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The Reachability-Bound problem

•Find a symbolic worst case bound on the 
number of times a program point is reached
•Intra-procedural: consider a program point within a 

procedure
•Symbolic: give the bounds in terms of the procedure 

inputs
•Bound the total number of times program point 

reached, not just number of times in inner loop
• e.g., int i=0; while (i<n) { i++; j = i; 
     while (j<n) {j++; •} 
      }
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Solution

•Bound number of visits to program point π
•1. Construct a disjunctive transition system that 

describes relationship of program variables in 
successive visits to π

•2. Generate bounds from transition system using 
ranking functions.
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In more detail...

•Construct control flow-graph of procedure

•Split program point of interest

•Consider CFG between split program point

•Now construct transition system with regard to π
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Transitions

• Let live variables at πa be denoted x,y,z,… and their 
counterparts at πb be denoted x’,y’,z’,…

• A transition for π is a relation 
 T(x,y,z,…,x’,y’,z’,…)
such that if x,y,z take on values 
 v1,v2,v3,… and w1,w2,w3,… 
during consecutive visits to π then 
 T(v1,v2,v3,…, w1,w2,w3,…) holds.

• Assume a transition is expressed as a conjunction of formulas over 
x,y,z,…,x’,y’,z’,…

• A transition system for π is disjunction of transitions
5
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Finding transition systems

•Abstract interpretation
•Domain is logical formula, ordering ⊑ is implication ⇒ 

•Join is disjunction

•Transition systems for atomic statements

6

A transition is always assumed to be represented as a conjunc-
tion of formulae over the variables �x and �x�.

DEFINITION 5 (Transition System for a Control Location π). A tran-
sition system is a set of transitions.

A transition system is always assumed to be represented as a
DNF formula where every disjunct corresponds to the representa-
tion of a transition of the transition system.

We desire a disjunctive representation for our transition system
since our bound computation algorithm in Section 7 works by
identifying precise ranking functions for a single transition/path,
and then using proof rules to obtain the ranking function/bound for
the entire transition system.

The key idea for generating a transition system for a control
location π is to split the control location π into the two locations
(πa,πb) (using the Split transformation shown in Figure 5(a)) and
enumerate all paths that start at πa and end at πb and take the dis-
junctions of the transitions represented by each path. The challenge
that arises in such an enumeration is the presence of any nested
loops. We address this challenge by replacing the nested loop by
the transitive closure of the transition system of the nested loop
(using the Summarize transformation shown in Figure 5(b)). Since
path enumeration leads to an exponential blowup, we generate the
transition systems on the flowgraph that has been sliced with re-
spect to the statements on which π is control-dependent [25] (since
these are the statements that determine the number of times π is ex-
ecuted). This usually leads to transition systems with a very small
number of transitions, as is exemplified by statistics in Fig. 8 (Sec-
tion 8.1).

Figure 4 describes the algorithm to generate the transition sys-
tem for a control location π. The algorithm is described at flow-
graph level. We make the assumption about the flowgraphs being
reducible, but not necessarily structured. Our algorithm can be ex-
tended to irreducible flowgraphs too; but we avoid that for ease of
presentation, and the fact that most flowgraphs in practice are in
fact reducible [25]. However, it is important to consider the case
of unstructured flowgraphs because even if the original flowgraph
was structured, after the splitting transformation, the new flow-
graph would no longer be structured. The splitting transformation,
however, is reducibility-preserving. 1

Line 1 transforms the flowgraph by splitting the input control
location π into two locations πa and πb using the Split transfor-
mation described in Figure 5(a). The loop in Line 2 iterates over
each top-level loop L in the transformed flowgraph. (Recall that
any graph can be decomposed into a DAG of maximal strongly-
connected components.) Line 3 makes use of the fact that every
loop in a reducible flow-graph has a unique header node. Line 4 re-
cursively generates the transition system for the loop L in the trans-
formed flow-graph, while Line 5 generates its transitive closure (us-
ing the algorithm described in Figure 6 in Section 5). Lines 6 and
7 replace the loop L by its summary obtained by generating tran-
sitive closure of the transition system represented by it (using the
Summarize transformation shown in Figure 5(b)). The effect of the
foreach-loop in Line 2 is to replace all loops on the paths between
πa and πb by (disjunctive) loop-free abstract code-fragments. The
transition system can now simply be generated by enumerating all
paths (which are now finite in number) between πa and πb.

Lines 8-10 generate the transition system for an acyclic flow-
graph by a simple forward dataflow analysis that associates a (dis-
junctive) transition system F [π] with each edge/control location π
in the transformed flowgraph. For this purpose, we associate the

1 It is interesting to observe that the nesting structure of the loops inside
which π was originally nested, is completely reversed after the splitting
transformation, but the flowgraph stays reducible.

GenerateTransitionSystem(π)
1 (πa,πb) := Split(π);
2 foreach top-level loop L:
3 πL := location before header of L;
4 T := GenerateTransitionSystem(πL);
5 Tc := TransitiveClosure(T );
6 Insert Summary(Tc) before header;
7 Remove back-edges;
8 Initialize F [πa] to the transition system Id;
9 Propagate transitions F using Merge/Compose rules;

10 return F [πb];

Figure 4. Generation of transition system for a control location π.

entry location πa with the transition system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, we assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition
systems. The Compose transfer function makes use of the compose
operator ◦ that returns the composition of two transitions.

DEFINITION 6 (Composition of Transition Systems). Given two
transition systems T (�x, �x�) =

�
i
si and T �(�x, �x�) =

�
j
s�j , we

define their binary composition to be

T ◦ T � def
=

�

i,j

si ◦ s�j ,

where si ◦ s�j denotes the transition

si(�x, �x�) ◦ s�j(�x, �x�)
def
= ∃ �x��

�
si[ �x��/�x�] ∧ s�j [ �x��/�x]

�
,

where si[ �x��/�x�] denotes the substitution of �x� by �x�� in si.

The Translate function converts a statement into a transition
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or a Summary statement (obtained
from the summarization of nested loops).

Translate(x := e) = (x� = e) ∧ (
�

y �=x

y� = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T )) = T

EXAMPLE 7. The transition system for control location π6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 8 (Transitive Closure). We say that T �(�x, �x�) is a
transitive closure of a transition system T (�x, �x�) if

Id ⇒ T � and T � ◦ T ⇒ T �

296



© 2011 Stephen Chong, Harvard University

Composing transition functions

•Initial transition system is Id

7
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entry location πa with the transition system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, we assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition
systems. The Compose transfer function makes use of the compose
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transition systems T (�x, �x�) =
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si and T �(�x, �x�) =
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s�j , we

define their binary composition to be
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def
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where si[ �x��/�x�] denotes the substitution of �x� by �x�� in si.

The Translate function converts a statement into a transition
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or a Summary statement (obtained
from the summarization of nested loops).

Translate(x := e) = (x� = e) ∧ (
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y �=x

y� = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T )) = T

EXAMPLE 7. The transition system for control location π6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 8 (Transitive Closure). We say that T �(�x, �x�) is a
transitive closure of a transition system T (�x, �x�) if
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Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
�
φ ⇒

�
�

i

(xi = yi)

��
=⇒

�
�

i

(φ ⇒ (xi = yi))

�
(1)

Now, if
m�

j=1
s�j is a transitive closure of

n�
i=1

si, then it fol-

lows from the definition of the transitive closure, that for all i ∈
{1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒
m�

k=1

s�k and s�j ◦ si ⇒
m�

k=1

s�k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).

Let T � =
m�

j=1
s�j(�x, �x�) be a transitive closure for a transition

system T =
n�

i=1
si(�x, �x�), where each si and s�j is a conjunc-

tive relation. We say that the transitive closure
�
j
s�j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},

a map σ : {1, . . ,m} × {1, . . , n} �→ {1, . . ,m}, such that for all

i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s�δ and (s�j ◦ si) ⇒ s�σ(j,i)

TransitiveClosure(
n�

i=1
si)

1 for j ∈ {1, . . ,m}− {δ}: s�j := false;
2 s�δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s�σ(j,i) := Join(s�σ(j,i), s

�
j ◦ si)

6 } while any change in
m�

j=1
s�j

7 return
m�

j=1
s�j;

Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1

s�j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-

ure 1(e) is δ = 1 and σ = {(1, 1) �→ 2, (2, 1) �→ 2}. A convexity-

witness for the transitive closure of the transition system T �
shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let

m�
j=1

s��j be any transitive closure of a given transition system

n�
i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
m�

j=1
s��j .

PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.

�
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(a)

Ex1(uint n, bool[ ] A)
1 i := 0;
2 while (i < n)
3 j := i+ 1;
4 while (j < n)
5 if (A[j])
6 ConsumeResource();
7 j--;
8 n--;
9 j++;

10 i++;
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Figure 1. This figure illustrates generation of transition system for a given control location. (a) A loop skeleton from .Net base-class library.

(b) Flow-graph representation of the program in (a). (c) Flow-graph obtained from (b) by splitting location π6 into π6a and π6b. (d) Part of

the flow-graph from (c) between π6a and π6b after re-drawing it. (e) Body of inner loop in (d) replaced by its transition system representation

T1. (f) Inner loop in (e) replaced by transitive closure T �
1 of transition system T1. (g) Body of outer loop in (f) replaced by its transition

system representation T2. (h) Outer loop in (g) replaced by Transitive closure T �
2 of transition system T2. (i) Transition system for π6.

on termination analysis where the goal is to generate any rank-

ing function for a transition system with disregard to the precision

of the ranking function. This methodology represents an interest-

ing design choice for reasoning about loops, because SMT solvers

are used to perform precise reasoning about transitions (loop-free

code-fragments), whereas a simple proof-rules based technique

takes over the role of performing inductive reasoning effectively.

It will be interesting to consider applying such a methodology to

other problems.

We have implemented our solution to the reachability-bound

problem in a tool that computes symbolic computational com-

plexity bounds for procedures in .Net codebases. This involves

computing amortized complexity for nested loops by solving the

reachability-bound problem for nested loops. To our knowledge,

our analysis is the first that addresses the problem of computing

the amortized complexity for nested loops. Existing techniques for

bound analysis [16, 19, 15, 2] do not compute amortized complex-

ity of nested loops, but instead over-approximate it by the product

of the iterations of the outer loop and the worst-case complexity of

the inner loop for any iteration of the outer loop, thereby leading to

imprecise bounds.

Contributions and Organization

• We define the reachability-bound problem and the notion of a

precise solution to that problem (Section 3). This contributes to

the problem of defining an entire quantitative logic, which is part

of the quantitative agenda set forth recently [21] (as opposed to

the Boolean agenda).

• We describe an algorithm for the generation of a transition

system based on transformations on reducible flowgraphs for

reducing the problem of computing the reachability-bound to

the problem of computing the bound for a transition system

(Section 4).

• We describe an abstract interpretation based iterative algorithm

for computing the transitive closure of a transition system, or,

equivalently, disjunctive invariants for a loop. (Section 5).

• We describe non-iterative proof rules (Section 7) that allow

computing precise symbolic bounds for a transition system from

the ranking functions of individual transitions, which can be

obtained using the technique described in Section 6.

• We present experimental results evaluating the effectiveness of

various aspects of our solution (Section 8).

2. Motivating Examples and Technical Overview

In this section, we discuss some examples that are representative

of some challenges that arise during the computation of symbolic

bounds for the reachability-bound problem. We also provide a

technical overview of our solution.

2.1 Bounding number of visits to a given control location

Consider the program shown in Figure 1, and consider the problem

of computing symbolic bounds on the number of times the proce-

dure ConsumeResource() is called at Line 6. One approach would

be to approximate it by computing a bound on the number of iter-

ations of the closest enclosing loop at Line 4 using techniques for
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Nested loops

•But what about nested loops?

•E.g., 

8

(a)

Ex1(uint n, bool[ ] A)
1 i := 0;
2 while (i < n)
3 j := i+ 1;
4 while (j < n)
5 if (A[j])
6 ConsumeResource();
7 j--;
8 n--;
9 j++;

10 i++;
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Figure 1. This figure illustrates generation of transition system for a given control location. (a) A loop skeleton from .Net base-class library.

(b) Flow-graph representation of the program in (a). (c) Flow-graph obtained from (b) by splitting location π6 into π6a and π6b. (d) Part of

the flow-graph from (c) between π6a and π6b after re-drawing it. (e) Body of inner loop in (d) replaced by its transition system representation

T1. (f) Inner loop in (e) replaced by transitive closure T �
1 of transition system T1. (g) Body of outer loop in (f) replaced by its transition

system representation T2. (h) Outer loop in (g) replaced by Transitive closure T �
2 of transition system T2. (i) Transition system for π6.

on termination analysis where the goal is to generate any rank-

ing function for a transition system with disregard to the precision

of the ranking function. This methodology represents an interest-

ing design choice for reasoning about loops, because SMT solvers

are used to perform precise reasoning about transitions (loop-free

code-fragments), whereas a simple proof-rules based technique

takes over the role of performing inductive reasoning effectively.

It will be interesting to consider applying such a methodology to

other problems.

We have implemented our solution to the reachability-bound

problem in a tool that computes symbolic computational com-

plexity bounds for procedures in .Net codebases. This involves

computing amortized complexity for nested loops by solving the

reachability-bound problem for nested loops. To our knowledge,

our analysis is the first that addresses the problem of computing

the amortized complexity for nested loops. Existing techniques for

bound analysis [16, 19, 15, 2] do not compute amortized complex-

ity of nested loops, but instead over-approximate it by the product

of the iterations of the outer loop and the worst-case complexity of

the inner loop for any iteration of the outer loop, thereby leading to

imprecise bounds.

Contributions and Organization

• We define the reachability-bound problem and the notion of a

precise solution to that problem (Section 3). This contributes to

the problem of defining an entire quantitative logic, which is part

of the quantitative agenda set forth recently [21] (as opposed to

the Boolean agenda).

• We describe an algorithm for the generation of a transition

system based on transformations on reducible flowgraphs for

reducing the problem of computing the reachability-bound to

the problem of computing the bound for a transition system

(Section 4).

• We describe an abstract interpretation based iterative algorithm

for computing the transitive closure of a transition system, or,

equivalently, disjunctive invariants for a loop. (Section 5).

• We describe non-iterative proof rules (Section 7) that allow

computing precise symbolic bounds for a transition system from

the ranking functions of individual transitions, which can be

obtained using the technique described in Section 6.

• We present experimental results evaluating the effectiveness of

various aspects of our solution (Section 8).

2. Motivating Examples and Technical Overview

In this section, we discuss some examples that are representative

of some challenges that arise during the computation of symbolic

bounds for the reachability-bound problem. We also provide a

technical overview of our solution.

2.1 Bounding number of visits to a given control location

Consider the program shown in Figure 1, and consider the problem

of computing symbolic bounds on the number of times the proce-

dure ConsumeResource() is called at Line 6. One approach would

be to approximate it by computing a bound on the number of iter-

ations of the closest enclosing loop at Line 4 using techniques for
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Figure 1. This figure illustrates generation of transition system for a given control location. (a) A loop skeleton from .Net base-class library.

(b) Flow-graph representation of the program in (a). (c) Flow-graph obtained from (b) by splitting location π6 into π6a and π6b. (d) Part of

the flow-graph from (c) between π6a and π6b after re-drawing it. (e) Body of inner loop in (d) replaced by its transition system representation

T1. (f) Inner loop in (e) replaced by transitive closure T �
1 of transition system T1. (g) Body of outer loop in (f) replaced by its transition

system representation T2. (h) Outer loop in (g) replaced by Transitive closure T �
2 of transition system T2. (i) Transition system for π6.
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Figure 1. This figure illustrates generation of transition system for a given control location. (a) A loop skeleton from .Net base-class library.

