
Model checking

CS252r Spring 2011

Contains material from slides by Edmund Clarke
(http://www.cs.cmu.edu/~emc/15817-s05/)

© 2011 Stephen Chong, Harvard University

What is model checking?

•Automatic verification technique for finite state systems
•Specifications for the system are written in temporal logic
•Exhaustively search state space, to ensure that specification is

satisfied

•Typically applied to hardware designs
•Temporal logic can express safety requirements for concurrent

systems

•In last 10-15 years, interest in applying to software

•Developed in 1980’s by Clarke, Emerson, and Sistla
and by Queille and Sifakis
•Clarke, Emerson, and Sifakis got Turing Award in 2007

2

© 2011 Stephen Chong, Harvard University

Example

•From Edmund Clarke http://www.cs.cmu.edu/~emc/15817-s05/

•Microwave oven states
•Four atomic propositions
• Start: “start” button pressed
•Close: is door closed?
•Heat: Microwave active
• Error: error state

3

© 2011 Stephen Chong, Harvard University

Example

4

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

© 2011 Stephen Chong, Harvard University

Example

•Temporal safety property: the oven doesn’t heat
up until the door is closed
•Not heat holds until door is closed
•(¬Heat) U Close

5

© 2011 Stephen Chong, Harvard University

Temporal logic

• A kind of modal logic
• Modal logics originally developed to express modalities such as necessity

and possibility

• Also used to reason about

• knowledge (with much success in reasoning about distributed systems,
distributed protocols, and security)

• permission and obligation

• ...

• Temporal logics reason about what is true, when
• Each atomic proposition is either true or false in a given state

• Consider the execution of a system as a sequence of states

• The “current time” is an index into the sequence

• The future is later indices, the past is earlier indices

6

© 2011 Stephen Chong, Harvard University

Temporal logic syntax

•p: Primitive propositions
•Standard Boolean connectives (¬, ∨, ∧, ⇒)

•Temporal operators
•Gφ φ is always true (i.e., now, and in the future);

 Globally

•Fφ φ is true sometime in the Future

•Xφ φ is true in the neXt time step

•φUψ φ is true Until ψ is true

7

© 2011 Stephen Chong, Harvard University

LTL semantics

• x, i ⊨ φ Given execution sequence x, at time i,
 φ is true

• x, i ⊨ p iff p is true in state xi

• x, i ⊨ φ∧ψ iff x, i ⊨ φ and x, i ⊨ ψ
• x, i ⊨ Xφ iff x, i+1 ⊨ φ
• x, i ⊨ Gφ iff x, j ⊨ φ for all j≥i

• x, i ⊨ Fφ iff x, j ⊨ φ for some j≥i

• x, i ⊨ φUψ iff x, j ⊨ ψ for some j≥i, and for all j>k≥i
 we have x, k ⊨ φ

8

¬Heat U Close

¬Heat U Close

¬Heat U Close

¬Heat U Close¬Heat U Close

¬Heat U Close¬Heat U Close

© 2011 Stephen Chong, Harvard University

Example

9

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

¬Heat U Close

© 2011 Stephen Chong, Harvard University

Model Checking Problem

•Given state transition graph M

•Let φ be specification (a temporal logic formula)
•Find all states s of M such that for all execution

sequences x starting from s, x,0 ⊨ φ

•Efficient algorithms for solving this
•(Num states + Num transitions) × 2O(|φ|)

10

© 2011 Stephen Chong, Harvard University

State explosion

•Big problem: state explosion
•Consider concurrent system

•Exponentially many different states arise due to
exponentially many possible interleavings

•Many software systems have infinite state space...

11

© 2011 Stephen Chong, Harvard University

Addressing state explosion

•Symbolic model checking
•Used by all “real” model checkers

•Use boolean encoding of state space
• Allows for efficient representation of states and transitions through BDDs

• Scales up to hundreds of state variables
‣ Systems with 10120 reachable states have been checked

•But what about software with infinite state space? with
non-boolean-valued data?

•Abstraction
•Use a finite abstraction of the software

•See next class for a method of automatically discovering an
appropriate abstraction

12

© 2011 Stephen Chong, Harvard University

Addressing state explosion

•Other techniques
•Bounded model checking
•Compositional reasoning
•Symmetry
•“Cone of influence”
•...

