
KLEE: Unassisted and Automatic
Generation of High-Coverage Tests
for Complex Systems Programs

Cadar, Dunbar, and Engler
OSDI 08

CS252r Spring 2011

© 2011 Stephen Chong, Harvard University

KLEE Overview

•Symbolic execution tool
•Generates tests that achieve high coverage
•Over 90% on average on ~160 user-level programs

•Detect if dangerous operations could cause error

•Challenges:
•Interacting with the environment
•OS, network, user

•Scaling to real-world code

2

2 Environmental Dependencies. Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements. 2
KLEE has two goals: (1) hit every line of executable

code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) if any input value
exists that could cause an error. KLEE does so by running
programs symbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. When KLEE de-
tects an error or when a path reaches an exit call, KLEE
solves the current path’s constraints (called its path con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled with gcc).
KLEE is designed so that the paths followed by the

unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs in KLEE or
its models have produced false positives in practice. The
ability to rerun tests outside of KLEE, in conjunctionwith
standard tools such as gdb and gcov is invaluable for
diagnosing such errors and for validating our results.
We next show how to use KLEE, then give an overview

of how it works.

2.1 Usage

A user can start checking many real programs with KLEE
in seconds: KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiled tr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then run KLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. For tr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly, KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first one character long, the others 10 characters long. 3
The option --sym-files 2 2000 says to use stan-
dard input and one file, each holding 2000 bytes of sym-
bolic data. The option --max-fail 1 says to fail at
most one system call along each programpath (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3

© 2011 Stephen Chong, Harvard University

Example: tr

3

2 Environmental Dependencies. Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements. 2
KLEE has two goals: (1) hit every line of executable

code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) if any input value
exists that could cause an error. KLEE does so by running
programs symbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. When KLEE de-
tects an error or when a path reaches an exit call, KLEE
solves the current path’s constraints (called its path con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled with gcc).
KLEE is designed so that the paths followed by the

unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs in KLEE or
its models have produced false positives in practice. The
ability to rerun tests outside of KLEE, in conjunctionwith
standard tools such as gdb and gcov is invaluable for
diagnosing such errors and for validating our results.
We next show how to use KLEE, then give an overview

of how it works.

2.1 Usage

A user can start checking many real programs with KLEE
in seconds: KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiled tr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then run KLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. For tr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly, KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first one character long, the others 10 characters long. 3
The option --sym-files 2 2000 says to use stan-
dard input and one file, each holding 2000 bytes of sym-
bolic data. The option --max-fail 1 says to fail at
most one system call along each programpath (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3

© 2011 Stephen Chong, Harvard University

Example: tr

4

2 Environmental Dependencies. Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements. 2
KLEE has two goals: (1) hit every line of executable

code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) if any input value
exists that could cause an error. KLEE does so by running
programs symbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. When KLEE de-
tects an error or when a path reaches an exit call, KLEE
solves the current path’s constraints (called its path con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled with gcc).
KLEE is designed so that the paths followed by the

unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs in KLEE or
its models have produced false positives in practice. The
ability to rerun tests outside of KLEE, in conjunctionwith
standard tools such as gdb and gcov is invaluable for
diagnosing such errors and for validating our results.
We next show how to use KLEE, then give an overview

of how it works.

2.1 Usage

A user can start checking many real programs with KLEE
in seconds: KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiled tr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then run KLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. For tr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly, KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first one character long, the others 10 characters long. 3
The option --sym-files 2 2000 says to use stan-
dard input and one file, each holding 2000 bytes of sym-
bolic data. The option --max-fail 1 says to fail at
most one system call along each programpath (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3

2 Environmental Dependencies. Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements. 2
KLEE has two goals: (1) hit every line of executable

code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) if any input value
exists that could cause an error. KLEE does so by running
programs symbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. When KLEE de-
tects an error or when a path reaches an exit call, KLEE
solves the current path’s constraints (called its path con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled with gcc).
KLEE is designed so that the paths followed by the

unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs in KLEE or
its models have produced false positives in practice. The
ability to rerun tests outside of KLEE, in conjunctionwith
standard tools such as gdb and gcov is invaluable for
diagnosing such errors and for validating our results.
We next show how to use KLEE, then give an overview

of how it works.

2.1 Usage

A user can start checking many real programs with KLEE
in seconds: KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiled tr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then run KLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. For tr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly, KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first one character long, the others 10 characters long. 3
The option --sym-files 2 2000 says to use stan-
dard input and one file, each holding 2000 bytes of sym-
bolic data. The option --max-fail 1 says to fail at
most one system call along each programpath (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3

Constraint solver determines that
execution tr [“” “” will cause
dereference of invalid memory

© 2011 Stephen Chong, Harvard University

Architecture

• Operates on LLVM bytecode
• RISC-like virtual instruction set

• Has a gcc frontend

• A symbolic process (or state) is the state of a symbolically executing
process
• Has register file, stack, heap, program counter, path condition

• Storage locations (stack, heap, registers) contain symbolic expressions
• Concrete values/constants, symbolic variables, arithmetic operations, bitwise manipulations, memory

accesses, …

• Whenever symbolic execution encounters a branch, state is cloned,
updating instruction pointer and path condition appropriately
• If constraint solver determines path condition is false, state can be dropped

• Potential errors are treated as branches

• E.g., division generates a branch that checks for zero divisor

5

© 2011 Stephen Chong, Harvard University

Scaling up

•Compact state representation
•State cloned frequently
• e.g., For Coreutils, average of about 50,000 states generated

(with a cap on memory usage)

•Use copy-on-write at object granularity
• Allows much sharing of state

• Constant-time state cloning

•Symbolic expressions over constants are simplified
•e.g., Add(5, 3) is simplified to 8

6

© 2011 Stephen Chong, Harvard University

Scaling up: query optimization

• Calling constraint solver dominates cost
• So want to reduce/simplify calls

• (is still about 40% of total time, even with optimizations)

• Expression rewriting
• Strength reduction (x * 2n ↦ x << n)

arithmetic simplification (x + 0 ↦ x)
linear simplification (3*x + x ↦ 4*x)

• Constraint set simplification
• Use equality constraints (x=5) to rewrite earlier constraints (x < 10) and

simplify (5 < 10 ↦ true)

• Implied value concretization
• e.g., x+1=10 implies x=9

7

© 2011 Stephen Chong, Harvard University

Scaling up: query optimization

• Constraint independence
• Partition constraints based on which symbolic variables they access

• Only gives relevant partitions to the solver

• Counter-example cache
• Cache results of previous constraint solver queries

• If constraint set C has no solution and C ⊆ C’, then neither does C’
• Need to be able to efficiently search for subsets

• If constraint set C has solution s and C’ ⊆ C, then C’ has solution s
• Need to be able to efficiently search for supersets

• If constraint set C has solution s and C ⊆ C’, then C’ likely has
solution s
• Can cheaply check if solution s works for C’

8

Optimizations Queries Time (s) STP Time (s)
None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Table 1: Performance comparison of KLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

currently has entries for {i < 10, i = 10} (no solution)
and {i < 10, j = 8} (satisfiable, with variable assign-
ments i → 5, j → 8).
1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable. For example, given the cache
above, {i < 10, i = 10, j = 12} is quickly deter-
mined to be unsatisfiable.

2 When a superset of a constraint set has a solution,
that solution also satisfies the original constraint set.
Dropping constraints from a constraint set does not
invalidate a solution to that set. The assignment
i → 5, j → 8, for example, satisfies either i < 10
or j = 8 individually.

3 When a subset of a constraint set has a solution, it is
likely that this is also a solution for the original set.
This is because the extra constraints often do not in-
validate the solution to the subset. Because checking
a potential solution is cheap, KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found. For example,
the constraint set {i < 10, j = 8, i "= 3} can still be
satisfied by i → 5, j → 8.
To demonstrate the effectiveness of these optimiza-

tions, we performed an experiment where COREUTILS
applications were run for 5 minutes with both of these
optimizations turned off. We then deterministically reran
the exact same workload with constraint independence
and the counter-example cache enabled separately and
together for the same number of instructions. This exper-
iment was done on a large sample of COREUTILS utili-
ties. The results in Table 1 show the averaged results.
As expected, the independence optimization by itself

does not eliminate any queries, but the simplifications it
performs reduce the overall running time by almost half
(45%). The counter-example cache reduces both the run-
ning time and the number of STP queries by 40%. How-
ever, the real win comes when both optimizations are en-
abled; in this case the hit rate for the counter-example
cache greatly increase due to the queries first being sim-
plified via independence. For the sample runs, the av-

0

100

200

300

400

A
ve

ra
ge

T
im

e
(s

)
A

ve
ra

ge
T

im
e

(s
)

0 0.2 0.4 0.6 0.8 1

Num. Instructions (normalized)Num. Instructions (normalized)

None
Cex. Cache
Independence
All

Figure 2: The effect of KLEE’s solver optimizations over
time, showing they become more effective over time, as the
caches fill and queries become more complicated. The num-
ber of executed instructions is normalized so that data can be
aggregated across all applications.

erage number of STP queries are reduced to 5% of the
original number and the average runtime decreases by
more than an order of magnitude.
It is also worth noting the degree to which STP time

(time spent solving queries) dominates runtime. For the
original runs, STP accounts for 92% of overall execution
time on average (the combined optimizations reduce this
by almost 300%). With both optimizations enabled this
percentage drops to 41%, which is typical for applica-
tions we have tested. Finally, Figure 2 shows the efficacy
of KLEE’s optimizations increases with time — as the
counter-example cache is filled and query sizes increase,
the speed-up from the optimizations also increases.

3.4 State scheduling

KLEE selects the state to run at each instruction by inter-
leaving the following two search heuristics.
Random Path Selectionmaintains a binary tree record-

ing the programpath followed for all active states, i.e. the
leaves of the tree are the current states and the internal
nodes are places where execution forked. States are se-
lected by traversing this tree from the root and randomly
selecting the path to follow at branch points. Therefore,
when a branch point is reached, the set of states in each
subtree has equal probability of being selected, regard-
less of the size of their subtrees. This strategy has two
important properties. First, it favors states high in the
branch tree. These states have less constraints on their
symbolic inputs and so have greater freedom to reach un-
covered code. Second, and most importantly, this strat-
egy avoids starvation when some part of the program is
rapidly creating new states (“fork bombing”) as it hap-
pens when a tight loop contains a symbolic condition.
Note that the simply selecting a state at random has nei-
ther property.

6

© 2011 Stephen Chong, Harvard University

Effect of cache

9

Optimizations Queries Time (s) STP Time (s)
None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Table 1: Performance comparison of KLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

currently has entries for {i < 10, i = 10} (no solution)
and {i < 10, j = 8} (satisfiable, with variable assign-
ments i → 5, j → 8).
1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable. For example, given the cache
above, {i < 10, i = 10, j = 12} is quickly deter-
mined to be unsatisfiable.

2 When a superset of a constraint set has a solution,
that solution also satisfies the original constraint set.
Dropping constraints from a constraint set does not
invalidate a solution to that set. The assignment
i → 5, j → 8, for example, satisfies either i < 10
or j = 8 individually.