(b) Flow-graph representation of the program in (a). (c) Flow-graph obtained from (b) by splitting location π6 into π6a and π6b. (d) Part of

the flow-graph from (c) between π6a and π6b after re-drawing it. (e) Body of inner loop in (d) replaced by its transition system representation

T1. (f) Inner loop in (e) replaced by transitive closure T �
1 of transition system T1. (g) Body of outer loop in (f) replaced by its transition

system representation T2. (h) Outer loop in (g) replaced by Transitive closure T �
2 of transition system T2. (i) Transition system for π6.
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the problem of defining an entire quantitative logic, which is part

of the quantitative agenda set forth recently [21] (as opposed to
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reducing the problem of computing the reachability-bound to

the problem of computing the bound for a transition system
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• We describe an abstract interpretation based iterative algorithm

for computing the transitive closure of a transition system, or,

equivalently, disjunctive invariants for a loop. (Section 5).

• We describe non-iterative proof rules (Section 7) that allow
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the ranking functions of individual transitions, which can be

obtained using the technique described in Section 6.
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of some challenges that arise during the computation of symbolic
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Transitive closure

•Idea:
•Compute transition system for one iteration of nested loop;

•Take transitive closure of transition system
•Use transitive closure as summary of nested loop

•How to find transitive closure?
•Analogous to finding a loop invariant
•Can use a widening operator to guarantee termination

•But can take advantage of additional structure in domain...

9

A transition is always assumed to be represented as a conjunc-
tion of formulae over the variables �x and �x�.

DEFINITION 5 (Transition System for a Control Location π). A tran-
sition system is a set of transitions.

A transition system is always assumed to be represented as a
DNF formula where every disjunct corresponds to the representa-
tion of a transition of the transition system.

We desire a disjunctive representation for our transition system
since our bound computation algorithm in Section 7 works by
identifying precise ranking functions for a single transition/path,
and then using proof rules to obtain the ranking function/bound for
the entire transition system.

The key idea for generating a transition system for a control
location π is to split the control location π into the two locations
(πa,πb) (using the Split transformation shown in Figure 5(a)) and
enumerate all paths that start at πa and end at πb and take the dis-
junctions of the transitions represented by each path. The challenge
that arises in such an enumeration is the presence of any nested
loops. We address this challenge by replacing the nested loop by
the transitive closure of the transition system of the nested loop
(using the Summarize transformation shown in Figure 5(b)). Since
path enumeration leads to an exponential blowup, we generate the
transition systems on the flowgraph that has been sliced with re-
spect to the statements on which π is control-dependent [25] (since
these are the statements that determine the number of times π is ex-
ecuted). This usually leads to transition systems with a very small
number of transitions, as is exemplified by statistics in Fig. 8 (Sec-
tion 8.1).

Figure 4 describes the algorithm to generate the transition sys-
tem for a control location π. The algorithm is described at flow-
graph level. We make the assumption about the flowgraphs being
reducible, but not necessarily structured. Our algorithm can be ex-
tended to irreducible flowgraphs too; but we avoid that for ease of
presentation, and the fact that most flowgraphs in practice are in
fact reducible [25]. However, it is important to consider the case
of unstructured flowgraphs because even if the original flowgraph
was structured, after the splitting transformation, the new flow-
graph would no longer be structured. The splitting transformation,
however, is reducibility-preserving. 1

Line 1 transforms the flowgraph by splitting the input control
location π into two locations πa and πb using the Split transfor-
mation described in Figure 5(a). The loop in Line 2 iterates over
each top-level loop L in the transformed flowgraph. (Recall that
any graph can be decomposed into a DAG of maximal strongly-
connected components.) Line 3 makes use of the fact that every
loop in a reducible flow-graph has a unique header node. Line 4 re-
cursively generates the transition system for the loop L in the trans-
formed flow-graph, while Line 5 generates its transitive closure (us-
ing the algorithm described in Figure 6 in Section 5). Lines 6 and
7 replace the loop L by its summary obtained by generating tran-
sitive closure of the transition system represented by it (using the
Summarize transformation shown in Figure 5(b)). The effect of the
foreach-loop in Line 2 is to replace all loops on the paths between
πa and πb by (disjunctive) loop-free abstract code-fragments. The
transition system can now simply be generated by enumerating all
paths (which are now finite in number) between πa and πb.

Lines 8-10 generate the transition system for an acyclic flow-
graph by a simple forward dataflow analysis that associates a (dis-
junctive) transition system F [π] with each edge/control location π
in the transformed flowgraph. For this purpose, we associate the

1 It is interesting to observe that the nesting structure of the loops inside
which π was originally nested, is completely reversed after the splitting
transformation, but the flowgraph stays reducible.

GenerateTransitionSystem(π)
1 (πa,πb) := Split(π);
2 foreach top-level loop L:
3 πL := location before header of L;
4 T := GenerateTransitionSystem(πL);
5 Tc := TransitiveClosure(T );
6 Insert Summary(Tc) before header;
7 Remove back-edges;
8 Initialize F [πa] to the transition system Id;
9 Propagate transitions F using Merge/Compose rules;

10 return F [πb];

Figure 4. Generation of transition system for a control location π.

entry location πa with the transition system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, we assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition
systems. The Compose transfer function makes use of the compose
operator ◦ that returns the composition of two transitions.

DEFINITION 6 (Composition of Transition Systems). Given two
transition systems T (�x, �x�) =

�
i
si and T �(�x, �x�) =

�
j
s�j , we

define their binary composition to be

T ◦ T � def
=

�

i,j

si ◦ s�j ,

where si ◦ s�j denotes the transition

si(�x, �x�) ◦ s�j(�x, �x�)
def
= ∃ �x��

�
si[ �x��/�x�] ∧ s�j [ �x��/�x]

�
,

where si[ �x��/�x�] denotes the substitution of �x� by �x�� in si.

The Translate function converts a statement into a transition
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or a Summary statement (obtained
from the summarization of nested loops).

Translate(x := e) = (x� = e) ∧ (
�

y �=x

y� = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T )) = T

EXAMPLE 7. The transition system for control location π6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 8 (Transitive Closure). We say that T �(�x, �x�) is a
transitive closure of a transition system T (�x, �x�) if

Id ⇒ T � and T � ◦ T ⇒ T �
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Convexity

•A theory is convex if
•For all G=g1∧ … ∧gn

•If G⇒e1=e2∨e3=e4 then either G⇒e1=e2 or G⇒e3=e4

•E.g. convex theory
•Rational linear arithmetic

•E.g. non-convex theory
•Integer linear arithmetic
• 2≤x≤3 ⇒ x=2 ∨ x=3 but not the case that 

2≤x≤3 ⇒ x=2    or that      2≤x≤3 ⇒ x=3

10
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Convexity-like assumption

•Convexity
•Suppose ⋁j∈1..m s’j is transitive closure of ⋁i∈1..n si

•Then

•Distributing implication over disjunction, as for 
convexity gives:

11
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Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
�
φ ⇒

�
�

i

(xi = yi)

��
=⇒

�
�

i

(φ ⇒ (xi = yi))

�
(1)

Now, if
m�

j=1
s�j is a transitive closure of

n�
i=1

si, then it fol-

lows from the definition of the transitive closure, that for all i ∈
{1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒
m�

k=1

s�k and s�j ◦ si ⇒
m�

k=1

s�k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).

Let T � =
m�

j=1
s�j(�x, �x�) be a transitive closure for a transition

system T =
n�

i=1
si(�x, �x�), where each si and s�j is a conjunc-

tive relation. We say that the transitive closure
�
j
s�j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},

a map σ : {1, . . ,m} × {1, . . , n} �→ {1, . . ,m}, such that for all

i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s�δ and (s�j ◦ si) ⇒ s�σ(j,i)

TransitiveClosure(
n�

i=1
si)

1 for j ∈ {1, . . ,m}− {δ}: s�j := false;
2 s�δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s�σ(j,i) := Join(s�σ(j,i), s

�
j ◦ si)

6 } while any change in
m�

j=1
s�j

7 return
m�

j=1
s�j;

Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1

s�j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-

ure 1(e) is δ = 1 and σ = {(1, 1) �→ 2, (2, 1) �→ 2}. A convexity-

witness for the transitive closure of the transition system T �
shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let

m�
j=1

s��j be any transitive closure of a given transition system

n�
i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
m�

j=1
s��j .

PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.
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Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
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After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).
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tive relation. We say that the transitive closure
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j
s�j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},

a map σ : {1, . . ,m} × {1, . . , n} �→ {1, . . ,m}, such that for all

i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s�δ and (s�j ◦ si) ⇒ s�σ(j,i)

TransitiveClosure(
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i=1
si)

1 for j ∈ {1, . . ,m}− {δ}: s�j := false;
2 s�δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s�σ(j,i) := Join(s�σ(j,i), s
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j ◦ si)

6 } while any change in
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7 return
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Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1

s�j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-

ure 1(e) is δ = 1 and σ = {(1, 1) �→ 2, (2, 1) �→ 2}. A convexity-

witness for the transitive closure of the transition system T �
shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let

m�
j=1

s��j be any transitive closure of a given transition system
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i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
m�

j=1
s��j .

PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.
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Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
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φ ⇒
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(xi = yi)
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Now, if
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j=1
s�j is a transitive closure of
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si, then it fol-

lows from the definition of the transitive closure, that for all i ∈
{1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒
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s�k and s�j ◦ si ⇒
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s�k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).

Let T � =
m�

j=1
s�j(�x, �x�) be a transitive closure for a transition

system T =
n�

i=1
si(�x, �x�), where each si and s�j is a conjunc-

tive relation. We say that the transitive closure
�
j
s�j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},

a map σ : {1, . . ,m} × {1, . . , n} �→ {1, . . ,m}, such that for all

i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s�δ and (s�j ◦ si) ⇒ s�σ(j,i)

TransitiveClosure(
n�

i=1
si)

1 for j ∈ {1, . . ,m}− {δ}: s�j := false;
2 s�δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s�σ(j,i) := Join(s�σ(j,i), s

�
j ◦ si)

6 } while any change in
m�

j=1
s�j

7 return
m�

j=1
s�j;

Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1

s�j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-

ure 1(e) is δ = 1 and σ = {(1, 1) �→ 2, (2, 1) �→ 2}. A convexity-

witness for the transitive closure of the transition system T �
shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let

m�
j=1

s��j be any transitive closure of a given transition system

n�
i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
m�

j=1
s��j .

PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.
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EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
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After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).
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system T =
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s�j satisfies the
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2 s�δ := Id;
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Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1
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The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-
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shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let
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s��j be any transitive closure of a given transition system
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ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
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j=1
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PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.
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Ex2(uint n, uint m)
1 while (n > 0 ∧m > 0)
2 n--; m--;
3 while (nondet())
4 n--; m++;

Ex3(uint n, bool[ ] A)
1 while (n > 0)
2 t := A[n];
3 while (n > 0 ∧ t = A[n])
4 n--;

Ex4(uint n)
1 flag := true;
2 while (flag)
3 flag := false;
4 while (n > 0 ∧ nondet())
5 n--; flag := true;

Ex5(uint n)
1 i := 0;
2 while (i < n)
3 flag := false;
4 while (nondet())
5 if (nondet())
6 flag:=true;n--;
7 if (¬flag) i++;

n� ≤ n ∧ m� ≥ m n� ≤ n
(n� ≤ n− 1 ∧ flag�)
∨(Same({n, flag}))

(n� ≤ n-1 ∧ flag� ∧ i� = i)
∨(Same({i, n, flag}))

n>0 ∧ m>0 ∧ n�≤n-1 (n>0 ∧ n�≤n ∧ A[n] �=A[n�])
∨ (n>0 ∧ n�≤0)

(flag∧flag� ∧ n>0∧ n�≤n-1)
∨(flag ∧ ¬flag� ∧ n� = n)

(i<n ∧ flag� ∧ n�≤n−1 ∧ i�=i)
∨ (i<n ∧ ¬flag� ∧ i�≥i+1 ∧ n�=n)

n n n+ 1 n
Figure 2. Loop templates from .Net class libraries where iterators of a loop are modified by inner loops. The second row shows the required
transitive closure of the inner loops to enable precise symbolic bound computation of respective outer loops. The third row shows the resultant
transition-system generated for the outer loops after summarizing the respective inner loops by the transitive closure of their transition-system
(using the algorithm in Figure 4). The final (fourth) row shows the bound computed from the transition-system by the algorithm in Figure 7.
We use the predicate Same(V ) inside a transition to denote that the variables in V do not change their value, i.e., Same(V ) =

�
x∈V

(x� = x).

E2. For any integer k, there exists a satisfying assignment �n1 for

φ(�n) such that B( �n1) > k. In other words, the formula ∃�n :
(B(�n) ≥ k ∧ φ(�n)) has a satisfying assignment.

We refer to the triple (φ, c1, c2) as precision-witness for bound B.

The following example explains and motivates the requirements
E1 and E2 in the above definition.

EXAMPLE 3. A precision-witness for the bound of n on the number

of times Line 6 is visited in the example program Ex1 in Figure 1

can be φ = ∀k(0 ≤ k < n ⇒ A[k]), c1 = 1 and c2 = 1 since

it can be shown that under the precondition φ, Line 6 is visited at

least n− 1 times.

A precision-witness for the bound of n2
on the number of times

the inner loop (Line 5) is executed can be φ = ∀k(0 ≤ k < n ⇒
¬A[k]), c1 = 4 and c2 = 1 since it can be shown that under

the precondition φ, Line 5 is visited at least n2/4 times. This is

because, for example, i takes all values between 0 to n/2 − 1 at

Line 2 (hence the number of visits to Line 2 is at least n/2), and

for each of those visits, j takes all values between n/2 to n− 1 at

Line 4 (i.e., the number of visits to Line 4 is at least n/2). Note that

if we did not relax the requirement E1 to allow for constants c1 and

c2, then computation of a precise bound would have required us to

compute the exact bound of
(n−1)(n−2)

2 . It would be impractical to

find such exact closed-form solutions.

A bound of, say, 100, on the number of times Line 6 is visited

is not precise. It may appear that φ = (∀k(0 ≤ k < 100 ⇒
A[k]) ∧ n ≤ 100), c1 = 1 and c2 = 1 is a precision-witness.

However, note that it violates requirement E2 since for k = 101 (in

fact, for any k greater than 100), there does not exist a satisfying

assignment for the formula φ ∧ 100 ≥ 101.

In this paper, we describe an algorithm for computing a worst-
case symbolic bound. Manual investigation of the bounds returned
by our algorithm on our benchmark examples confirms that the
bounds are precise. Automatically establishing the precision of a
bound B returned by our algorithm is an orthogonal problem that
we are currently working on. It requires identifying a precision-
witness (φ, c1, c2) and establishing that B

c1
− c2 is a lower bound

for all inputs that satisfy φ. The duality between the problems of
computing a symbolic bound B and the problem of finding a wit-
ness φ to show that B is precise is similar to the duality between the
problems of proving a given safety property, or finding a concrete
counterexample/witness to the violation of a safety property. How-
ever, the challenge in our case is that the witness φ that establishes
the precision of a given symbolic bound is symbolic as opposed to
being concrete.

We next describe our overall algorithm for bound computation.

3.1 Algorithm
Our algorithm for the reachability-bound problem is as follows.

ReachabilityBound(π)
1 T := GenerateTransitionSystem(π);
2 B := 1 + ComputeBound(T );
3 return TranslateBound(B,π);
Line 1 of the algorithm first computes a disjunctive transition

system T for the control location π that describes how the variables
at π get updated in the immediate next visit to control location π.
This is done using the algorithm described in Figure 4 (Section 4),
which in turn uses the algorithm for transitive closure computation
described in Figure 6 (Section 5) to summarize any inner loops.

Line 2 of the algorithm computes a bound for the transition
system T using the algorithm described in Figure 7 (Section 7),
which in turn makes use of techniques described in Section 6 for
computing ranking functions of individual transitions. The bound
B on number of visits to π is then obtained by adding 1 to the bound
for transition system T to account for the first visit to π.

The bound B is expressed in terms of inputs to the transition
system, which may not necessarily be the procedure inputs. The
function TranslateBound at Line 3 then translates the bound B
at π in terms of the procedure inputs. This can be done either by
using invariants (computed with an invariant generation tool) that
relate the procedure inputs with the inputs to the transition system
T , or by using a backward symbolic engine to express the transition
system inputs in terms of the procedure inputs. We implemented the
latter approach, which we found to be extremely effective in terms
of both precision and efficiency. This technique is detailed in [17].

