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What is model checking?

•Automatic verification technique for finite state systems
•Specifications for the system are written in temporal logic
•Exhaustively search state space, to ensure that specification is 

satisfied

•Typically applied to hardware designs
•Temporal logic can express safety requirements for concurrent 

systems

•In last 10-15 years, interest in applying to software

•Developed in 1980’s by Clarke, Emerson, and Sistla 
and by Queille and Sifakis
•Clarke, Emerson, and Sifakis got Turing Award in 2007
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Example

•From Edmund Clarke http://www.cs.cmu.edu/~emc/15817-s05/

•Microwave oven states
•Four atomic propositions
• Start: “start” button pressed
•Close: is door closed?
•Heat: Microwave active
• Error: error state
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Example
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Example

•Temporal safety property: the oven doesn’t heat 
up until the door is closed
•Not heat holds until door is closed
•(¬Heat) U Close
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Temporal logic

• A kind of modal logic
• Modal logics originally developed to express modalities such as necessity 

and possibility

• Also used to reason about

• knowledge (with much success in reasoning about distributed systems, 
distributed protocols, and security)

• permission and obligation

• ...

• Temporal logics reason about what is true, when
• Each atomic proposition is either true or false in a given state

• Consider the execution of a system as a sequence of states

• The “current time” is an index into the sequence

• The future is later indices, the past is earlier indices
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Temporal logic syntax

•p: Primitive propositions
•Standard Boolean connectives (¬, ∨, ∧, ⇒)

•Temporal operators
•Gφ  φ is always true (i.e., now, and in the future);

    Globally

•Fφ  φ is true sometime in the Future

•Xφ  φ is true in the neXt time step

•φUψ  φ is true Until ψ is true
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LTL semantics

• x, i ⊨ φ   Given execution sequence x, at time i, 
       φ is true

• x, i ⊨ p   iff p is true in state xi

• x, i ⊨ φ∧ψ  iff x, i ⊨ φ  and x, i ⊨ ψ
• x, i ⊨ Xφ  iff x, i+1 ⊨ φ
• x, i ⊨ Gφ  iff x, j ⊨ φ for all j≥i

• x, i ⊨ Fφ  iff x, j ⊨ φ for some j≥i

• x, i ⊨ φUψ  iff x, j ⊨ ψ for some j≥i, and for all j>k≥i
       we have x, k ⊨ φ
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Example
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Model Checking Problem

•Given state transition graph M

•Let φ be specification (a temporal logic formula)
•Find all states s of M such that for all execution 

sequences x starting from s,    x,0 ⊨ φ

•Efficient algorithms for solving this
•(Num states + Num transitions) × 2O(|φ|)
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State explosion

•Big problem: state explosion
•Consider concurrent system

•Exponentially many different states arise due to 
exponentially many possible interleavings

•Many software systems have infinite state space...
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Addressing state explosion

•Symbolic model checking
•Used by all “real” model checkers

•Use boolean encoding of state space
• Allows for efficient representation of states and transitions through BDDs

• Scales up to hundreds of state variables
‣ Systems with 10120 reachable states have been checked

•But what about software with infinite state space? with 
non-boolean-valued data?

•Abstraction
•Use a finite abstraction of the software

•See next class for a method of automatically discovering an 
appropriate abstraction
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Addressing state explosion

•Other techniques
•Bounded model checking
•Compositional reasoning
•Symmetry
•“Cone of influence”
•...
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Tools

•Early tools
•EMC (Clarke, Emerson, and Sistla)
•Caesar (Queille, Sifakis)

•Many modern tools, for many languages
•SPIN
•SLAM
•CHESS
•BLAST
•...
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More on temporal logic

•Logic we saw previously is known as Linear 
temporal logic (LTL)
•Semantics defined over a single execution trace

•Another popular temporal logic is Computation 
tree logic (CTL) aka Branching time logic
•Semantics defined over a tree
• i.e., may be many possible futures
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CTL syntax

• p: Primitive propositions

• Standard Boolean connectives (¬, ∨, ∧, ⇒)

• Temporal operators
• AGφ  on all paths from here, φ is always true

• EGφ  on some path from here, φ is always true

• AFφ  on all paths from here φ is true sometime in the future

• EFφ  on some path from here φ is true sometime in the future

• AXφ  on all paths from here, φ is true in the neXt time step

• EXφ  φ is true in the neXt time step

• A[φUψ] on all paths from here, φ is true Until ψ is true

• E[φUψ] on some path from here φ is true Until ψ is true
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CTL and LTL

•Which is more expressive?
•Incomparable!

•E.g., formula FGφ cannot be expressed in CTL
•“At some time in the future, φ is true from that time 

onwards)”

•E.g., AG(EFφ) cannot be expressed in LTL
•“for all paths, it is always the case that there is some 

path on which φ is eventually true”
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CTL*

• CTL* is strictly more powerful than both CTL and LTL

• Allows temporal operators (X, F, G, U) to be used without path 
quantifiers (A and E)

• Syntax
•φ ::= p |  φ1∨φ2 | … | Aψ | Eψ
•ψ ::= φ | ψ 1∨ ψ 2 | … | Gψ | Fψ | Xψ | ψ1Uψ2

• Semantics
• (M, s) ⊨ Aψ iff for all paths x from s in M x,0 ⊨ ψ
• ...

• x,i ⊨ φ iff (M,xi) ⊨ ψ
• x,i ⊨ Xφ iff x,i+1 ⊨ φ
• ...

18



© 2011 Stephen Chong, Harvard University

Modal μ-calculus

• A very powerful logic, adds fix-point operators

• A form of dynamic logic
• Reasons about how actions a affect state

• Syntax
•φ ::= p |  φ1∨φ2 | … | [a]φ | ⟨a⟩φ | X | μX. φ(X) | νX. φ(X)

• [a]φ means for all states reachable by performing a single a action, φ is true

• [K]φ means for all states reachable by performing any single action a∈K, φ is 
true

• ⟨a⟩φ means for some state reachable by performing a single a action, φ is 
true

• (In CTL, EXφ and AXφ is like ⟨L⟩φ and [L]φ, respectively, where L is set of 
all actions)

• μX. φ(X) is least fixed point of φ, νX. φ(X) is greatest fixed point of φ, 
19
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Encoding CTL in modal μ

•All operators in CTL (AX, AF, AG, A[ U ], EX, EF, EG, E
[ U ]) can be encoded using A[ U ], E[ U ], EX
•AFφ ≡  A[true U φ]

•EFφ ≡  E[true U φ]

•AGφ ≡  ¬E(true U ¬φ)

•EGφ ≡  ¬A(true U ¬φ)

•AXφ ≡ ¬EX¬φ

•Encoding in modal μ
•[[EXφ]] = ⟨L⟩[[φ]]

•[[ A[φ U ψ] ]] = μX. [[ψ]] ∨ ([[φ]] ∧ [L]X)

•[[ E[φ U ψ] ]] = μX. [[ψ]] ∨ ([[φ]] ∧ ⟨L⟩X)
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Summary of temporal logics
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modal μ-calculus

CTL*
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