3 When a subset of a constraint set has a solution, it is
likely that this is also a solution for the original set.
This is because the extra constraints often do not in-
validate the solution to the subset. Because checking
a potential solution is cheap, KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found. For example,
the constraint set {i < 10, j = 8, i "= 3} can still be
satisfied by i → 5, j → 8.
To demonstrate the effectiveness of these optimiza-

tions, we performed an experiment where COREUTILS
applications were run for 5 minutes with both of these
optimizations turned off. We then deterministically reran
the exact same workload with constraint independence
and the counter-example cache enabled separately and
together for the same number of instructions. This exper-
iment was done on a large sample of COREUTILS utili-
ties. The results in Table 1 show the averaged results.
As expected, the independence optimization by itself

does not eliminate any queries, but the simplifications it
performs reduce the overall running time by almost half
(45%). The counter-example cache reduces both the run-
ning time and the number of STP queries by 40%. How-
ever, the real win comes when both optimizations are en-
abled; in this case the hit rate for the counter-example
cache greatly increase due to the queries first being sim-
plified via independence. For the sample runs, the av-

0

100

200

300

400

A
ve

ra
ge

T
im

e
(s

)
A

ve
ra

ge
T

im
e

(s
)

0 0.2 0.4 0.6 0.8 1

Num. Instructions (normalized)Num. Instructions (normalized)

None
Cex. Cache
Independence
All

Figure 2: The effect of KLEE’s solver optimizations over
time, showing they become more effective over time, as the
caches fill and queries become more complicated. The num-
ber of executed instructions is normalized so that data can be
aggregated across all applications.

erage number of STP queries are reduced to 5% of the
original number and the average runtime decreases by
more than an order of magnitude.
It is also worth noting the degree to which STP time

(time spent solving queries) dominates runtime. For the
original runs, STP accounts for 92% of overall execution
time on average (the combined optimizations reduce this
by almost 300%). With both optimizations enabled this
percentage drops to 41%, which is typical for applica-
tions we have tested. Finally, Figure 2 shows the efficacy
of KLEE’s optimizations increases with time — as the
counter-example cache is filled and query sizes increase,
the speed-up from the optimizations also increases.

3.4 State scheduling

KLEE selects the state to run at each instruction by inter-
leaving the following two search heuristics.
Random Path Selectionmaintains a binary tree record-

ing the programpath followed for all active states, i.e. the
leaves of the tree are the current states and the internal
nodes are places where execution forked. States are se-
lected by traversing this tree from the root and randomly
selecting the path to follow at branch points. Therefore,
when a branch point is reached, the set of states in each
subtree has equal probability of being selected, regard-
less of the size of their subtrees. This strategy has two
important properties. First, it favors states high in the
branch tree. These states have less constraints on their
symbolic inputs and so have greater freedom to reach un-
covered code. Second, and most importantly, this strat-
egy avoids starvation when some part of the program is
rapidly creating new states (“fork bombing”) as it hap-
pens when a tight loop contains a symbolic condition.
Note that the simply selecting a state at random has nei-
ther property.

6

© 2011 Stephen Chong, Harvard University

State exploration

• Many concurrent states, representing different program executions

• Aim: get good coverage of code

• Problem: at each step, which state to choose to run?

• Answer: mix of two strategies
• Random path selection

• Maintain binary tree recording program path followed for all active states

• Choose an active state by randomly traversing tree from root

• Biased towards states higher in the tree; not biased in terms of number of active states

• Coverage-Optimized Search
• Compute weight for each state

‣ Minimum distance to uncovered instruction, call stack of state, whether state recently
covered new code

• Randomly choose state according to weights

10

© 2011 Stephen Chong, Harvard University

Environment

• Program interactive with environment
• Command line args, environment variables, file data, network packets, …

• KLEE models semantics, and redirects library calls to these
models
• Models written in C, apparently without much coupling to KLEE internals

• E.g., Symbolic file system
• Single directory with N symbolic files

• Co-exists with real file system

• If open called with concrete file name, will open real file

‣ int fd = open(“/etc/fstab”, O_RDNLY);

• If open called with symbolic file name, will form and match each of the N
symbolic files (and also fail once)

‣ int fd = open(argv[1], O_RDNLY);
11

© 2011 Stephen Chong, Harvard University

Evaluation

•Results are reported in line coverage
•Not the best metric. What would be better?

•Several evaluations: Coreutils, Busybox, HiStar

•Punchline: in reasonable time, got better (16.8%)coverage
that tests manually developed over 15 years

12

COREUTILS BUSYBOX
Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests
100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30

Overall cov. 84.5% 67.7% 90.5% 44.8%
Med cov/App 94.7% 72.5% 97.5% 58.9%
Ave cov/App 90.9% 68.4% 93.5% 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS
We now give KLEE coverage results for all 89 GNU
COREUTILS utilities.
Figure 4 breaks down the tools by executable lines

of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys — includ-
ing library code called, the smallest five have between
2K and 3K ELOC, over half (52) have between 3K and
4K, and ten have over 6K.
Previous work, ours included, has evaluated

constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.
Almost all tools were tested using the same command

(command arguments explained in § 2.1):
./run <tool-name> --max-time 60

--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the --max-time option, we ran each
tool for about 60minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted the man page and increased the number and

0%

20%

40%

60%

80%

100%

C
ov

er
ag

e
(E

L
O

C
%

)
C

ov
er

ag
e

(E
L
O

C
%

)

1 25 50 75

Base + Fail
Base

Figure 5: Line coverage for each application with and without
failing system calls.

size of arguments and files. We found this easy to do,
so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see § 4.2).
5.2.1 Line coverage results
The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.
We believe such high coverage on a broad swath of ap-

plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.
Importantly, KLEE generates high coverage with few

test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crudemeasure of path complexity,
we counted the number of static branches run by each test
case using gcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.
Figure 5 shows the coverage KLEE achieved on each

tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception is pwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.

9

−100%

−50%

0%

50%

100%

k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
1 10 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

is a more modest 13.1% extra coverage on the df tool.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

relative improvement over the developers’ tests remains:
KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found
KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T). Line 2665 computes
width = (T − input position mod T) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

10

© 2011 Stephen Chong, Harvard University

Bug finding

•Found ten unique bugs in Coreutils

•Found 21 bugs in Busybox and 21 in Minix
•all memory errors

13

−100%

−50%

0%

50%

100%

k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)

1 10 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

is a more modest 13.1% extra coverage on the df tool.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

relative improvement over the developers’ tests remains:
KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found
KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T). Line 2665 computes
width = (T − input position mod T) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

10

© 2011 Stephen Chong, Harvard University

Some additional points

•Produces test cases that can run outside of KLEE
•Reduces impact of bugs in KLEE and non-determinism

•Symbolic execution for functional correctness?
•Symbolic execution of two implementations of same

interface
•Find inputs on which functionality differs

14

Mixing Type Checking and
Symbolic Execution

Phang, Chang, and Foster
PLDI 2010

CS252r Spring 2011

© 2011 Stephen Chong, Harvard University

Mix Overview

•Type checking: imprecise but scalable
•(Typically) Flow- and context-insensitive

•Symbolic execution: precise but inefficient

•Mix: combines symbolic execution and type checking
•More precise than just type checking, more efficient than

symbolic execution
•Provably sound
• And mostly re-uses proofs for type-soundness and sound symbolic

execution

16

•Gain precision in a controlled way
•Limited form of path-sensitivity, flow-sensitivity
•

•Even some context sensitivity

© 2011 Stephen Chong, Harvard University

Motivation

17

Mixing Type Checking and Symbolic Execution

Khoo Yit Phang

University of Maryland, College Park

khooyp@cs.umd.edu

Bor-Yuh Evan Chang

University of Colorado, Boulder

bec@cs.colorado.edu

Jeffrey S. Foster

University of Maryland, College Park

jfoster@cs.umd.edu

Abstract
Static analysis designers must carefully balance precision and ef-

ficiency. In our experience, many static analysis tools are built

around an elegant, core algorithm, but that algorithm is then exten-

sively tweaked to add just enough precision for the coding idioms

seen in practice, without sacrificing too much efficiency. There are

several downsides to adding precision in this way: the tool’s imple-

mentation becomes much more complicated; it can be hard for an

end-user to interpret the tool’s results; and as software systems vary

tremendously in their coding styles, it may require significant algo-

rithmic engineering to enhance a tool to perform well in a particular

software domain.

In this paper, we present MIX, a novel system that mixes type

checking and symbolic execution. The key aspect of our approach

is that these analyses are applied independently on disjoint parts of

the program, in an off-the-shelf manner. At the boundaries between

nested type checked and symbolically executed code regions, we

use special mix rules to communicate information between the off-

the-shelf systems. The resulting mixture is a provably sound analy-

sis that is more precise than type checking alone and more efficient

than exclusive symbolic execution. In addition, we also describe a

prototype implementation, MIXY, for C. MIXY checks for potential

null dereferences by mixing a null/non-null type qualifier inference

system with a symbolic executor.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Symbolic execution; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lang-

uages—Program analysis

General Terms Languages, Verification

Keywords Mix, mixed off-the-shelf analysis, symbolic execution,

type checking, mix rules, false alarms, precision

1. Introduction
All static analysis designers necessarily make compromises be-

tween precision and efficiency. On the one hand, static analysis

must be precise enough to prove properties of realistic software

systems, and on the other hand, it must run in a reasonable amount

of time and space. One manifestation of this trade-off is that, in our

experience, many practical static analysis tools begin with a rel-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.

Copyright © 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

atively straightforward algorithm at their core, but then gradually

accrete a multitude of special cases to add just enough precision

without sacrificing efficiency.

Some degree of fine tuning is inevitable—undecidability of

static analysis means that analyses must be targeted to programs

of interest—but an ad-hoc approach has a number of disadvan-

tages: it significantly complicates the implementation of a static

analysis algorithm; it is hard to be sure that all the special cases

are handled correctly; and it makes the tool less predictable and

understandable for an end-user since the exact analysis algorithm

becomes obscured by the special cases. Perhaps most significantly,

software systems are extremely diverse, and programming styles

vary greatly depending on the application domain and the idiosyn-

crasies of the programmer and her community’s coding standards.

Thus an analysis that is carefully tuned to work in one domain may

not be effective in another domain.

In this paper, we present MIX, a novel system that trades off pre-

cision and efficiency by mixing type checking—a coarse but highly

scalable analysis—with symbolic execution [King 1976], which is

very precise but inefficient. In MIX, precision versus efficiency is

adjusted using typed blocks {t e t} and symbolic blocks {s e s}
that indicate whether expression e should be analyzed with type

checking or symbolic execution, respectively. Blocks may nest ar-

bitrarily to achieve the desired level of precision versus efficiency.

The distinguishing feature of MIX is that its type checking and

symbolic execution engines are completely standard, off-the-shelf
implementations. Within a typed or symbolic block, the analyses

run as usual. It is only at the boundary between blocks that we use

special mix rules to translate information back-and-forth between

the two analyses. In this way, MIX gains precision at limited cost,

while potentially avoiding many of the pitfalls of more complicated

approaches.

As a hypothetical example, consider the following code:

1 {s
2 if (multithreaded){t fork(); t}
3 {t . . . t}
4 if (multithreaded){t lock(); t}
5 {t . . . t}
6 if (multithreaded){t unlock(); t}
7 s}

This code uses multiple threads only if multithreaded is set to

true. Suppose we have a type-based analysis that checks for data

races. Then assuming the analysis is path-insensitive, it cannot tell

whether a thread is created on line 2, and it does not know the lock

state after lines 4 and 6—all of which will lead to false positives.