Notice, how our solution builds on techniques for safety or
termination checking. Step 1 uses disjunctive invariants, which is
essentially what is needed for safety checking. Step 2 uses ranking
functions, which are required for termination checking. Use of
these techniques together with novel proof-rules for composing
ranking functions yields an effective solution to the bound problem.

4. Generation of Transition System
We first define the notion of a transition and a transition system
with regard to a control location π.

DEFINITION 4 (Transition for a Control Location π). Let �x be the

tuple of the variables live at π. A transition for π is a relation

T (�x, �x�) between variables �x and their primed counterparts �x�

such that if �x take values �v1 and �v2 during any two immediate

successive/consecutive visits to π, then T (�v1, �v2) holds.
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A transition is always assumed to be represented as a conjunc-
tion of formulae over the variables �x and �x�.

DEFINITION 5 (Transition System for a Control Location π). A tran-
sition system is a set of transitions.

A transition system is always assumed to be represented as a
DNF formula where every disjunct corresponds to the representa-
tion of a transition of the transition system.

We desire a disjunctive representation for our transition system
since our bound computation algorithm in Section 7 works by
identifying precise ranking functions for a single transition/path,
and then using proof rules to obtain the ranking function/bound for
the entire transition system.

The key idea for generating a transition system for a control
location π is to split the control location π into the two locations
(πa,πb) (using the Split transformation shown in Figure 5(a)) and
enumerate all paths that start at πa and end at πb and take the dis-
junctions of the transitions represented by each path. The challenge
that arises in such an enumeration is the presence of any nested
loops. We address this challenge by replacing the nested loop by
the transitive closure of the transition system of the nested loop
(using the Summarize transformation shown in Figure 5(b)). Since
path enumeration leads to an exponential blowup, we generate the
transition systems on the flowgraph that has been sliced with re-
spect to the statements on which π is control-dependent [25] (since
these are the statements that determine the number of times π is ex-
ecuted). This usually leads to transition systems with a very small
number of transitions, as is exemplified by statistics in Fig. 8 (Sec-
tion 8.1).

Figure 4 describes the algorithm to generate the transition sys-
tem for a control location π. The algorithm is described at flow-
graph level. We make the assumption about the flowgraphs being
reducible, but not necessarily structured. Our algorithm can be ex-
tended to irreducible flowgraphs too; but we avoid that for ease of
presentation, and the fact that most flowgraphs in practice are in
fact reducible [25]. However, it is important to consider the case
of unstructured flowgraphs because even if the original flowgraph
was structured, after the splitting transformation, the new flow-
graph would no longer be structured. The splitting transformation,
however, is reducibility-preserving. 1

Line 1 transforms the flowgraph by splitting the input control
location π into two locations πa and πb using the Split transfor-
mation described in Figure 5(a). The loop in Line 2 iterates over
each top-level loop L in the transformed flowgraph. (Recall that
any graph can be decomposed into a DAG of maximal strongly-
connected components.) Line 3 makes use of the fact that every
loop in a reducible flow-graph has a unique header node. Line 4 re-
cursively generates the transition system for the loop L in the trans-
formed flow-graph, while Line 5 generates its transitive closure (us-
ing the algorithm described in Figure 6 in Section 5). Lines 6 and
7 replace the loop L by its summary obtained by generating tran-
sitive closure of the transition system represented by it (using the
Summarize transformation shown in Figure 5(b)). The effect of the
foreach-loop in Line 2 is to replace all loops on the paths between
πa and πb by (disjunctive) loop-free abstract code-fragments. The
transition system can now simply be generated by enumerating all
paths (which are now finite in number) between πa and πb.

Lines 8-10 generate the transition system for an acyclic flow-
graph by a simple forward dataflow analysis that associates a (dis-
junctive) transition system F [π] with each edge/control location π
in the transformed flowgraph. For this purpose, we associate the

1 It is interesting to observe that the nesting structure of the loops inside
which π was originally nested, is completely reversed after the splitting
transformation, but the flowgraph stays reducible.

GenerateTransitionSystem(π)
1 (πa,πb) := Split(π);
2 foreach top-level loop L:
3 πL := location before header of L;
4 T := GenerateTransitionSystem(πL);
5 Tc := TransitiveClosure(T );
6 Insert Summary(Tc) before header;
7 Remove back-edges;
8 Initialize F [πa] to the transition system Id;
9 Propagate transitions F using Merge/Compose rules;

10 return F [πb];

Figure 4. Generation of transition system for a control location π.

entry location πa with the transition system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, we assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition
systems. The Compose transfer function makes use of the compose
operator ◦ that returns the composition of two transitions.

DEFINITION 6 (Composition of Transition Systems). Given two
transition systems T (�x, �x�) =

�
i
si and T �(�x, �x�) =

�
j
s�j , we

define their binary composition to be

T ◦ T � def
=

�

i,j

si ◦ s�j ,

where si ◦ s�j denotes the transition

si(�x, �x�) ◦ s�j(�x, �x�)
def
= ∃ �x��

�
si[ �x��/�x�] ∧ s�j [ �x��/�x]

�
,

where si[ �x��/�x�] denotes the substitution of �x� by �x�� in si.

The Translate function converts a statement into a transition
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or a Summary statement (obtained
from the summarization of nested loops).

Translate(x := e) = (x� = e) ∧ (
�

y �=x

y� = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T )) = T

EXAMPLE 7. The transition system for control location π6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 8 (Transitive Closure). We say that T �(�x, �x�) is a
transitive closure of a transition system T (�x, �x�) if

Id ⇒ T � and T � ◦ T ⇒ T �
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Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-

tem T and its transitive closure. Note that i� ≥ i is another choice

for the transitive closure for T . However, it is not as precise as the

one shown in Figure 1(e), and would lead to the generation of a

transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,
�
φ ⇒

�
�

i

(xi = yi)

��
=⇒

�
�

i

(φ ⇒ (xi = yi))

�
(1)

Now, if
m�

j=1
s�j is a transitive closure of

n�
i=1

si, then it fol-

lows from the definition of the transitive closure, that for all i ∈
{1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒
m�

k=1

s�k and s�j ◦ si ⇒
m�

k=1

s�k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).

Let T � =
m�

j=1
s�j(�x, �x�) be a transitive closure for a transition

system T =
n�

i=1
si(�x, �x�), where each si and s�j is a conjunc-

tive relation. We say that the transitive closure
�
j
s�j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},

a map σ : {1, . . ,m} × {1, . . , n} �→ {1, . . ,m}, such that for all

i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s�δ and (s�j ◦ si) ⇒ s�σ(j,i)

TransitiveClosure(
n�

i=1
si)

1 for j ∈ {1, . . ,m}− {δ}: s�j := false;
2 s�δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s�σ(j,i) := Join(s�σ(j,i), s

�
j ◦ si)

6 } while any change in
m�

j=1
s�j

7 return
m�

j=1
s�j;

Figure 6. Transitive closure computation of a transition system.

The tuple (δ,σ) is referred to as a convexity-witness of

m�
j=1

s�j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-

sition systems described in Figure 1(e) and Figure 2 satisfy the

convexity-like assumption. For example, the convexity-witness for

the transitive closure of the transition system T shown in Fig-

ure 1(e) is δ = 1 and σ = {(1, 1) �→ 2, (2, 1) �→ 2}. A convexity-

witness for the transitive closure of the transition system T �
shown

in Figure 1(e) is δ = 1 and σ = {(1, 1) �→ 1, (2, 1) �→ 2, (1, 2) �→
2, (2, 2) �→ 2}.

Given a convexity-witness (δ,σ) of any transitive-closure T �

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T �. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let

m�
j=1

s��j be any transitive closure of a given transition system

n�
i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ,σ), algorithm in

Figure 6 outputs a transitive closure that is at least as precise as
m�

j=1
s��j .

PROOF: We can prove that s�j ⇒ s��j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.

