_{1}, z_{2}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& z_{1}= \begin{cases}\inf \left(i n t_{1}\right) & \text { if } N<\inf \left(i n t_{2}\right) \wedge \sup \left(i n t_{2}\right)=\infty \\
\inf \left(i n t_{2}\right) & \text { otherwise }\end{cases} \\
& z_{2}= \begin{cases}\sup \left(i n t_{1}\right) & \text { if inf }\left(i n t_{2}\right)=-\infty \wedge \sup \left(i n t_{2}\right)<-N \\
\sup \left(i n t_{2}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Consider the infinite descending chain $([n, \infty])_{n}$

$$
[0, \infty],[1, \infty],[2, \infty],[3, \infty],[4, \infty],[5, \infty], \cdots
$$

and assume that $N=3$.
Then the narrowing operator Δ_{N} will give the sequence $\left([n, \infty]^{\triangle}\right)_{n}$

$$
[0, \infty],[1, \infty],[2, \infty],[3, \infty],[3, \infty],[3, \infty], \cdots
$$

Summary

- Given monotonic $f: L \rightarrow L$ where L is a lattice
- Approximating least fixed point of f accurately and quickly a key challenge of program analysis
- Widening operators
-Widening following by narrowing