Rather than add path-sensitivity to our core data race analysis,

we can instead use MIX to gain precision. We wrap the program

in a symbolic block at the top level so that the executions for each

setting of multithreaded will be explored independently. Then for

performance, we wrap all the other code (lines 3 and 5 and the calls

to fork, lock, and unlock) in typed blocks, so that they are analyzed

with the type-based analysis. In this case, these block annotations

436

effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow-
sensitivity, context-sensitivity, path-sensitivity, and local type re-
finements. MIX can also use type checking to overcome some lim-
itations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = (. . .)malloc(. . .); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow-insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context-
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s

437

effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow-
sensitivity, context-sensitivity, path-sensitivity, and local type re-
finements. MIX can also use type checking to overcome some lim-
itations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = (. . .)malloc(. . .); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow-insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context-
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s

437

effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow-
sensitivity, context-sensitivity, path-sensitivity, and local type re-
finements. MIX can also use type checking to overcome some lim-
itations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = (. . .)malloc(. . .); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow-insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context-
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s

437

effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow-
sensitivity, context-sensitivity, path-sensitivity, and local type re-
finements. MIX can also use type checking to overcome some lim-
itations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = (. . .)malloc(. . .); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow-insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context-
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s

437

© 2011 Stephen Chong, Harvard University

Motivation

•Local refinement

18

if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that
motiviate the design of MIX. Here, we consider a core language,

Source Language.

e ::= x | v variables, constants
| e + e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants

| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

shown in the top portion of Figure 1, with which we study the
essence of switching blocks for mixing analyses. Our language in-
cludes variables x; integers n; booleans true and false; selected
arithmetic and boolean operations +, =, ¬, and ∧; conditionals
with if; let bindings; and ML-style updatable references with ref
(construction), ! (dereference), and := (assignment). We also in-
clude two new block forms, typed blocks {t e t} and symbolic
blocks {s e s}, which indicate e should be analyzed with type
checking or symbolic execution, respectively. We leave unspeci-
fied whether the outermost scope of a program is treated as a typed
block or a symbolic block; MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ � e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in dereferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a

438

effectively cause the type-based analysis to be run twice, once for
each possible setting of multithreaded; and by separating those two
cases, we avoid conflation and eliminate false positives.

While MIX cannot address every precision/efficiency tradeoff
issue (for example, the lexical scoping of typed and symbolic
blocks is one limitation), there are nonetheless many potential ap-
plications. Among other uses, MIX can encode forms of flow-
sensitivity, context-sensitivity, path-sensitivity, and local type re-
finements. MIX can also use type checking to overcome some lim-
itations of symbolic execution (Section 2). Also, for the purposes
of this paper, we leave the placement of block annotations to the
programmer, but we envision that an automated refinement algo-
rithm could heuristically insert blocks as needed. In this scenario,
MIX becomes an intermediate language for modularly combining
off-the-shelf analyzer implementations.

In this paper, we formalize MIX for a small imperative lan-
guage, mixing a standard type checking system with symbolic ex-
ecution to yield a system to check for the absence of run-time type
errors. Thus, rather than checking for assertion failures, as a typical
symbolic executor might do, our formal symbolic executor reports
any type mismatches it detects. To mix these two systems together,
we introduce two new rules: one rule in the type system that “type
checks” blocks {s e s} using the symbolic executor; and one rule
in the symbolic executor that “executes” blocks {t e t} using the
type checker. We prove that the type system, symbolic executor,
and mix of the two systems are sound. The soundness proof of MIX
uses the proofs of type soundness and symbolic execution sound-
ness essentially as-is, which provides some additional evidence of a
clean modularization. Additionally, two features of our formalism
for symbolic execution may be of independent interest: we discuss
the tradeoff between “forking” the symbolic executor and giving
more work to the solver; and we provide a soundness proof, which,
surprisingly, we have been unable to find for previous symbolic ex-
ecution systems (Section 3).

Finally, we describe MIXY, a prototype implementation of MIX
for C. MIXY combines a simple, monomorphic type qualifier in-
ference system (a reimplementation of Foster et al. [2006]) with a
C symbolic executor. There are two key challenges that arise when
mixing type inference rather than checking: we need to perform
a fixed-point computation as we switch between typed and sym-
bolic blocks since data values can pass from one to the other and
back; and we need to integrate aliasing information into our analy-
sis so that pointer manipulations performed within symbolic blocks
correctly influence typed blocks. Additionally, we extend MIXY to
support caching block results as well as recursion between blocks.
We use MIXY to look for null pointer errors in a reasonably-sized
benchmark vsftpd; we found several examples where adding sym-
bolic blocks can eliminate false positives compared to pure type
qualifier inference (Section 4).

We believe that MIX provides a promising new approach to
trading off precision and efficiency in static analysis. We expect
that the ideas behind MIX can be applied to many different combi-
nations of many different analyses.

2. Motivating Examples
Before describing MIX formally, we examine some coding idioms
for which type inference and symbolic execution can profitably be
mixed. Our examples will be written in either an ML-like language
or C-like language, depending on which one is more natural for the
particular example.

Path, Flow, and Context Sensitivity. In the introduction, we
saw one example in which symbolic execution introduced a small
amount of path sensitivity to type inference. There are several po-
tential variations on this example where we can locally add a little

bit of path sensitivity to increase the precision of type checking.
For example, we can avoid analyzing unreachable code:

{t . . . {s if true then{t 5 t}else{t ”foo” + 3 t}s} . . . t}

This code runs without errors, but pure type checking would com-
plain about the potential type error in the false branch. However,
with these block annotations added in MIX, the symbolic executor
will only invoke the type checker for the true branch and hence will
avoid a false positive.

We can also use symbolic execution to gain some flow sensi-
tivity. For example, in a dynamically-typed imperative language,
programmers may reuse variables as different types, such as in the
following:

{t . . . {s var x = 1;{t . . . t} ; x = ”foo”; s} . . . t}

Here the local variable x is first assigned an integer and is later
reused to refer to a string. With the annotations above, we can
successfully statically check such code using the symbolic executor
to distinguish the two different assignments to x, then type check
the code in between.

Similar cases can occur if we try to apply a non-standard type
system to existing code. For example, in our case study (Sec-
tion 4.5), we applied a nullness checker based on type qualifiers
to C. We found some examples like the following code:

{t . . . {s x→obj = NULL;
x→obj = (. . .)malloc(. . .); s} . . . t}

Here x→obj is initially assigned to NULL, immediately before be-
ing assigned a freshly allocated location. A flow-insensitive type
qualifier system would think that x→obj could be NULL after this
pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context-
sensitivity, though at the cost of duplicate work. For example, in
the following:

{s let id x = x in{t . . .{s id 3 s} . . . {s id 3.0 s} . . . t} s}

the identity function id is called with an int and a float. Rather than
adding parametric polymorphism to type check this example, we
could wrap those calls in symbolic blocks, which in MIX causes
the calls to be checked with symbolic execution. While this is
likely not useful for standard type checking, for which parametric
polymorphism is well-understood, it could be very useful for a
more advanced type system for which fully general parametric
polymorphic type inference might be difficult to implement or
perhaps even undecidable.

A combination of context sensitivity and path sensitivity is
possible with MIX. For example, consider the following:

{s
let div x y = if y = 0 then ‘‘err’’ else x / y in
{t . . .+{s div 7 4 s} t}

s}

where the div function may return an int or a string, but it returns a
string (indicating error) only when the second argument is 0. Note
that this level of precision would be out of the reach of parametric
polymorphism by itself.

Local Refinements of Data. Symbolic execution can also poten-
tially be used to model data more precisely for non-standard type
systems. As one example, suppose we introduce a type qualifier
system that distinguishes the sign of an integer as either positive,
negative, zero, or unknown. Then we can use symbolic execution
to refine the type of an integer after a test:

{t
let x : unknown int = . . . in
{s

437

if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that
motiviate the design of MIX. Here, we consider a core language,

Source Language.

e ::= x | v variables, constants
| e + e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants

| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

shown in the top portion of Figure 1, with which we study the
essence of switching blocks for mixing analyses. Our language in-
cludes variables x; integers n; booleans true and false; selected
arithmetic and boolean operations +, =, ¬, and ∧; conditionals
with if; let bindings; and ML-style updatable references with ref
(construction), ! (dereference), and := (assignment). We also in-
clude two new block forms, typed blocks {t e t} and symbolic
blocks {s e s}, which indicate e should be analyzed with type
checking or symbolic execution, respectively. We leave unspeci-
fied whether the outermost scope of a program is treated as a typed
block or a symbolic block; MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ � e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in dereferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a

438

© 2011 Stephen Chong, Harvard University

Motivation

•Helping symbolic execution

19

if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that
motiviate the design of MIX. Here, we consider a core language,

Source Language.

e ::= x | v variables, constants
| e + e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants

| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

shown in the top portion of Figure 1, with which we study the
essence of switching blocks for mixing analyses. Our language in-
cludes variables x; integers n; booleans true and false; selected
arithmetic and boolean operations +, =, ¬, and ∧; conditionals
with if; let bindings; and ML-style updatable references with ref
(construction), ! (dereference), and := (assignment). We also in-
clude two new block forms, typed blocks {t e t} and symbolic
blocks {s e s}, which indicate e should be analyzed with type
checking or symbolic execution, respectively. We leave unspeci-
fied whether the outermost scope of a program is treated as a typed
block or a symbolic block; MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ � e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in dereferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a

438

© 2011 Stephen Chong, Harvard University

Formalism

20

if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that
motiviate the design of MIX. Here, we consider a core language,

Source Language.

e ::= x | v variables, constants
| e + e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants

| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

shown in the top portion of Figure 1, with which we study the
essence of switching blocks for mixing analyses. Our language in-
cludes variables x; integers n; booleans true and false; selected
arithmetic and boolean operations +, =, ¬, and ∧; conditionals
with if; let bindings; and ML-style updatable references with ref
(construction), ! (dereference), and := (assignment). We also in-
clude two new block forms, typed blocks {t e t} and symbolic
blocks {s e s}, which indicate e should be analyzed with type
checking or symbolic execution, respectively. We leave unspeci-
fied whether the outermost scope of a program is treated as a typed
block or a symbolic block; MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ � e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in dereferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a

438

© 2011 Stephen Chong, Harvard University

Type checking

•Almost completely standard

•Except for rule for {s e s}… We’ll come back to
that

21

if x > 0 then{t (∗ x : pos int ∗) . . . t}
else if x = 0 then{t (∗ x : zero int ∗) . . . t}
else{t (∗ x : neg int ∗) . . . t}

s}
t}

Here on entry to the symbolic block, x is an unknown integer, so
the symbolic executor will assign it an initial symbolic value αx

ranging over all possible integers. Then at the conditional branches,
the symbolic executor will fork and explore the three possibilities:
αx > 0, αx = 0, and αx < 0. On entering the typed block in
each branch, since the value of x is constrained in the symbolic
execution, the type system will start with the appropriate type for x,
either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent
data races in C. Then a common problem that arises is analyzing
local initialization of shared data [Pratikakis et al. 2006]. Consider
the following code:

{t
{s

x = (struct foo ∗) malloc(sizeof(struct foo));
x→bar = . . . ;
x→baz = . . . ;
x→qux = . . . ;

s}
insert(shared data structure, x);

t}

Here we allocate a new block of memory and then initialize it in
several steps before it becomes shared. A flow-insensitive type-
based analysis would report an error because the writes through
x occur without a lock held. On the other hand, if we wrap the
allocation and initialization in a symbolic block, as above, symbolic
execution can easily observe that x is local during the initialization
phase, and hence the writes need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered
adding precision in type checking through symbolic execution.
Alternatively, typed blocks can potentially be used to introduce
conservative abstraction in symbolic execution when the latter is
not viable. For example:

{s
let x ={t unknown function() t} in . . .
let y ={t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
{t while true do{s loop body s}t}

s}

The first line contains a call to a function whose source code is not
available, so we cannot symbolically execute the call. However, if
we know the called function’s type, then we can wrap the call in
a typed block (assuming the function has no side effects), conser-
vatively modeling its return value as any possible member of its
return type. Similarly, on the second line, we are performing an
exponentiation operation, and let us suppose the symbolic execu-
tor’s solver cannot model this operation if z is symbolic. Then by
wrapping the operation in a typed block, we can continue symbolic
execution, again conservatively assuming the result of the exponen-
tiation is any member of the result type. The third line shows how
we could potentially handle long-running loops by wrapping them
in typed blocks, so that symbolic execution would effectively skip
over them rather than unroll them (infinitely). We can also recover
some precision within the loop body by further wrapping the loop
body with a symbolic block.

