s 8 HARVARD

School of Engineering
and Applied Sciences

Model checking

C5252r Spring 2011

Contains material from slides by Edmund Clarke
(http://www.cs.cmu.edu/~emc/15817-s05/)

What is model checking?

e Automatic verification technique for finite state systems

e Specifications for the system are written in temporal logic

e Exhaustively search state space, to ensure that specification is

satisfied

* Typically applied to hardware designs

e Temporal logic can express safety requirements for concurrent

systems
e n last 10-

5 years, interest in applying to software

e Developed in 1980’s by Clarke, Emerson, and Sistla
and by Queille and Sifakis

e Clarke, Emerson, and Sifakis got Turing Award in 2007

Examr

e From Edmund Clarke http://www.cs.cmu.edu/~emc/15817-s05/

e Microwave oven states

* Four atomic propositions
e Start: “start” button pressed
* Close: is door closed?

* Heat: Microwave active

* Error: error state

© 2011 Stephen Chong, Harvard University

© 2011 Stephen Chong, Harvard University

Examnr

e Temporal safety property: the oven doesn’t heat
up until the door is closed

e Not heat holds until door is closed
e (=mHeat) U Close

© 2011 Stephen Chong, Harvard University

Temporal logic

e A kind of modal logic

* Modal logics originally developed to express modalities such as necessity
and possibility

e Also used to reason about

* knowledge (with much success in reasoning about distributed systems,
distributed protocols, and security)

* permission and obligation

e Temporal logics reason about what is true, when
e Each atomic proposition is either true or false in a given state
e Consider the execution of a system as a sequence of states

e The “current time” is an index into the sequence

* The future is later indices, the past is earlier indices

Temporal logic syntax

°p: Primitive propositions
e Standard Boolean connectives (=, v, A, =)

e Temporal operators

*G @ is always true (i.e., now, and in the future);
Globally

°F P is true sometime in the Future
° X @ is true in the neXt time step
ecpUYP (p is true Until P is true

LLIL semanti

Given execution sequence X, at time 1,
@ Is true

iff p is true in state x;

iff x, i@ and x, i= Y

iff x, i+1 =

iff x, j = @ for all j>i

iff x, j = @ for some |>i

j E Y for some j>i, and for all j>k>i
we have x, k = ¢

© 2011 Steph

-Heat U Close

“Heat U Close —Heat U Close

=Heat U Cl
~Heat U Close “Heat U Close e 03¢

© 2011 Stephen Chong, Harvard University

Model Checking Problem

e Given state transition graph M

* et p be specification (a temporal logic formula)

e Find all states s of M such that for all execution
sequences x starting froms, x,0kE @

o Efficient algorithms for solving this

e (Num states + Num transitions) x 2°9U®D

State explosion

*Big problem: state explosion

e Consider concurrent system

e Exponentially many different states arise due to
exponentially many possible interleavings

e Many software systems have infinite state space...

Addressing state explosion

e Symbolic model checking

I//

e Used by al ” model checkers

e Use boolean encoding of state space

* Allows for efficient representation of states and transitions through BDDs

* Scales up to hundreds of state variables

» Systems with 1020 reachable states have been checked

e But what about software with infinite state space? with
non-boolean-valued data?

e Abstraction
e Use a finite abstraction of the software

* See next class for a method of automatically discovering an
appropriate abstraction

Addressing state

e Other techniques
* Bounded model checking
e Compositional reasoning
* Symmetry
e “Cone of influence”

© 2011 Stephen Chong, Harvard University

Toc

eEarly tools
e EMC (Clarke, Emerson, and Sistla)
e Caesar (Queille, Sifakis)

* Many modern tools, for many languages
*SPIN
*SLAM
* CHESS
o BLAST

© 2011 Stephen Chong, Harvard University

More on temporal logic

| ogic we saw previously is known as Linear
temporal logic (LTL)

e Semantics defined over a single execution trace
* Another popular temporal logic is Computation
tree logic (CTL) aka Branching time logic

e Semantics defined over a tree
*i.e., may be many possible futures

CTL syntax

°* p: Primitive propositions

e Standard Boolean connectives (-, v, A, =)

e Temporal operators

* AGyp

* EGY

* AFp

°* LR

o AXp

° EX®

* AlpUy]
* E[oUY]

on all paths from here, @ is always true

on some path from here, @ is always true

on all paths from here ¢ is true sometime in the future
on some path from here @ is true sometime in the future
on all paths from here, @ is true in the neXt time step

@ is true in the neXt time step

on all paths from here, @ is true Until P is true

on some path from here is true Until W is true

CTL and LTL

*\Which is more expressive?
eIncomparable!

*E.g., formula FG cannot be expressed in CTL

*“At some time in the future, @ is true from that time
onwards)”

°E.g., AG(EF@) cannot be expressed in LTL

e “for all paths, it is always the case that there is some
path on which @ is eventually true”

CTL*

e CTL* is strictly more powerful than both CTL and LTL

e Allows temporal operators (X, F, G, U) to be used without path
quantifiers (A and E)
* Syntax
c@:=p| @ivE2| ... |AY | EP
cPu=@ Y ivy| ... [GY|FY [XY | PiU:
e Semantics
* (M, s) = A iff for all paths x from s in M x,0 = P

° x,i = iff (M,xi) =P
o X i k= X iff x,i+1 =@

© 2011 Stephen Chong, Harvard University

Modal p-calculus

e A very powerful logic, adds fix-point operators

* A form of dynamic logic

e Reasons about how actions a affect state
* Syntax
c@u=p| @Iv2 | ... | [aly | @ | X | puX. @(X) | vX. @(X)
* [aJ¢p means for all states reachable by performing a single a action, ¢ is true

* [K]¢p means for all states reachable by performing any single action a€K, ¢ is
true

* (a)(p means for some state reachable by performing a single a action, @ is
true

* (In CTL, EXp and AXe is like <L) and [L]®, respectively, where L is set of
all actions)

o uX. (X) is least fixed point of ¢, vX. (X) is greatest fixed point of ¢,

Encoding CTL in modal p

e All operators in CTL (AX, AF, AG, A[U], EX, EF EG, E
[U]) can be encoded using AfU], E[U], E

* AF = Altrue U @]
*EF = Eltrue U @]
* AGwp = —E(true U —)
* EG = —-A(true U —)
* AX(p = -EX—(
* Encoding in modal p
[EX] = <L)
Al Uyl |
[Elep U Yl |

Summary o

modal p-calculus

© 2011 Stephen Chong, Harvard University