�
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The algorithm in Figure 6 performs abstract interpretation over
the power-set extension of an underlying abstract domain (such as
polyhedra [10], octagons [24], conjunctions of a given set of pred-
icates), where the elements are restricted to at most m disjuncts.
We assume, that the underlying abstract domain is equipped with
a Join operator, which takes two elements and returns the least
upper bound of both elements. The algorithm uses the map σ to
determine how to merge the n×m different disjuncts (into m dis-
juncts) that are obtained after the propagation of m disjuncts across
n transitions using the Join operator. The key distinguishing fea-
ture of the algorithm from earlier work on computing disjunctive
invariants is that our algorithm uses a syntactic criterion based on
σ to merge disjuncts as opposed to using a semantic criterion based
on the notion of differences between disjuncts. This is justified by
Theorem 12, which, in effect, says that no semantic merging crite-
rion can be more powerful than a static syntactic criterion. There
are two issues with the algorithm presented in Figure 6 that we dis-
cuss below.

Abstract Domains with Infinite Height The algorithm may not
on domains with infinite height. The standard solution would be to
the apply a Widen operator (as defined in [9]) in place of the Join
operator, in order to enforce termination.

Since the use of widening may overapproximate the least fixed
point in general, it is no longer possible to formally prove precision
results as in Theorem 12. However, we show experimentally (in
Section 8.2) that our algorithm is able to compute precise enough
invariants with the use of standard widening techniques when ap-
plied on benchmarks taken from recent work on computing dis-
junctive invariants.

Choice of m and a convexity-witness (δ,σ) Since we do not
know the desired transitive closure and its convexity-witness (δ,σ)
upfront, we have two options.
Option 1: We can enumerate all possible (δ,σ) for a specifically
chosen m. There are mmn such possible maps since without loss
of any generality, we can assume that δ is 1. If m and n are
small constants, say 2 (which is quite often an important special
case), then there are 16 possibilities. Each choice for σ and δ
results in some transitive closure computation by the algorithm.
One can then select the strongest transitive closure among the
various transitive closures thus obtained (or heuristically select
between incomparable transitive closures). However, if m or n is
large, then this approach quickly becomes prohibitive.
Option 2: We can use some heuristics to construct m, δ,σ. The
following heuristic turns out to be the most effective for our appli-
cation of bound computation. We set m and δ to n + 1, and select
the map σ from the DAG of dependencies between transitions of T
generated from bound computation of T (as described in Section 7).
In particular, for any i, j ∈ {1, . . , n}, we define σ(n+ 1, i) := i,
σ(i, i) := i, and σ(i, j) := i except when ¬NI(sj , si, r) (where
r ∈ RankC(si) was the ranking function that contributed to the
bound computation of T ) in which case we define σ(i, j) := j. It
can be proved that such a choice of the map δ and σ would gener-
ate a transitive closure that would allow for computing the bound
of (T ◦ TransitiveClosure(T )) using the bound computation
algorithm described in Section 7, provided it was able to gener-
ate a bound for the transition system T . Such a transitive closure
preserves important relationships (between the program variables)
for the application of computing the bound of the transition sys-
tem that is to be obtained after replacing the corresponding loop by
the transitive closure. In particular, note that this heuristic for the
construction of a convexity-witness, when used in conjunction with
the algorithm in Figure 6 discovers the required transitive-closures
of the respective transition systems mentioned in Figure 1(e) and
Figure 2.

6. Ranking Function for a Transition
In this section, we show how to compute a ranking function for a
transition. These ranking functions are made use of by the bound
computation algorithm described in Section 7.

DEFINITION 13 (Ranking Function for a Transition). We say that
an integer-valued function r(�x) is a ranking function for a transi-
tion s(�x, �x�) if it is bounded below by 0 and if it decreases by at
least 1 in each execution of the transition, i.e.,

• s ⇒ (r > 0)
• s ⇒ (r[�x�/�x] ≤ r − 1)

We denote this by Rank(s, r).

We say that a ranking function r1(�x) is more precise than a
ranking function r2(�x) if r1 ≤ r2 (because in that case, r1 provides
a more precise bound for the transition than r2).

We discuss below the design of a functionality RankC that takes
as input a transition s(�x, �x�) and outputs a set of ranking func-
tions r(�x) for that transition. We use a pattern-matching based
technique that relies on asking queries that can be discharged by
an SMT solver. We found this technique to be effective (fast and
precise) for most of the transitions that we encountered during the
process of bound computation on .Net base-class libraries. How-
ever, other techniques, such as constraint-based techniques [27] or
counter instrumentation enabled iterative fixed-point computation
based techniques [15, 19] can also be used for generating ranking
functions. Clearly, there are examples where the constraint-based
or iterative techniques that perform precise arithmetic reasoning
would be more precise, but nothing beats the versatility of sim-
ple pattern matching that can handle non-arithmetic patterns with
equal ease.

We list below some patterns that we found to be most effective.

6.1 Arithmetic Iteration Patterns
One standard way to iterate over loops is to use an arithmetic
counter. Ranking functions for such an iteration pattern can be
computed using the following pattern.

If s ⇒ (e > 0 ∧ e[�x�/�x] < e), then e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from �x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 0), after rewriting a
conditional of the form (e1 > e2) to (e1 − e2 > 0). In the fol-
lowing we give example transitions whose ranking functions can
be computed using an application of this pattern.

• RankC(i�=i+1∧ i<n∧ i<m∧ n�=n∧m�≤m)={n−i,m−i}
• RankC(n > 0 ∧ n� ≤ n ∧ A[n] �= A[n�]) = {n}

The second example transition above (obtained from the transition
system generated for the loop in the example program Ex3 in Fig-
ure 2) is a good illustration of how simple pattern matching is used
to guess a ranking function, and an SMT solver (that can reason
about combination of theory of linear arithmetic and theory of ar-
rays) can be used to perform the relatively complicated reasoning
of verifying the ranking function over a loop-free code fragment.

Another common arithmetic pattern is the use of a multiplica-
tive counter whose value doubles or halves in each iteration (as in
case of binary search). A more precise ranking function for such a
transition can be computed by using the pattern below.

If s ⇒ (e ≥ 1 ∧ e[�x�/�x] ≤ e/2), then log e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
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The algorithm in Figure 6 performs abstract interpretation over
the power-set extension of an underlying abstract domain (such as
polyhedra [10], octagons [24], conjunctions of a given set of pred-
icates), where the elements are restricted to at most m disjuncts.
We assume, that the underlying abstract domain is equipped with
a Join operator, which takes two elements and returns the least
upper bound of both elements. The algorithm uses the map σ to
determine how to merge the n×m different disjuncts (into m dis-
juncts) that are obtained after the propagation of m disjuncts across
n transitions using the Join operator. The key distinguishing fea-
ture of the algorithm from earlier work on computing disjunctive
invariants is that our algorithm uses a syntactic criterion based on
σ to merge disjuncts as opposed to using a semantic criterion based
on the notion of differences between disjuncts. This is justified by
Theorem 12, which, in effect, says that no semantic merging crite-
rion can be more powerful than a static syntactic criterion. There
are two issues with the algorithm presented in Figure 6 that we dis-
cuss below.

Abstract Domains with Infinite Height The algorithm may not
on domains with infinite height. The standard solution would be to
the apply a Widen operator (as defined in [9]) in place of the Join
operator, in order to enforce termination.

Since the use of widening may overapproximate the least fixed
point in general, it is no longer possible to formally prove precision
results as in Theorem 12. However, we show experimentally (in
Section 8.2) that our algorithm is able to compute precise enough
invariants with the use of standard widening techniques when ap-
plied on benchmarks taken from recent work on computing dis-
junctive invariants.