3. The MIX System
In the previous section, we considered a number of idioms that
motiviate the design of MIX. Here, we consider a core language,

Source Language.

e ::= x | v variables, constants
| e + e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants

| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 1. Program expressions, types, and symbolic expressions.

shown in the top portion of Figure 1, with which we study the
essence of switching blocks for mixing analyses. Our language in-
cludes variables x; integers n; booleans true and false; selected
arithmetic and boolean operations +, =, ¬, and ∧; conditionals
with if; let bindings; and ML-style updatable references with ref
(construction), ! (dereference), and := (assignment). We also in-
clude two new block forms, typed blocks {t e t} and symbolic
blocks {s e s}, which indicate e should be analyzed with type
checking or symbolic execution, respectively. We leave unspeci-
fied whether the outermost scope of a program is treated as a typed
block or a symbolic block; MIX can handle either case.

3.1 Type Checking and Symbolic Execution
Type checking for our source language is entirely standard, and
so we omit those rules here. Our type checking system proves
judgments of the form Γ � e : τ , where Γ is the type environment
and τ is e’s type. Grammars for Γ and τ are given in the bottom
portion of Figure 1.

The remainder of this section describes a generic symbolic ex-
ecutor. While the concept of symbolic execution is widely known,
there does not appear to be a clear consensus of its definition. Thus,
we make explicit our definition of symbolic execution here through
a formalization similar to an operational semantics. Such a formal-
ization enables us to describe the switching between type checking
and symbolic execution in a uniform manner.

Symbolic Expressions, Memories, and Environments. The re-
mainder of Figure 1 describes the symbolic expressions and en-
vironments used by our symbolic executor. Symbolic expressions
are used to accumulate constraints in dereferral rules. For example,
the symbolic expression (α:int + 3:int):int represents a value that
is three more than the unknown integer α.

Because we are concerned with checking for run-time type er-
rors, in our system symbolic expressions s have the form u:τ ,
where u is a bare symbolic expression and τ is its type. With these
type annotations, we can immediately determine the type of a sym-
bolic expression, just like in a concrete evaluator with values. As a

438

shorthand, we use g to represent conditional guards, which are just

symbolic expressions with type bool. Bare symbolic expressions u
may be symbolic variables α (e.g., α:int is a symbolic integer, and

α:bool is a symbolic boolean); known values v; or operations +,

=, ¬, ∧ applied to symbolic expressions of the appropriate type.

Notice that our syntax forbids the formation of certain ill-typed

symbolic expression (e.g., α1:int + α2:bool is not allowed).

Symbolic expressions also include symbolic memory accesses

m[u:τ ref], which represents an access through pointer u in sym-

bolic memory m. A symbolic memory may be µ, representing an

arbitrary but well-typed memory; m, (s � s�), a memory that

is the same as m except location s is updated to contain s�
; or

m, (s
a� s�), which is the same as m except newly allocated lo-

cation s points to s�
. These are essentially McCarthy-style sel and

upd expressions that allow the symbolic executor to accumulate

a log of writes and allocations while deferring alias analysis. An

allocation always creates a new location that is distinct from the lo-

cations in the base unknown memory, so we distinguish them from

arbitrary writes.

Finally, symbolic environments Σ map local variables x to

(typed) symbolic expressions s.

Symbolic Execution for Pure Expressions. Figure 2 describes

our symbolic executor on pure expressions using what are essen-

tially big-step operational semantics rules. The rules in Figure 2

prove judgments of the form

Σ � �S ; e� ⇓ �S� ; s�
meaning with local variables bound in Σ, starting in state S, expres-

sion e evaluates to symbolic expression s and updates the state to

S�
. In our symbolic execution judgment, a state S is a tuple �g ;m�,

where g is a path condition constraining the current state and m is

the current symbolic memory. The path condition begins as true,

and whenever the symbolic executor makes a choice at a condi-

tional, we extend the path condition to remember that choice (more

on this below). We write X(S) for the X component of S, with

X ∈ {g, m}, and similarly we write S[X �→ Y] for the state that

is the same as S, except its X component is now Y .

Most of the rules in Figure 2 are straightforward and intend to

summarize typical symbolic executors. Rule SEVAR evaluates a

local variable by looking it up in the current environment. Notice

that, as with standard operational semantics, there is no reduction

possible if the variable is not in the current environment. Rule

SEVAL reduces values to themselves, using the auxiliary function

typeof(v) that examines the value form to return its type (i.e.,

typeof(n) = int and typeof(true) = typeof(false) = bool).
Rules SEPLUS, SEEQ, SENOT, and SEAND execute the

subexpressions and then form a new symbolic expression with +,

=, ¬, or ∧, respectively. Notice that these rules place requirements

on the subexpressions—for example, SEPLUS requires that the

subexpressions reduce to symbolic integers, and SENOT requires

that the subexpression reduces to a guard (a symbolic boolean). If

the subexpression does not reduce to an expression of the right type,

then symbolic execution fails. Thus, these rules form a symbolic

execution engine that does very precise dynamic type checking.

Rule SELET symbolically executes e1 and then binds e1 to x for

execution of e2. The last two rules, SEIF-TRUE and SEIF-FALSE,

model a pure, non-deterministic version of the kind of symbolic ex-

ecution popularized by DART [Godefroid et al. 2005], CUTE [Sen

et al. 2005], EXE [Cadar et al. 2006], and KLEE [Cadar et al.

2008]. When we reach a conditional, we conceptually fork exe-

cution, extending the path condition with g1 or ¬g1 to indicate the

branch taken. EXE and KLEE would both invoke an SMT solver at

this point to decide whether one or both branches are feasible, and

then try all feasible paths. DART and CUTE, in contrast, would

continue down one path as guided by an underlying concrete run

Symbolic Execution. Σ � �S ; e� ⇓ �S� ; s� S = �g ; m�

SEVAR

Σ, x : s � �S ; x� ⇓ �S ; s�

SEVAL

Σ � �S ; v� ⇓ �S ; (v: typeof(v))�

SEPLUS

Σ � �S ; e1� ⇓ �S1 ; u1:int� Σ � �S1 ; e2� ⇓ �S2 ; u2:int�
Σ � �S ; e1 + e2� ⇓ �S2 ; (u1:int + u2:int):int�

SEEQ

Σ � �S ; e1� ⇓ �S1 ; u1:τ� Σ � �S1 ; e2� ⇓ �S2 ; u2:τ�
Σ � �S ; e1 = e2� ⇓ �S2 ; (u1:τ = u2:τ):bool�

SENOT

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S ; ¬e1� ⇓ �S1 ; ¬g1:bool�

SEAND

Σ � �S ; e1� ⇓ �S1 ; g1� Σ � �S1 ; e2� ⇓ �S2 ; g2�
Σ � �S ; e1 ∧ e2� ⇓ �S2 ; (g1 ∧ g2):bool�

SELET

Σ � �S ; e1� ⇓ �S1 ; s1� Σ, x : s1 � �S1 ; e2� ⇓ �S2 ; s2�
Σ � �S ; let x = e1 in e2� ⇓ �S2 ; s2�

SEIF-TRUE

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S1[g �→ g(S1) ∧ g1] ; e2� ⇓ �S2 ; s2�
Σ � �S ; if e1 then e2 else e3� ⇓ �S2 ; s2�

SEIF-FALSE

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S[g �→ g(S1) ∧ ¬g1] ; e3� ⇓ �S3 ; s3�
Σ � �S ; if e1 then e2 else e3� ⇓ �S3 ; s3�

Figure 2. Symbolic execution for pure expressions.

(so-called “concolic execution”), but then would ask an SMT solver

later whether the path not taken was feasible and, if so, come back

and take it eventually. All of these implementation choices can be

viewed as optimizations to prune infeasible paths or hints to focus

the exploration. Since we are not concerned with performance in

our formalism, we simply extend the path condition and continue—

eventually, when symbolic execution completes, we will check the

path condition and discard the path if it is infeasible. To get sound

symbolic execution, we will compute a set of symbolic executions

and require that all feasible paths are explored (see Section 3.2).

Sometimes, the symbolic executor may want to throw away

information (e.g., replace a symbolic expression for a compli-

cated memory read with a fresh symbolic variable). Such a rule

is straightforward to add, but as discussed in Section 3.2, a nested

typed block {t e t} serves a similar purpose.

Deferral Versus Execution. Consider again the rules for sym-

bolic execution on pure expressions in Figure 2. Excluding the triv-

ial SEVAL rule, the first set of rules (SEPLUS, SEEQ, SENOT,

and SEAND) versus the second set (SELET, SEVAR, SEIF-TRUE,

SEIF-FALSE) seem qualitatively different. The first set simply get

symbolic expressions for their subexpressions and form a new sym-

439

© 2011 Stephen Chong, Harvard University

Symbolic execution

22

shorthand, we use g to represent conditional guards, which are just

symbolic expressions with type bool. Bare symbolic expressions u
may be symbolic variables α (e.g., α:int is a symbolic integer, and

α:bool is a symbolic boolean); known values v; or operations +,

=, ¬, ∧ applied to symbolic expressions of the appropriate type.

Notice that our syntax forbids the formation of certain ill-typed

symbolic expression (e.g., α1:int + α2:bool is not allowed).

Symbolic expressions also include symbolic memory accesses

m[u:τ ref], which represents an access through pointer u in sym-

bolic memory m. A symbolic memory may be µ, representing an

arbitrary but well-typed memory; m, (s � s�), a memory that

is the same as m except location s is updated to contain s�
; or

m, (s
a� s�), which is the same as m except newly allocated lo-

cation s points to s�
. These are essentially McCarthy-style sel and

upd expressions that allow the symbolic executor to accumulate

a log of writes and allocations while deferring alias analysis. An

allocation always creates a new location that is distinct from the lo-

cations in the base unknown memory, so we distinguish them from

arbitrary writes.

Finally, symbolic environments Σ map local variables x to

(typed) symbolic expressions s.

Symbolic Execution for Pure Expressions. Figure 2 describes

our symbolic executor on pure expressions using what are essen-

tially big-step operational semantics rules. The rules in Figure 2

prove judgments of the form

Σ � �S ; e� ⇓ �S� ; s�
meaning with local variables bound in Σ, starting in state S, expres-

sion e evaluates to symbolic expression s and updates the state to

S�
. In our symbolic execution judgment, a state S is a tuple �g ;m�,

where g is a path condition constraining the current state and m is

the current symbolic memory. The path condition begins as true,

and whenever the symbolic executor makes a choice at a condi-

tional, we extend the path condition to remember that choice (more

on this below). We write X(S) for the X component of S, with

X ∈ {g, m}, and similarly we write S[X �→ Y] for the state that

is the same as S, except its X component is now Y .