13

© 2011 Stephen Chong, Harvard University

Tools

•Early tools
•EMC (Clarke, Emerson, and Sistla)
•Caesar (Queille, Sifakis)

•Many modern tools, for many languages
•SPIN
•SLAM
•CHESS
•BLAST
•...

14

© 2011 Stephen Chong, Harvard University

More on temporal logic

•Logic we saw previously is known as Linear
temporal logic (LTL)
•Semantics defined over a single execution trace

•Another popular temporal logic is Computation
tree logic (CTL) aka Branching time logic
•Semantics defined over a tree
• i.e., may be many possible futures

15

© 2011 Stephen Chong, Harvard University

CTL syntax

• p: Primitive propositions

• Standard Boolean connectives (¬, ∨, ∧, ⇒)

• Temporal operators
• AGφ on all paths from here, φ is always true

• EGφ on some path from here, φ is always true

• AFφ on all paths from here φ is true sometime in the future

• EFφ on some path from here φ is true sometime in the future

• AXφ on all paths from here, φ is true in the neXt time step

• EXφ φ is true in the neXt time step

• A[φUψ] on all paths from here, φ is true Until ψ is true

• E[φUψ] on some path from here φ is true Until ψ is true

16

© 2011 Stephen Chong, Harvard University

CTL and LTL

•Which is more expressive?
•Incomparable!

•E.g., formula FGφ cannot be expressed in CTL
•“At some time in the future, φ is true from that time

onwards)”

•E.g., AG(EFφ) cannot be expressed in LTL
•“for all paths, it is always the case that there is some

path on which φ is eventually true”

17

© 2011 Stephen Chong, Harvard University

CTL*

• CTL* is strictly more powerful than both CTL and LTL

• Allows temporal operators (X, F, G, U) to be used without path
quantifiers (A and E)

• Syntax
•φ ::= p | φ1∨φ2 | … | Aψ | Eψ
•ψ ::= φ | ψ 1∨ ψ 2 | … | Gψ | Fψ | Xψ | ψ1Uψ2

• Semantics
• (M, s) ⊨ Aψ iff for all paths x from s in M x,0 ⊨ ψ
• ...

• x,i ⊨ φ iff (M,xi) ⊨ ψ
• x,i ⊨ Xφ iff x,i+1 ⊨ φ
• ...

18

© 2011 Stephen Chong, Harvard University

Modal μ-calculus

• A very powerful logic, adds fix-point operators

• A form of dynamic logic
• Reasons about how actions a affect state

• Syntax
•φ ::= p | φ1∨φ2 | … | [a]φ | ⟨a⟩φ | X | μX. φ(X) | νX. φ(X)

• [a]φ means for all states reachable by performing a single a action, φ is true

• [K]φ means for all states reachable by performing any single action a∈K, φ is
true

• ⟨a⟩φ means for some state reachable by performing a single a action, φ is
true

• (In CTL, EXφ and AXφ is like ⟨L⟩φ and [L]φ, respectively, where L is set of
all actions)

• μX. φ(X) is least fixed point of φ, νX. φ(X) is greatest fixed point of φ,
19

© 2011 Stephen Chong, Harvard University

Encoding CTL in modal μ

•All operators in CTL (AX, AF, AG, A[U], EX, EF, EG, E
[U]) can be encoded using A[U], E[U], EX
•AFφ ≡ A[true U φ]

•EFφ ≡ E[true U φ]

•AGφ ≡ ¬E(true U ¬φ)

•EGφ ≡ ¬A(true U ¬φ)

•AXφ ≡ ¬EX¬φ

•Encoding in modal μ
•[[EXφ]] = ⟨L⟩[[φ]]

•[[A[φ U ψ]]] = μX. [[ψ]] ∨ ([[φ]] ∧ [L]X)

•[[E[φ U ψ]]] = μX. [[ψ]] ∨ ([[φ]] ∧ ⟨L⟩X)
20

© 2011 Stephen Chong, Harvard University

Summary of temporal logics

21

modal μ-calculus

CTL*

CTL LTL