Choice of m and a convexity-witness (δ,σ) Since we do not
know the desired transitive closure and its convexity-witness (δ,σ)
upfront, we have two options.
Option 1: We can enumerate all possible (δ,σ) for a specifically
chosen m. There are mmn such possible maps since without loss
of any generality, we can assume that δ is 1. If m and n are
small constants, say 2 (which is quite often an important special
case), then there are 16 possibilities. Each choice for σ and δ
results in some transitive closure computation by the algorithm.
One can then select the strongest transitive closure among the
various transitive closures thus obtained (or heuristically select
between incomparable transitive closures). However, if m or n is
large, then this approach quickly becomes prohibitive.
Option 2: We can use some heuristics to construct m, δ,σ. The
following heuristic turns out to be the most effective for our appli-
cation of bound computation. We set m and δ to n + 1, and select
the map σ from the DAG of dependencies between transitions of T
generated from bound computation of T (as described in Section 7).
In particular, for any i, j ∈ {1, . . , n}, we define σ(n+ 1, i) := i,
σ(i, i) := i, and σ(i, j) := i except when ¬NI(sj , si, r) (where
r ∈ RankC(si) was the ranking function that contributed to the
bound computation of T ) in which case we define σ(i, j) := j. It
can be proved that such a choice of the map δ and σ would gener-
ate a transitive closure that would allow for computing the bound
of (T ◦ TransitiveClosure(T )) using the bound computation
algorithm described in Section 7, provided it was able to gener-
ate a bound for the transition system T . Such a transitive closure
preserves important relationships (between the program variables)
for the application of computing the bound of the transition sys-
tem that is to be obtained after replacing the corresponding loop by
the transitive closure. In particular, note that this heuristic for the
construction of a convexity-witness, when used in conjunction with
the algorithm in Figure 6 discovers the required transitive-closures
of the respective transition systems mentioned in Figure 1(e) and
Figure 2.

6. Ranking Function for a Transition
In this section, we show how to compute a ranking function for a
transition. These ranking functions are made use of by the bound
computation algorithm described in Section 7.

DEFINITION 13 (Ranking Function for a Transition). We say that
an integer-valued function r(�x) is a ranking function for a transi-
tion s(�x, �x�) if it is bounded below by 0 and if it decreases by at
least 1 in each execution of the transition, i.e.,

• s ⇒ (r > 0)
• s ⇒ (r[�x�/�x] ≤ r − 1)

We denote this by Rank(s, r).

We say that a ranking function r1(�x) is more precise than a
ranking function r2(�x) if r1 ≤ r2 (because in that case, r1 provides
a more precise bound for the transition than r2).

We discuss below the design of a functionality RankC that takes
as input a transition s(�x, �x�) and outputs a set of ranking func-
tions r(�x) for that transition. We use a pattern-matching based
technique that relies on asking queries that can be discharged by
an SMT solver. We found this technique to be effective (fast and
precise) for most of the transitions that we encountered during the
process of bound computation on .Net base-class libraries. How-
ever, other techniques, such as constraint-based techniques [27] or
counter instrumentation enabled iterative fixed-point computation
based techniques [15, 19] can also be used for generating ranking
functions. Clearly, there are examples where the constraint-based
or iterative techniques that perform precise arithmetic reasoning
would be more precise, but nothing beats the versatility of sim-
ple pattern matching that can handle non-arithmetic patterns with
equal ease.

We list below some patterns that we found to be most effective.

6.1 Arithmetic Iteration Patterns
One standard way to iterate over loops is to use an arithmetic
counter. Ranking functions for such an iteration pattern can be
computed using the following pattern.

If s ⇒ (e > 0 ∧ e[�x�/�x] < e), then e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from �x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 0), after rewriting a
conditional of the form (e1 > e2) to (e1 − e2 > 0). In the fol-
lowing we give example transitions whose ranking functions can
be computed using an application of this pattern.

• RankC(i�=i+1∧ i<n∧ i<m∧ n�=n∧m�≤m)={n−i,m−i}
• RankC(n > 0 ∧ n� ≤ n ∧ A[n] �= A[n�]) = {n}

The second example transition above (obtained from the transition
system generated for the loop in the example program Ex3 in Fig-
ure 2) is a good illustration of how simple pattern matching is used
to guess a ranking function, and an SMT solver (that can reason
about combination of theory of linear arithmetic and theory of ar-
rays) can be used to perform the relatively complicated reasoning
of verifying the ranking function over a loop-free code fragment.

Another common arithmetic pattern is the use of a multiplica-
tive counter whose value doubles or halves in each iteration (as in
case of binary search). A more precise ranking function for such a
transition can be computed by using the pattern below.

If s ⇒ (e ≥ 1 ∧ e[�x�/�x] ≤ e/2), then log e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
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The algorithm in Figure 6 performs abstract interpretation over
the power-set extension of an underlying abstract domain (such as
polyhedra [10], octagons [24], conjunctions of a given set of pred-
icates), where the elements are restricted to at most m disjuncts.
We assume, that the underlying abstract domain is equipped with
a Join operator, which takes two elements and returns the least
upper bound of both elements. The algorithm uses the map σ to
determine how to merge the n×m different disjuncts (into m dis-
juncts) that are obtained after the propagation of m disjuncts across
n transitions using the Join operator. The key distinguishing fea-
ture of the algorithm from earlier work on computing disjunctive
invariants is that our algorithm uses a syntactic criterion based on
σ to merge disjuncts as opposed to using a semantic criterion based
on the notion of differences between disjuncts. This is justified by
Theorem 12, which, in effect, says that no semantic merging crite-
rion can be more powerful than a static syntactic criterion. There
are two issues with the algorithm presented in Figure 6 that we dis-
cuss below.

Abstract Domains with Infinite Height The algorithm may not
on domains with infinite height. The standard solution would be to
the apply a Widen operator (as defined in [9]) in place of the Join
operator, in order to enforce termination.

Since the use of widening may overapproximate the least fixed
point in general, it is no longer possible to formally prove precision
results as in Theorem 12. However, we show experimentally (in
Section 8.2) that our algorithm is able to compute precise enough
invariants with the use of standard widening techniques when ap-
plied on benchmarks taken from recent work on computing dis-
junctive invariants.

Choice of m and a convexity-witness (δ,σ) Since we do not
know the desired transitive closure and its convexity-witness (δ,σ)
upfront, we have two options.
Option 1: We can enumerate all possible (δ,σ) for a specifically
chosen m. There are mmn such possible maps since without loss
of any generality, we can assume that δ is 1. If m and n are
small constants, say 2 (which is quite often an important special
case), then there are 16 possibilities. Each choice for σ and δ
results in some transitive closure computation by the algorithm.
One can then select the strongest transitive closure among the
various transitive closures thus obtained (or heuristically select
between incomparable transitive closures). However, if m or n is
large, then this approach quickly becomes prohibitive.
Option 2: We can use some heuristics to construct m, δ,σ. The
following heuristic turns out to be the most effective for our appli-
cation of bound computation. We set m and δ to n + 1, and select
the map σ from the DAG of dependencies between transitions of T
generated from bound computation of T (as described in Section 7).
In particular, for any i, j ∈ {1, . . , n}, we define σ(n+ 1, i) := i,
σ(i, i) := i, and σ(i, j) := i except when ¬NI(sj , si, r) (where
r ∈ RankC(si) was the ranking function that contributed to the
bound computation of T ) in which case we define σ(i, j) := j. It
can be proved that such a choice of the map δ and σ would gener-
ate a transitive closure that would allow for computing the bound
of (T ◦ TransitiveClosure(T )) using the bound computation
algorithm described in Section 7, provided it was able to gener-
ate a bound for the transition system T . Such a transitive closure
preserves important relationships (between the program variables)
for the application of computing the bound of the transition sys-
tem that is to be obtained after replacing the corresponding loop by
the transitive closure. In particular, note that this heuristic for the
construction of a convexity-witness, when used in conjunction with
the algorithm in Figure 6 discovers the required transitive-closures
of the respective transition systems mentioned in Figure 1(e) and
Figure 2.

6. Ranking Function for a Transition
In this section, we show how to compute a ranking function for a
transition. These ranking functions are made use of by the bound
computation algorithm described in Section 7.

DEFINITION 13 (Ranking Function for a Transition). We say that
an integer-valued function r(�x) is a ranking function for a transi-
tion s(�x, �x�) if it is bounded below by 0 and if it decreases by at
least 1 in each execution of the transition, i.e.,

• s ⇒ (r > 0)
• s ⇒ (r[�x�/�x] ≤ r − 1)

We denote this by Rank(s, r).

We say that a ranking function r1(�x) is more precise than a
ranking function r2(�x) if r1 ≤ r2 (because in that case, r1 provides
a more precise bound for the transition than r2).