Most of the rules in Figure 2 are straightforward and intend to

summarize typical symbolic executors. Rule SEVAR evaluates a

local variable by looking it up in the current environment. Notice

that, as with standard operational semantics, there is no reduction

possible if the variable is not in the current environment. Rule

SEVAL reduces values to themselves, using the auxiliary function

typeof(v) that examines the value form to return its type (i.e.,

typeof(n) = int and typeof(true) = typeof(false) = bool).
Rules SEPLUS, SEEQ, SENOT, and SEAND execute the

subexpressions and then form a new symbolic expression with +,

=, ¬, or ∧, respectively. Notice that these rules place requirements

on the subexpressions—for example, SEPLUS requires that the

subexpressions reduce to symbolic integers, and SENOT requires

that the subexpression reduces to a guard (a symbolic boolean). If

the subexpression does not reduce to an expression of the right type,

then symbolic execution fails. Thus, these rules form a symbolic

execution engine that does very precise dynamic type checking.

Rule SELET symbolically executes e1 and then binds e1 to x for

execution of e2. The last two rules, SEIF-TRUE and SEIF-FALSE,

model a pure, non-deterministic version of the kind of symbolic ex-

ecution popularized by DART [Godefroid et al. 2005], CUTE [Sen

et al. 2005], EXE [Cadar et al. 2006], and KLEE [Cadar et al.

2008]. When we reach a conditional, we conceptually fork exe-

cution, extending the path condition with g1 or ¬g1 to indicate the

branch taken. EXE and KLEE would both invoke an SMT solver at

this point to decide whether one or both branches are feasible, and

then try all feasible paths. DART and CUTE, in contrast, would

continue down one path as guided by an underlying concrete run

Symbolic Execution. Σ � �S ; e� ⇓ �S� ; s� S = �g ; m�

SEVAR

Σ, x : s � �S ; x� ⇓ �S ; s�

SEVAL

Σ � �S ; v� ⇓ �S ; (v: typeof(v))�

SEPLUS

Σ � �S ; e1� ⇓ �S1 ; u1:int� Σ � �S1 ; e2� ⇓ �S2 ; u2:int�
Σ � �S ; e1 + e2� ⇓ �S2 ; (u1:int + u2:int):int�

SEEQ

Σ � �S ; e1� ⇓ �S1 ; u1:τ� Σ � �S1 ; e2� ⇓ �S2 ; u2:τ�
Σ � �S ; e1 = e2� ⇓ �S2 ; (u1:τ = u2:τ):bool�

SENOT

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S ; ¬e1� ⇓ �S1 ; ¬g1:bool�

SEAND

Σ � �S ; e1� ⇓ �S1 ; g1� Σ � �S1 ; e2� ⇓ �S2 ; g2�
Σ � �S ; e1 ∧ e2� ⇓ �S2 ; (g1 ∧ g2):bool�

SELET

Σ � �S ; e1� ⇓ �S1 ; s1� Σ, x : s1 � �S1 ; e2� ⇓ �S2 ; s2�
Σ � �S ; let x = e1 in e2� ⇓ �S2 ; s2�

SEIF-TRUE

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S1[g �→ g(S1) ∧ g1] ; e2� ⇓ �S2 ; s2�
Σ � �S ; if e1 then e2 else e3� ⇓ �S2 ; s2�

SEIF-FALSE

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S[g �→ g(S1) ∧ ¬g1] ; e3� ⇓ �S3 ; s3�
Σ � �S ; if e1 then e2 else e3� ⇓ �S3 ; s3�

Figure 2. Symbolic execution for pure expressions.

(so-called “concolic execution”), but then would ask an SMT solver

later whether the path not taken was feasible and, if so, come back

and take it eventually. All of these implementation choices can be

viewed as optimizations to prune infeasible paths or hints to focus

the exploration. Since we are not concerned with performance in

our formalism, we simply extend the path condition and continue—

eventually, when symbolic execution completes, we will check the

path condition and discard the path if it is infeasible. To get sound

symbolic execution, we will compute a set of symbolic executions

and require that all feasible paths are explored (see Section 3.2).

Sometimes, the symbolic executor may want to throw away

information (e.g., replace a symbolic expression for a compli-

cated memory read with a fresh symbolic variable). Such a rule

is straightforward to add, but as discussed in Section 3.2, a nested

typed block {t e t} serves a similar purpose.

Deferral Versus Execution. Consider again the rules for sym-

bolic execution on pure expressions in Figure 2. Excluding the triv-

ial SEVAL rule, the first set of rules (SEPLUS, SEEQ, SENOT,

and SEAND) versus the second set (SELET, SEVAR, SEIF-TRUE,

SEIF-FALSE) seem qualitatively different. The first set simply get

symbolic expressions for their subexpressions and form a new sym-

439

© 2011 Stephen Chong, Harvard University

Symbolic execution of references

23

bolic expression of the corresponding operator, essentially defer-
ring any reasoning about the operation (e.g., to an SMT solver).
In contrast, the second set does not accumulate any such symbolic
expression but rather chooses a possible concrete execution to fol-
low. For example, we can view SEIF-TRUE as choosing to assume
that g1 is concretely true and proceeding to symbolically execute
e2. This assumption is recorded in the path condition. (The SELET
and SEVAR rules are degenerate execution rules where no assump-
tions need to be made because there is only one possible concrete
execution for each.) Alternatively, we see that there are symbolic
expression forms for +, =, ¬, and ∧ but not for let, program vari-
ables, and if.

Although it is not commonly presented as such, the decision
of deferral versus execution is a design choice. For example, let
us include an if-then-else symbolic expression g?s1:s2 (using a C-
style conditional syntax) that evaluates to s1 if g evaluates to true
and s2 otherwise. Then, we could defer to the evaluation of the
conditional to the solver with the following rule:
SEIF-DEFER

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S[g �→ g(S1) ∧ g1] ; e2� ⇓ �S2 ; u2:τ�
Σ � �S[g �→ g(S1) ∧ ¬g1] ; e3� ⇓ �S3 ; u3:τ�
S� = �(g1?g(S2):g(S3)) ; (g1?m(S2):m(S3))�

Σ � �S ; (if e1 then e2 else e3)� ⇓ �S� ; (g1?(u2:τ):(u3:τ)):τ�
Here notice we also have to extend the ·? · :· relation to operate
over memory as well. With this rule, we need not “fork” symbolic
execution at all. However, note that even with conditional symbolic
expressions and condition symbolic memory, this rule is more con-
servative than the SEIF-TRUE and SEIF-FALSE execution rules, as
it requires both branches to have the same type.

Conversely, other rules may also be made non-deterministic in
manner similar to SEIF-*. For example, SEVAR may instead return
an arbitrary value v and add Σ(x) = v to the path condition, a style
that resembles hybrid concolic testing [Majumdar and Sen 2007].
A special case of execution rules are ones that apply only when
we have concrete values during symbolic execution and thus do not
need to “fork.” For example, we could have a SEPLUS-CONC that
applies to two concrete values n1, n2 and returns the sum. This
approach is reminiscent of partial evaluation.

These choices trade off the amount of work done between the
symbolic executor and the underlying SMT solver. For example,
SEIF-DEFER introduces many disjunctions into symbolic expres-
sions, which then may be hard to solve efficiently. To match current
practice, we stick with the forking variant for conditionals, but we
believe our system would also be sound with SEIF-DEFER.

Symbolic References. Figure 3 continues our symbolic executor
definition with rules for updatable references. We use deferral rules
for all aspects of references in our formalization. Rule SEREF eval-
uates e1 and extends m(S1) with an allocation for fresh symbolic
pointer α. Similarly, rule SEASSIGN extends S2 to record that s1

now points to s2. Observe that allocations and writes are simply
logged during symbolic execution for later inspection. Also, no-
tice that we allow any value to be written to s1, even if it does not
match the type annotation on s1. In contrast, standard type systems
require that any writes to memory must preserve types since the
type system does not track enough information about pointers to be
sound if that property is violated. Symbolic execution tracks every
possible program execution precisely, and so it can allow arbitrary
memory writes.

In SEDEREF, we evaluate e1 to a pointer u1:τ ref and then
produce the symbolic expression m(S1)[u1:τ ref]:τ to represent
the contents of that location. However, here we are faced with a
challenge: we are not actually looking up the contents of memory;
rather, we are simply forming a symbolic expression to represent

Symbolic Execution for References. Σ � �S ; e� ⇓ �S� ; s�

SEREF
Σ � �S ; e1� ⇓ �S1 ; u1:τ� α /∈ Σ, S, S1, u1

S� = S1[m �→ (m(S1), (α:τ ref
a� u1:τ))]

Σ � �S1 ; ref e1� ⇓ �S� ; α:τ ref�

SEASSIGN
Σ � �S ; e1� ⇓ �S1 ; s1� Σ � �S1 ; e2� ⇓ �S2 ; s2�

Σ � �S ; e1 := e2� ⇓ �S2[m �→ (m(S2), (s1 � s2))] ; s2�

SEDEREF
Σ � �S ; e1� ⇓ �S1 ; u1:τ ref� � m(S1) ok

Σ � �S ; !e1� ⇓ �S1 ; m(S1)[u1:τ ref]:τ�

Memory Type Consistency. � m ok U � m ok

EMPTY-OK

� µ ok ∅

ALLOC-OK
� m ok U

� m, (α:τ ref
a� u2:τ) ok U

OVERWRITE-OK
� m ok U U � = U\ {s1 � s2 | s1 ≡ u1:τ ref ∧ s1 � s2 ∈ U}

� m, (u1:τ ref � u2:τ) ok U �

ARBITRARY-NOTOK
� m ok U

� m, (s1 � s2) ok (U ∪ {s1 � s2})

M-OK
� m ok ∅
� m ok

Figure 3. Symbolic execution for updatable references.

the contents. How, then, do we determine the type of the pointed-
to value? We need the type so that we can halt symbolic execution
later if that value is used in a type-incorrect manner. That is, we do
not want to defer the discovery of a potential type error.

Our solution is to use the type annotation on the pointer to
get the type of the contents—but above we just explained that
SEASSIGN allows writes to violate those type annotations. There
are many potential ways to solve this problem. We could invoke
an SMT solver to compute the actual set of addresses that could
be dereferenced and fork execution for each one. Or we could
proceed as our implementation and use an external alias analysis
to conservatively model all possible locations that could be read to
check that the values at all locations have the same type (Section 4).
However, to keep the formal system simple, we choose a very
coarse solution: we require that all pointers in memory are well-
typed with the check � m(S1) ok.

This judgment is defined in the bottom portion of Figure 3 in
terms of the auxiliary judgment � m ok U , which means mem-
ory m is consistently typed (pointers point to values of the right
type), except for mappings in U . There are four cases for this judg-
ment. EMPTY-OK says that arbitrary well-typed memory µ is con-
sistently typed. Similarly, ALLOC-OK says that if m is consistently
typed except for potentially inconsistent writes in U , then adding an
allocation preserves consistent typing up to U . Rule OVERWRITE-
OK says that if � m ok U and we extend m with a well-typed
write to u1, then any previous, inconsistent writes to locations
s1 ≡ u1:τ ref can be ignored. Here by≡ we mean syntactic equiv-
alence, but in practice we could query a solver to validate such
an equality given the current path condition. Rule ARBITRARY-
NOTOK says that any write can be added to U and viewed as po-
tentially inconsistent. Finally, M-OK says that � m ok if m has no

440

bolic expression of the corresponding operator, essentially defer-
ring any reasoning about the operation (e.g., to an SMT solver).
In contrast, the second set does not accumulate any such symbolic
expression but rather chooses a possible concrete execution to fol-
low. For example, we can view SEIF-TRUE as choosing to assume
that g1 is concretely true and proceeding to symbolically execute
e2. This assumption is recorded in the path condition. (The SELET
and SEVAR rules are degenerate execution rules where no assump-
tions need to be made because there is only one possible concrete
execution for each.) Alternatively, we see that there are symbolic
expression forms for +, =, ¬, and ∧ but not for let, program vari-
ables, and if.

Although it is not commonly presented as such, the decision
of deferral versus execution is a design choice. For example, let
us include an if-then-else symbolic expression g?s1:s2 (using a C-
style conditional syntax) that evaluates to s1 if g evaluates to true
and s2 otherwise. Then, we could defer to the evaluation of the
conditional to the solver with the following rule:
SEIF-DEFER

Σ � �S ; e1� ⇓ �S1 ; g1�
Σ � �S[g �→ g(S1) ∧ g1] ; e2� ⇓ �S2 ; u2:τ�
Σ � �S[g �→ g(S1) ∧ ¬g1] ; e3� ⇓ �S3 ; u3:τ�
S� = �(g1?g(S2):g(S3)) ; (g1?m(S2):m(S3))�

Σ � �S ; (if e1 then e2 else e3)� ⇓ �S� ; (g1?(u2:τ):(u3:τ)):τ�
Here notice we also have to extend the ·? · :· relation to operate
over memory as well. With this rule, we need not “fork” symbolic
execution at all. However, note that even with conditional symbolic
expressions and condition symbolic memory, this rule is more con-
servative than the SEIF-TRUE and SEIF-FALSE execution rules, as
it requires both branches to have the same type.

Conversely, other rules may also be made non-deterministic in
manner similar to SEIF-*. For example, SEVAR may instead return
an arbitrary value v and add Σ(x) = v to the path condition, a style
that resembles hybrid concolic testing [Majumdar and Sen 2007].
A special case of execution rules are ones that apply only when
we have concrete values during symbolic execution and thus do not
need to “fork.” For example, we could have a SEPLUS-CONC that
applies to two concrete values n1, n2 and returns the sum. This
approach is reminiscent of partial evaluation.

These choices trade off the amount of work done between the
symbolic executor and the underlying SMT solver. For example,
SEIF-DEFER introduces many disjunctions into symbolic expres-
sions, which then may be hard to solve efficiently. To match current
practice, we stick with the forking variant for conditionals, but we
believe our system would also be sound with SEIF-DEFER.

Symbolic References. Figure 3 continues our symbolic executor
definition with rules for updatable references. We use deferral rules
for all aspects of references in our formalization. Rule SEREF eval-
uates e1 and extends m(S1) with an allocation for fresh symbolic
pointer α. Similarly, rule SEASSIGN extends S2 to record that s1

now points to s2. Observe that allocations and writes are simply
logged during symbolic execution for later inspection. Also, no-
tice that we allow any value to be written to s1, even if it does not
match the type annotation on s1. In contrast, standard type systems
require that any writes to memory must preserve types since the
type system does not track enough information about pointers to be
sound if that property is violated. Symbolic execution tracks every
possible program execution precisely, and so it can allow arbitrary
memory writes.

In SEDEREF, we evaluate e1 to a pointer u1:τ ref and then
produce the symbolic expression m(S1)[u1:τ ref]:τ to represent
the contents of that location. However, here we are faced with a
challenge: we are not actually looking up the contents of memory;
rather, we are simply forming a symbolic expression to represent

Symbolic Execution for References. Σ � �S ; e� ⇓ �S� ; s�

SEREF
Σ � �S ; e1� ⇓ �S1 ; u1:τ� α /∈ Σ, S, S1, u1

S� = S1[m �→ (m(S1), (α:τ ref
a� u1:τ))]

Σ � �S1 ; ref e1� ⇓ �S� ; α:τ ref�

SEASSIGN
Σ � �S ; e1� ⇓ �S1 ; s1� Σ � �S1 ; e2� ⇓ �S2 ; s2�

Σ � �S ; e1 := e2� ⇓ �S2[m �→ (m(S2), (s1 � s2))] ; s2�

SEDEREF
Σ � �S ; e1� ⇓ �S1 ; u1:τ ref� � m(S1) ok

Σ � �S ; !e1� ⇓ �S1 ; m(S1)[u1:τ ref]:τ�

Memory Type Consistency. � m ok U � m ok

EMPTY-OK

� µ ok ∅

ALLOC-OK
� m ok U

� m, (α:τ ref
a� u2:τ) ok U

OVERWRITE-OK
� m ok U U � = U\ {s1 � s2 | s1 ≡ u1:τ ref ∧ s1 � s2 ∈ U}

� m, (u1:τ ref � u2:τ) ok U �

ARBITRARY-NOTOK
� m ok U

� m, (s1 � s2) ok (U ∪ {s1 � s2})

M-OK
� m ok ∅
� m ok

Figure 3. Symbolic execution for updatable references.

the contents. How, then, do we determine the type of the pointed-
to value? We need the type so that we can halt symbolic execution
later if that value is used in a type-incorrect manner. That is, we do
not want to defer the discovery of a potential type error.

Our solution is to use the type annotation on the pointer to
get the type of the contents—but above we just explained that
SEASSIGN allows writes to violate those type annotations. There
are many potential ways to solve this problem. We could invoke
an SMT solver to compute the actual set of addresses that could
be dereferenced and fork execution for each one. Or we could
proceed as our implementation and use an external alias analysis
to conservatively model all possible locations that could be read to
check that the values at all locations have the same type (Section 4).
However, to keep the formal system simple, we choose a very
coarse solution: we require that all pointers in memory are well-
typed with the check � m(S1) ok.

This judgment is defined in the bottom portion of Figure 3 in
terms of the auxiliary judgment � m ok U , which means mem-
ory m is consistently typed (pointers point to values of the right
type), except for mappings in U . There are four cases for this judg-
ment. EMPTY-OK says that arbitrary well-typed memory µ is con-
sistently typed. Similarly, ALLOC-OK says that if m is consistently
typed except for potentially inconsistent writes in U , then adding an
allocation preserves consistent typing up to U . Rule OVERWRITE-
OK says that if � m ok U and we extend m with a well-typed
write to u1, then any previous, inconsistent writes to locations
s1 ≡ u1:τ ref can be ignored. Here by≡ we mean syntactic equiv-
alence, but in practice we could query a solver to validate such
an equality given the current path condition. Rule ARBITRARY-
NOTOK says that any write can be added to U and viewed as po-
tentially inconsistent. Finally, M-OK says that � m ok if m has no

440

Note: in assignment of s2 to α:τ ref does
not require s2 to be of type τ

How to ensure that dereference is of
appropriate type?

© 2011 Stephen Chong, Harvard University

Design decisions

•Deferral vs. execution
•When to execute (e.g., forking on an if) versus deferring (e.g.,

having a _?_:_ symbolic operator)

•Tension between symbolic execution and types
•Want symbolic execution to be permissive, but need to have

enough information around to invoke type checking

•⊢m(S1) ok requires entire memory to be appropriately typed at time
of dereference

•Alternatives:

• Fork execution for each possible actual address pointer could
evaluate to

•Use external alias analysis to ensure points-to set is well-typed

24

Symbolic
execution
output

Symbolic
execution
input

Block Typing. Γ � e : τ

TSYMBLOCK
Σ(x) = αx:Γ(x) (for all x ∈ dom(Γ))

Σ � �S ; e� ⇓ �Si ; ui:τ� S = �true ; µ� µ /∈ Σ
� m(Si) ok exhaustive(g(S1), . . . , g(Sn)) (i ∈ 1..n)

Γ � {s e s} : τ

exhaustive(g1, . . . , gn) ⇐⇒ (g1 ∨ . . . ∨ gn is a tautology)

Block Symbolic Execution. Σ � �S ; e� ⇓ �S� ; s�

SETYPBLOCK
� Σ : Γ � m(S) ok Γ � e : τ µ�, α /∈ Σ, S

Σ � �S ; {t e t}� ⇓ �S[m �→ µ�] ; α:τ�

Symbolic and Typing Environment Conformance. � Σ : Γ

dom(Σ) = dom(Γ)
Σ(x) = u:Γ(x) (for all x ∈ dom(Γ))

� Σ : Γ

Figure 4. Mixing symbolic execution and type checking.

inconsistent writes that persist. Together, these rules ensure that the
type assigned to the result of a dereference is sound. We can also
see how the SEDEREF may be made more precise by only requir-
ing consistency up to a set of writes U and querying a solver to
show that u1:τ ref are disequal to all the address expressions in U .

3.2 Mixing
In the previous section, we considered type checking and symbolic
execution separately, ignoring the blocks that indicate a switch in
analysis. Figure 4 shows the two mix rules that capture switching
between analyses.

Rule TSYMBLOCK describes how to type check a symbolic
block {s e s}, that is, how to apply symbolic execution to de-
rive a type of a subexpression for a type checker. First, we con-
struct an environment Σ that maps each variable x in Γ to a fresh
symbolic variable αx, whose type is extracted from Γ. Then we
run the symbolic execution under Σ, starting in a state with true
for the path condition and a fresh symbolic variable µ to stand
for the current memory. Recall that, because of SEIF-TRUE and
SEIF-FALSE, symbolic execution is actually non-deterministic—
it conceptually can branch at conditionals. If we want to soundly
model the entire possible behavior of e, we need to execute all
paths. Thus, we run the symbolic executor n times, yielding final
states �Si ; ui:τ� for i ∈ 1..n, and we require that the disjunction
of the guards from all executions form a tautology. This constraint
ensures that we exhaustively explore every possible path (see Sec-
tion 3.3 about soundness). And if all those paths executed success-
fully without type errors and returned a value of the same type τ ,
then that is the type of expression e. We also check that all paths
leave memory in a consistent state.

Symbolic execution has typically been used as an unsound anal-
ysis where there is no exhaustiveness check like exhaustive(. . .)
in the TSYMBLOCK. We can also model such unsound analysis by
weakening exhaustive(. . .) to a “good enough check.”

The other rule, SETYPBLOCK, describes how to symbolically
execute a typed block {t e t}, that is, how to apply the type checker
in the middle of a symbolic execution. We begin by deriving a type
environment Γ that maps local variables to the types of the symbols
they are mapped to in Σ. This mapping is described precisely by the
judgment � Σ : Γ, which is straightforward. We also require that

the current symbolic memory state be consistent, since the typed
block relies purely on type information (rather than tracking pointer
values as symbolic execution does). Then we type check e in Γ,
yielding a type τ . The typed block itself symbolically evaluates to
a fresh symbolic variable α of type τ . Since the typed block may
have written to memory, we conservatively set the memory of the
output state to a fresh µ�, indicating we know nothing about the
memory state at that point except that it is consistent.

Note that in our formalism, we do not have typed blocks within
typed blocks, or symbolic blocks within symbolic blocks, though
these would be trivial to add (by passing-through).