We discuss below the design of a functionality RankC that takes
as input a transition s(�x, �x�) and outputs a set of ranking func-
tions r(�x) for that transition. We use a pattern-matching based
technique that relies on asking queries that can be discharged by
an SMT solver. We found this technique to be effective (fast and
precise) for most of the transitions that we encountered during the
process of bound computation on .Net base-class libraries. How-
ever, other techniques, such as constraint-based techniques [27] or
counter instrumentation enabled iterative fixed-point computation
based techniques [15, 19] can also be used for generating ranking
functions. Clearly, there are examples where the constraint-based
or iterative techniques that perform precise arithmetic reasoning
would be more precise, but nothing beats the versatility of sim-
ple pattern matching that can handle non-arithmetic patterns with
equal ease.

We list below some patterns that we found to be most effective.

6.1 Arithmetic Iteration Patterns
One standard way to iterate over loops is to use an arithmetic
counter. Ranking functions for such an iteration pattern can be
computed using the following pattern.

If s ⇒ (e > 0 ∧ e[�x�/�x] < e), then e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from �x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 0), after rewriting a
conditional of the form (e1 > e2) to (e1 − e2 > 0). In the fol-
lowing we give example transitions whose ranking functions can
be computed using an application of this pattern.

• RankC(i�=i+1∧ i<n∧ i<m∧ n�=n∧m�≤m)={n−i,m−i}
• RankC(n > 0 ∧ n� ≤ n ∧ A[n] �= A[n�]) = {n}

The second example transition above (obtained from the transition
system generated for the loop in the example program Ex3 in Fig-
ure 2) is a good illustration of how simple pattern matching is used
to guess a ranking function, and an SMT solver (that can reason
about combination of theory of linear arithmetic and theory of ar-
rays) can be used to perform the relatively complicated reasoning
of verifying the ranking function over a loop-free code fragment.

Another common arithmetic pattern is the use of a multiplica-
tive counter whose value doubles or halves in each iteration (as in
case of binary search). A more precise ranking function for such a
transition can be computed by using the pattern below.

If s ⇒ (e ≥ 1 ∧ e[�x�/�x] ≤ e/2), then log e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
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from �x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 1), after rewriting a
conditional of the form (e1 > e2) that occurs in s to ( e1e2 > 1),
provided e2 is known to be positive. In the following we give ex-
ample transitions whose ranking functions can be computed using
an application of this pattern.

• RankC(i� ≤ i/2 ∧ i > 1) = {log i}
• RankC(i� = 2×i ∧ i > 0 ∧ n > i ∧ n� = n) = {log (n/i)}

The above two patterns are good enough to compute ranking func-
tions for most loops that iterate using arithmetic counters. However,
for the purpose of completeness, we describe below two examples
(taken from some recent work on proving termination) that can-
not be matched using the above two patterns, and hence illustrate
the limitations of pattern-matching. However, we can find ranking
functions or bounds for these examples using the counter instru-
mentation and invariant generation techniques described in [15].
• Consider the terminating transition system (x� = x+ y ∧ y� =
y + 1 ∧ x < n ∧ n� = n) from [6], which uses the principle of
polyranking lexicographic functions for proving its termination.
Note that the reason why the transition system terminates is
because even though y is not known to be always positive, it
will eventually become positive by virtue of the assignment
y� = y + 1.

• Consider the terminating transition system (x� = y ∧ y� =
x−1∧x > 0). This transition system can be proven terminating
by monotonicity constraints as introduced in [3]). Note, that the
reason why the transition system terminates is because in every
two iterations the value of x decreases by 1.

6.2 Boolean Iteration Patterns
Often loops contain a path/transition that is meant to execute just
once. The purpose of such a transition is to switch between different
phases of a loop, or to perform the cleanup action immediately
before loop termination. Such an iteration pattern can be captured
by the following rule/lemma, where the operator Bool2Int(e)
maps boolean values true and false to 1 and 0 respectively.

If s ⇒ (e ∧ ¬(e[�x�/�x])), then Bool2Int(e) ∈ RankC(s)

The candidates for boolean expression e while applying the
above pattern are restricted to those expressions that only involve
variables from �x and those that occur syntactically in the transition
s. In the following we give example transitions whose ranking
functions can be computed using an application of this pattern.
• RankC(flag� = false ∧ flag) = {Bool2Int(flag)}
• RankC(x� = 100 ∧ x < 100) = {Bool2Int(x < 100)}

6.3 Bit-vector Iteration Patterns
One standard way to iterate over a bit-vector is to change the
position of the lsb, i.e., the least significant one bit (or msb, i.e.,
most significant one bit). Such an iteration pattern can be captured
by the following rule/lemma, where the function LSB(x) denotes
the position of the least significant 1-bit, counting from 1, and
starting from the most significant bit-position. LSB(x) is defined
to be 0 if there is no 1-bit in x. Note that LSB(x) is bounded above
by the total number of bits in bit-vector x.

If s ⇒ (LSB(x�) < LSB(x) ∧ x �= 0), then LSB(x) ∈ RankC(s)

The candidates for the variable x while applying the above
pattern are all the bit-vector variables that occur in the transition
s. The query in the above pattern can be discharged using an
SMT solver that provides support for bit-vector reasoning, and, in

particular, the LSB operator. (If the SMT solver does not provide
first-class support for the LSB operator, then one can encode the
LSB operator using bit-level manipulation as described in [31].)
In the following we give example transitions whose bound can be
computed using the above rule.
• RankC(x� = x << 1 ∧ x �= 0) = {LSB(x)}
• RankC(x� = x&(x− 1) ∧ x �= 0) = {LSB(x)}

6.4 Data-structure Iteration Patterns
Iteration over data-structures or collections is quite common, and
one standard way to iterate over a data-structure is to follow field
dereferences until some designated object is reached. Such an iter-
ation pattern can be captured by the following rule/lemma, where
the function Dist(x, z, f) denotes the number of field dereferences
along field f required to reach z from x.

If s ⇒ (x �= z ∧ (Dist(x�, z, f) < Dist(x, z, f))),

then Dist(x, z, f) ∈ RankC(s).

The candidates for variables x, z and field f , while applying
the above pattern are all variables �x and field names that occur
in s. The query in the above pattern can be discharged using an
SMT solver that implements a decision procedure for the theory
of reachability and can reason about its cardinalities (e.g., [18]).
Note, that Dist(x, z, f) denotes the cardinality of the set of all
nodes that are reachable from x before reaching z along field f . In
the following we give example transitions whose ranking functions
can be computed using an application of this pattern.
• RankC(x �= Null∧x� = x.next) = {Dist(x, Null, next)}

• RankC(Mem�=Update(Mem, x.next, x.next.next) ∧
x �= Null ∧ x.next �= Null) = {Dist(x, Null, next)}

7. Bound Computation for Transition Systems
In this section, we show how to compute a bound for a transition
system T .

If a transition system consists of a single transition s, then a
bound for the transition system can be obtained simply from any
ranking function r of the transition s using the following theorem.

THEOREM 14. Let r ∈ Rank(s). Then,

Bound(s) = Max(0, r)

where the Max operator returns the maximum of its arguments.

PROOF: If the transition s is ever taken, then r denotes an upper
bound on number of iterations of s (since, by our definition of
a ranking function, transition s implies that r is bounded below
by 0 and decreases by at least 1 in each iteration). The other
case is when s is never executed (i.e., the number of iterations
of s is 0). Combining these two cases, we obtain the result.

�
The significance of sanitizing the bound by applying the Max oper-
ator in Theorem 14 is illustrated in Example 20.

Obtaining a bound for a transition system consisting of multi-
ple transitions is not as straight-forward. We cannot simply add the
ranking functions of all individual transitions to obtain the bound
for the transition system, since the interleaving of those transitions
with each other can invalidate the decreasing measure of the rank-
ing function. An alternative can be to define the notion of lexico-
graphic ranking functions [6] or disjunctively well-founded ranking
functions [28] for transition systems consisting of multiple transi-
tions. Such an approach may sometimes work for proving termina-
tion, but would usually not be precise for yielding bounds.
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Bounding computation

•If transition system consists of single transition, and r is 
its ranking function, then max(0,r) is a symbolic bound

•If transition system has more than one transition, it gets 
harder

•Suppose transition system has 2 transitions: s1∨s2

•In certain cases, can take max of ranking functions

•In certain cases, can take sum of ranking functions

•In certain cases, can take multiplication of ranking functions

•Generalize for system with more than 2 transitions

•May fail to find a symbolic bound
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