Why Mix? The mix rules are essentially as precise as possible
given the strengths and limitations of each analysis. The nested
analysis starts with the maximum amount of information that can
be extracted from the other static analysis—for symbolic blocks,
the only available information for symbolic execution is types,
whereas for typed blocks, the type checker only cares about types of
variables and thus abstracts away the symbolic expressions. After
the nested analysis is complete, the result is similarly passed back
to the enclosing analysis as precisely as possible.

For this paper, we deliberately chose two analyses at oppo-
site ends of the precision spectrum: type checking is cheap, flow-
insensitive with a rather coarse abstraction, while symbolic execu-
tion is expensive, flow- and path-sensitive (and context-sensitive if
we add functions) with a minimal amount of abstraction (i.e., it
is not even a proper program analysis per se, as there are no ter-
mination guarantees). They also work in such a different manner
that it does not seem particularly natural to combine them in tighter
ways (e.g., as a reduced product of abstract interpreters [Cousot and
Cousot 1979]). We think it is surprising just how much additional
precision we can obtain and the kinds of idioms we can analyze
from such a simple mixing of an entirely standard type system and
a typical symbolic executor as-is (as we see in Section 2). We note
that a type system capturing all of the examples in Section 2 would
likely be quite advanced (involving, for example, dependent types).

However, as can be seen in Figure 4, the conversion between
these two analyses may be extremely lossy. For example, in
SETYPBLOCK, the memory after returning from the type checker
must be a fresh arbitrary memory µ� because e may make any num-
ber of writes not captured by the type system and thus not seen by
the symbolic executor. We can also imagine mixing any number of
analyses in arbitrary combination, yielding different precision/effi-
ciency tradeoffs. For example, if we were to use a type and effect
system rather than just a type system, we could avoid introducing a
completely fresh memory µ� in SETYPBLOCK—instead, we could
find the effect of e and limit applying this “havoc” operation only
to locations that could have been changed.

3.3 Soundness
In this section, we sketch the soundness of MIX, which is de-
scribed in full detail in the appendix of our companion technical
report [Khoo et al. 2010]. The key feature of our proof is that aside
from the mix rule cases, it reuses the standalone type soundness
and symbolic execution soundness proofs essentially as-is.

We show soundness with respect to a standard big-step opera-
tional semantics for our simple language of expressions. Our se-
mantics is given by a judgment E � �M ; e� → r. This says that
in a concrete environment E, an initial concrete memory M and an
expression e evaluate to a result r. A concrete environment maps
variables to values, while a concrete memory maps locations to val-
ues. The evaluation result r is either a concrete memory-value pair
�M �; v� or a distinguished error token.

To prove mix soundness, we consider simultaneously type and
symbolic execution soundness. While type soundness is standard,

441

© 2011 Stephen Chong, Harvard University

Mixing

25

Block Typing. Γ � e : τ

TSYMBLOCK
Σ(x) = αx:Γ(x) (for all x ∈ dom(Γ))

Σ � �S ; e� ⇓ �Si ; ui:τ� S = �true ; µ� µ /∈ Σ
� m(Si) ok exhaustive(g(S1), . . . , g(Sn)) (i ∈ 1..n)

Γ � {s e s} : τ

exhaustive(g1, . . . , gn) ⇐⇒ (g1 ∨ . . . ∨ gn is a tautology)

Block Symbolic Execution. Σ � �S ; e� ⇓ �S� ; s�

SETYPBLOCK
� Σ : Γ � m(S) ok Γ � e : τ µ�, α /∈ Σ, S

Σ � �S ; {t e t}� ⇓ �S[m �→ µ�] ; α:τ�

Symbolic and Typing Environment Conformance. � Σ : Γ

dom(Σ) = dom(Γ)
Σ(x) = u:Γ(x) (for all x ∈ dom(Γ))

� Σ : Γ

Figure 4. Mixing symbolic execution and type checking.

inconsistent writes that persist. Together, these rules ensure that the
type assigned to the result of a dereference is sound. We can also
see how the SEDEREF may be made more precise by only requir-
ing consistency up to a set of writes U and querying a solver to
show that u1:τ ref are disequal to all the address expressions in U .

3.2 Mixing
In the previous section, we considered type checking and symbolic
execution separately, ignoring the blocks that indicate a switch in
analysis. Figure 4 shows the two mix rules that capture switching
between analyses.

Rule TSYMBLOCK describes how to type check a symbolic
block {s e s}, that is, how to apply symbolic execution to de-
rive a type of a subexpression for a type checker. First, we con-
struct an environment Σ that maps each variable x in Γ to a fresh
symbolic variable αx, whose type is extracted from Γ. Then we
run the symbolic execution under Σ, starting in a state with true
for the path condition and a fresh symbolic variable µ to stand
for the current memory. Recall that, because of SEIF-TRUE and
SEIF-FALSE, symbolic execution is actually non-deterministic—
it conceptually can branch at conditionals. If we want to soundly
model the entire possible behavior of e, we need to execute all
paths. Thus, we run the symbolic executor n times, yielding final
states �Si ; ui:τ� for i ∈ 1..n, and we require that the disjunction
of the guards from all executions form a tautology. This constraint
ensures that we exhaustively explore every possible path (see Sec-
tion 3.3 about soundness). And if all those paths executed success-
fully without type errors and returned a value of the same type τ ,
then that is the type of expression e. We also check that all paths
leave memory in a consistent state.

Symbolic execution has typically been used as an unsound anal-
ysis where there is no exhaustiveness check like exhaustive(. . .)
in the TSYMBLOCK. We can also model such unsound analysis by
weakening exhaustive(. . .) to a “good enough check.”

The other rule, SETYPBLOCK, describes how to symbolically
execute a typed block {t e t}, that is, how to apply the type checker
in the middle of a symbolic execution. We begin by deriving a type
environment Γ that maps local variables to the types of the symbols
they are mapped to in Σ. This mapping is described precisely by the
judgment � Σ : Γ, which is straightforward. We also require that

the current symbolic memory state be consistent, since the typed
block relies purely on type information (rather than tracking pointer
values as symbolic execution does). Then we type check e in Γ,
yielding a type τ . The typed block itself symbolically evaluates to
a fresh symbolic variable α of type τ . Since the typed block may
have written to memory, we conservatively set the memory of the
output state to a fresh µ�, indicating we know nothing about the
memory state at that point except that it is consistent.

Note that in our formalism, we do not have typed blocks within
typed blocks, or symbolic blocks within symbolic blocks, though
these would be trivial to add (by passing-through).

Why Mix? The mix rules are essentially as precise as possible
given the strengths and limitations of each analysis. The nested
analysis starts with the maximum amount of information that can
be extracted from the other static analysis—for symbolic blocks,
the only available information for symbolic execution is types,
whereas for typed blocks, the type checker only cares about types of
variables and thus abstracts away the symbolic expressions. After
the nested analysis is complete, the result is similarly passed back
to the enclosing analysis as precisely as possible.

For this paper, we deliberately chose two analyses at oppo-
site ends of the precision spectrum: type checking is cheap, flow-
insensitive with a rather coarse abstraction, while symbolic execu-
tion is expensive, flow- and path-sensitive (and context-sensitive if
we add functions) with a minimal amount of abstraction (i.e., it
is not even a proper program analysis per se, as there are no ter-
mination guarantees). They also work in such a different manner
that it does not seem particularly natural to combine them in tighter
ways (e.g., as a reduced product of abstract interpreters [Cousot and
Cousot 1979]). We think it is surprising just how much additional
precision we can obtain and the kinds of idioms we can analyze
from such a simple mixing of an entirely standard type system and
a typical symbolic executor as-is (as we see in Section 2). We note
that a type system capturing all of the examples in Section 2 would
likely be quite advanced (involving, for example, dependent types).

However, as can be seen in Figure 4, the conversion between
these two analyses may be extremely lossy. For example, in
SETYPBLOCK, the memory after returning from the type checker
must be a fresh arbitrary memory µ� because e may make any num-
ber of writes not captured by the type system and thus not seen by
the symbolic executor. We can also imagine mixing any number of
analyses in arbitrary combination, yielding different precision/effi-
ciency tradeoffs. For example, if we were to use a type and effect
system rather than just a type system, we could avoid introducing a
completely fresh memory µ� in SETYPBLOCK—instead, we could
find the effect of e and limit applying this “havoc” operation only
to locations that could have been changed.

3.3 Soundness
In this section, we sketch the soundness of MIX, which is de-
scribed in full detail in the appendix of our companion technical
report [Khoo et al. 2010]. The key feature of our proof is that aside
from the mix rule cases, it reuses the standalone type soundness
and symbolic execution soundness proofs essentially as-is.

We show soundness with respect to a standard big-step opera-
tional semantics for our simple language of expressions. Our se-
mantics is given by a judgment E � �M ; e� → r. This says that
in a concrete environment E, an initial concrete memory M and an
expression e evaluate to a result r. A concrete environment maps
variables to values, while a concrete memory maps locations to val-
ues. The evaluation result r is either a concrete memory-value pair
�M �; v� or a distinguished error token.

To prove mix soundness, we consider simultaneously type and
symbolic execution soundness. While type soundness is standard,

441

© 2011 Stephen Chong, Harvard University

Soundness

•Yes, it’s sound.
•Proof by simultaneous induction for type

soundness and “symbolic execution soundness”
•Need to define a soundness relation between concrete

state and symbolic state

26

© 2011 Stephen Chong, Harvard University

Mixy

• Tool for C for detecting null pointer errors

• Uses a type qualifier system
• τ *nonnull means pointer can never be null

• τ *null means pointer can never be null

• Performs inference instead of checking
• Generates symbolic variables for unknown qualifiers, and generates equality

constraints over these variables

• Methodology: start with all type-checking, and identify false
positives. Add symbolic blocks lazily to improve precision

27

on top of the CIL front-end for C [Necula et al. 2002], and our
type qualifier inference system, CilQual, is essentially a simplified
CIL reimplementation of the type qualifier inference algorithm
described by Foster et al. [2006]. Our symbolic executor, Otter
[Reisner et al. 2010], uses STP [Ganesh and Dill 2007] as its SMT
solver and works in a manner similar to KLEE [Cadar et al. 2008].

Type Qualifiers and Null Pointer Errors. For this application, we
introduce two qualifier annotations for pointers: nonnull indicates
that a pointer must not be null, and null indicates that a pointer may
be null. Our inference system automatically annotates uses of the
NULL macro with the null qualifier annotation. The type qualifier
inference system generates constraints among known qualifiers
and unknown qualifier variables, solves those constraints, and then
reports a warning if null values may flow to nonnull positions.
Thus, our type qualifier inference system ensures pointers that may
be null cannot be used where non-null pointers are required.

For example, consider the following C code:

1 void free(int ∗nonnull x);
2 int ∗id(int ∗p) { return p; }
3 int ∗x = NULL;
4 int ∗y = id(x);
5 free(y);

Here on line 1 we annotate free to indicate it takes a nonnull pointer.
Then on line 3, we initialize x to be NULL, pass that value through
id, and store the result in y on line 4. Then on line 5 we call free
with NULL.

Our qualifier inference system will generate the following types
and constraints (with some simplifications, and ignoring l- and r-
value issues):

free : int ∗ nonnull → void x : int ∗β
id : int ∗γ → int ∗δ y : int ∗�

null = β β = γ γ = δ δ = � � = nonnull

Here β, γ, δ, and � are variables that standard for unknown quali-
fiers. Put together, these constraints require null = nonnull, which
is not allowed, and hence qualifier inference will report an error for
this program.

Our symbolic executor also looks for null pointer errors. The
symbolic executor tracks C values at the bit level, using a repre-
sentation similar to KLEE [Cadar et al. 2008]. A null pointer is
represented as the value 0, and the symbolic executor reports an
error if 0 is ever dereferenced.

Typed and Symbolic Blocks. In our formal system, we allow
typed and symbolic blocks to be introduced anywhere in the
program. In MIXY, these blocks can only be introduced around
whole function bodies by annotating a function as MIX(typed) or
MIX(symbolic), and MIXY switches between qualifier inference and
symbolic execution at function calls. We can simulate blocks within
functions by manually extracting the relevant code into a fresh
function.

Skipping some details for the moment, this switching process
works as follows. When MIXY is invoked, the programmer speci-
fies (as a command-line option) whether to begin in a typed block or
a symbolic block. In either case, we first initialize global variables
as appropriate for the analysis, and then analyze the program start-
ing with main. In symbolic execution mode, we begin simulating
the program at the entry function, and at calls to functions that are
either unmarked or are marked as symbolic, we continue symbolic
execution into the function body. At calls to functions marked with
MIX(typed), we switch to type inference starting with that function.

In type inference mode, we begin analysis at the entry function
f, applying qualifier inference to f and all functions reachable from f
in the call graph, up to the frontier of any functions that are marked

with MIX(symbolic). We use CIL’s built-in pointer analysis to find
the targets of calls through function pointers. Finally, we switch
to symbolic execution for each function marked MIX(symbolic) that
was discovered at the frontier.

In this section, we describe implementation details that are not
captured by our formal system from Section 3:

• The formal system MIX is based on a type checking system
where all types are given. Since type qualifier inference in-
volves variables, we need to handle variables that are not yet
constrained to concrete type qualifiers when transitioning to a
symbolic block (Section 4.1).

• We need to translate information about aliasing between blocks
(Section 4.2).

• Since the same block or function may be called from multiple
contexts, we need to avoid repeating analysis of the same func-
tion (Section 4.3).

• Since functions can contain blocks and be recursive, we need
to handle recursion between typed and symbolic blocks (Sec-
tion 4.4).

Finally, we present our initial experience with MIXY (Section 4.5),
and we discuss some limitations and future work (Section 4.6).

4.1 Translating Null/Non-null and Type Variables
At transitions between typed and symbolic blocks, we need to
translate null and nonnull annotations back and forth.

From Types to Symbolic Values. Suppose local variable x has
type int ∗nonnull. Then in the symbolic executor, we initialize x
to point to a fresh memory cell. If x has type int ∗null, then we ini-
tialize x to be (α:bool)?loc:0, where α is a fresh boolean that may
be either true or false, loc is a newly initialized pointer (described
in Section 4.2), and 0 represents null. Hence this expression means
x may be either null or non-null, and the symbolic executor will try
both possibilities.

A more interesting case occurs if a variable x has a type with
a qualifier variable (e.g., int ∗β). In this case, we first try to solve
the current set of constraints to see whether β has a solution as
either null or nonnull, and if it does, we perform the translation
given above. Otherwise, if β could be either, we first optimistically
assume it is nonnull.

We can safely use this assumption when returning from a typed
block to a symbolic block since such a qualifier variable can only
be introduced when variables are aliased (e.g., via pointer assign-
ment), a case that is separately taken into account by the MIXY
memory model (Section 4.2).

However, if we use this assumption when entering a symbolic
block from a typed block, we may later discover our assumption
was too optimistic. For example, consider the following code:

1 {t int ∗x; {s x = NULL; s} ; {s free(x); s} t}

In the type system, x has type int ∗ β , where initially β is uncon-
strained. Suppose that we analyze the symbolic block on the right
before the one on the left. This scenario could happen because the
analysis of the enclosing typed block does not model control-flow
order (i.e., is flow-insensitive). Then initially, we would think the
call to free was safe because we optimistically treat unconstrained
β as nonnull—but this is clearly not accurate here.

The solution is, as expected, to repeat our analyses until we
reach a fixed point. In this case, after we analyze the left symbolic
block, we will discover a new constraint on x, and hence when we
iterate and reanalyze the right symbolic block, we will discover the
error. We are computing a least fixed point because we start with
optimistic assumptions—nothing is null—and then monotonically
discover more expressions may be null.

on top of the CIL front-end for C [Necula et al. 2002], and our
type qualifier inference system, CilQual, is essentially a simplified
CIL reimplementation of the type qualifier inference algorithm
described by Foster et al. [2006]. Our symbolic executor, Otter
[Reisner et al. 2010], uses STP [Ganesh and Dill 2007] as its SMT
solver and works in a manner similar to KLEE [Cadar et al. 2008].

Type Qualifiers and Null Pointer Errors. For this application, we
introduce two qualifier annotations for pointers: nonnull indicates
that a pointer must not be null, and null indicates that a pointer may
be null. Our inference system automatically annotates uses of the
NULL macro with the null qualifier annotation. The type qualifier
inference system generates constraints among known qualifiers
and unknown qualifier variables, solves those constraints, and then
reports a warning if null values may flow to nonnull positions.
Thus, our type qualifier inference system ensures pointers that may
be null cannot be used where non-null pointers are required.

For example, consider the following C code:

1 void free(int ∗nonnull x);
2 int ∗id(int ∗p) { return p; }
3 int ∗x = NULL;
4 int ∗y = id(x);
5 free(y);

Here on line 1 we annotate free to indicate it takes a nonnull pointer.
Then on line 3, we initialize x to be NULL, pass that value through
id, and store the result in y on line 4. Then on line 5 we call free
with NULL.

Our qualifier inference system will generate the following types
and constraints (with some simplifications, and ignoring l- and r-
value issues):

free : int ∗ nonnull → void x : int ∗β
id : int ∗γ → int ∗δ y : int ∗�

null = β β = γ γ = δ δ = � � = nonnull

Here β, γ, δ, and � are variables that standard for unknown quali-
fiers. Put together, these constraints require null = nonnull, which
is not allowed, and hence qualifier inference will report an error for
this program.

Our symbolic executor also looks for null pointer errors. The
symbolic executor tracks C values at the bit level, using a repre-
sentation similar to KLEE [Cadar et al. 2008]. A null pointer is
represented as the value 0, and the symbolic executor reports an
error if 0 is ever dereferenced.

Typed and Symbolic Blocks. In our formal system, we allow
typed and symbolic blocks to be introduced anywhere in the
program. In MIXY, these blocks can only be introduced around
whole function bodies by annotating a function as MIX(typed) or
MIX(symbolic), and MIXY switches between qualifier inference and
symbolic execution at function calls. We can simulate blocks within
functions by manually extracting the relevant code into a fresh
function.

Skipping some details for the moment, this switching process
works as follows. When MIXY is invoked, the programmer speci-
fies (as a command-line option) whether to begin in a typed block or
a symbolic block. In either case, we first initialize global variables
as appropriate for the analysis, and then analyze the program start-
ing with main. In symbolic execution mode, we begin simulating
the program at the entry function, and at calls to functions that are
either unmarked or are marked as symbolic, we continue symbolic
execution into the function body. At calls to functions marked with
MIX(typed), we switch to type inference starting with that function.

In type inference mode, we begin analysis at the entry function
f, applying qualifier inference to f and all functions reachable from f
in the call graph, up to the frontier of any functions that are marked

with MIX(symbolic). We use CIL’s built-in pointer analysis to find
the targets of calls through function pointers. Finally, we switch
to symbolic execution for each function marked MIX(symbolic) that
was discovered at the frontier.

In this section, we describe implementation details that are not
captured by our formal system from Section 3:

• The formal system MIX is based on a type checking system
where all types are given. Since type qualifier inference in-
volves variables, we need to handle variables that are not yet
constrained to concrete type qualifiers when transitioning to a
symbolic block (Section 4.1).

• We need to translate information about aliasing between blocks
(Section 4.2).

• Since the same block or function may be called from multiple
contexts, we need to avoid repeating analysis of the same func-
tion (Section 4.3).

• Since functions can contain blocks and be recursive, we need
to handle recursion between typed and symbolic blocks (Sec-
tion 4.4).

Finally, we present our initial experience with MIXY (Section 4.5),
and we discuss some limitations and future work (Section 4.6).

4.1 Translating Null/Non-null and Type Variables
At transitions between typed and symbolic blocks, we need to
translate null and nonnull annotations back and forth.

From Types to Symbolic Values. Suppose local variable x has
type int ∗nonnull. Then in the symbolic executor, we initialize x
to point to a fresh memory cell. If x has type int ∗null, then we ini-
tialize x to be (α:bool)?loc:0, where α is a fresh boolean that may
be either true or false, loc is a newly initialized pointer (described
in Section 4.2), and 0 represents null. Hence this expression means
x may be either null or non-null, and the symbolic executor will try
both possibilities.

A more interesting case occurs if a variable x has a type with
a qualifier variable (e.g., int ∗β). In this case, we first try to solve
the current set of constraints to see whether β has a solution as
either null or nonnull, and if it does, we perform the translation
given above. Otherwise, if β could be either, we first optimistically
assume it is nonnull.

We can safely use this assumption when returning from a typed
block to a symbolic block since such a qualifier variable can only
be introduced when variables are aliased (e.g., via pointer assign-
ment), a case that is separately taken into account by the MIXY
memory model (Section 4.2).

However, if we use this assumption when entering a symbolic
block from a typed block, we may later discover our assumption
was too optimistic. For example, consider the following code:

1 {t int ∗x; {s x = NULL; s} ; {s free(x); s} t}

In the type system, x has type int ∗ β , where initially β is uncon-
strained. Suppose that we analyze the symbolic block on the right
before the one on the left. This scenario could happen because the
analysis of the enclosing typed block does not model control-flow
order (i.e., is flow-insensitive). Then initially, we would think the
call to free was safe because we optimistically treat unconstrained
β as nonnull—but this is clearly not accurate here.

The solution is, as expected, to repeat our analyses until we
reach a fixed point. In this case, after we analyze the left symbolic
block, we will discover a new constraint on x, and hence when we
iterate and reanalyze the right symbolic block, we will discover the
error. We are computing a least fixed point because we start with
optimistic assumptions—nothing is null—and then monotonically
discover more expressions may be null.

© 2011 Stephen Chong, Harvard University

Mixy

•Functions are declared to be either typed or
symbolic
•Can get block-level mixing by refactoring

•Translating between type-checking and symbolic
execution
•Type checking uses symbolic variables for qualifiers
•If x has type int *null, symbolic environment initializes

x to (α:bool)?loc:0

•If x has type int *β, (i.e., unknown qualifier) then assume
that β=nonnull
• If wrong, will need to redo symbolic execution, until fixpoint reached

28

© 2011 Stephen Chong, Harvard University

Aliasing

•First performs a pointer analysis to discover
aliasing relationships

•When going from symbolic state to typing
environment, check that all pointers within a
points-to set have same type
•Required for soundness, analogous to ⊢M(S) ok

•Major performance bottle neck
•Also source of imprecision (since pointer analysis is

context-insensitive)

29

© 2011 Stephen Chong, Harvard University

Caching and recursion

•Cache results of symbolic execution and type
checking
•Use type context to summarize blocks

•Typed block and symbolic block may recursively
call each other
•Need to prevent infinite recursion
•Maintain stack of what blocks are currently being

analyzed, prevent infinite recursion
•Will require iteration until fix-point reached

30

