HARVARD

School of Engineering and Applied Sciences

Model checking

CS252r Spring 2011

Contains material from slides by Edmund Clarke (http://www.cs.cmu.edu/~emc/15817-s05/)

What is model checking?

• Automatic verification technique for finite state systems

- Specifications for the system are written in temporal logic
- Exhaustively search state space, to ensure that specification is satisfied
- Typically applied to hardware designs
 - Temporal logic can express safety requirements for concurrent systems
- In last 10-15 years, interest in applying to software
- Developed in 1980's by Clarke, Emerson, and Sistla and by Queille and Sifakis
 - Clarke, Emerson, and Sifakis got Turing Award in 2007

- From Edmund Clarke http://www.cs.cmu.edu/~emc/15817-s05/
- Microwave oven states
 - Four atomic propositions
 - Start: "start" button pressed
 - Close: is door closed?
 - Heat: Microwave active
 - Error: error state

- Temporal safety property: the oven doesn't heat up until the door is closed
 - Not heat holds until door is closed
 - •(¬Heat) U Close

Temporal logic

• A kind of **modal** logic

- Modal logics originally developed to express modalities such as necessity and possibility
- Also used to reason about
 - knowledge (with much success in reasoning about distributed systems, distributed protocols, and security)
 - permission and obligation
 - ...
- Temporal logics reason about what is true, when
 - Each atomic proposition is either true or false in a given state
 - Consider the execution of a system as a sequence of states
 - The "current time" is an index into the sequence
 - The future is later indices, the past is earlier indices

Temporal logic syntax

- p: Primitive propositions
- Standard Boolean connectives $(\neg, \lor, \land, \Rightarrow)$
- Temporal operators
 - $G\phi$ is always true (i.e., now, and in the future); Globally
 - $F\phi$ ϕ is true sometime in the Future
 - $X\phi$ ϕ is true in the neXt time step
 - $\phi \cup \psi$ ϕ is true Until ψ is true

LTL semantics

• x, $i \models \phi$ Given execution sequence x, at time i, ϕ is true

- x, $i \models p$ iff p is true in state x_i
- $x, i \models \phi \land \psi$ iff $x, i \models \phi$ and $x, i \models \psi$
- x, $i \models X\phi$ iff x, $i+1 \models \phi$
- x, $i \models G\phi$ iff x, $j \models \phi$ for all $j \ge i$
- x, $i \models F\phi$ iff x, $j \models \phi$ for some $j \ge i$
- x, $i \models \varphi \cup \psi$ iff x, $j \models \psi$ for some $j \ge i$, and for all $j > k \ge i$ we have x, $k \models \varphi$

Model Checking Problem

- Given state transition graph M
- Let ϕ be specification (a temporal logic formula)
- Find all states s of M such that for all execution sequences x starting from s, $x,0 \models \varphi$

- Efficient algorithms for solving this
 - (Num states + Num transitions) × $2^{O(|\phi|)}$

State explosion

- Big problem: state explosion
- Consider concurrent system
 - Exponentially many different states arise due to exponentially many possible interleavings
- Many software systems have infinite state space...

Addressing state explosion

Symbolic model checking

- Used by all "real" model checkers
- Use boolean encoding of state space
 - Allows for efficient representation of states and transitions through BDDs
 - Scales up to hundreds of state variables
 - ▶ Systems with 10¹²⁰ reachable states have been checked
- But what about software with infinite state space? with non-boolean-valued data?
- Abstraction
 - Use a finite abstraction of the software
 - See next class for a method of automatically discovering an appropriate abstraction

Addressing state explosion

• Other techniques

- Bounded model checking
- Compositional reasoning
- Symmetry
- "Cone of influence"

•

Tools

- Early tools
 - EMC (Clarke, Emerson, and Sistla)
 - Caesar (Queille, Sifakis)
- Many modern tools, for many languages
 - SPIN
 - SLAM
 - •CHESS
 - BLAST

. . .

More on temporal logic

- Logic we saw previously is known as Linear temporal logic (LTL)
 - Semantics defined over a single execution trace
- Another popular temporal logic is Computation tree logic (CTL) aka Branching time logic
 - Semantics defined over a tree
 - i.e., may be many possible futures

CTL syntax

- p: Primitive propositions
- Standard Boolean connectives $(\neg, \lor, \land, \Rightarrow)$
- Temporal operators
 - AG ϕ on all paths from here, ϕ is always true
 - EG ϕ on some path from here, ϕ is always true
 - AF ϕ on all paths from here ϕ is true sometime in the future
 - EF ϕ on some path from here ϕ is true sometime in the future
 - AX ϕ on all paths from here, ϕ is true in the neXt time step
 - EX ϕ ϕ is true in the neXt time step
 - A[$\phi \cup \psi$] on all paths from here, ϕ is true Until ψ is true
 - $E[\phi U \psi]$ on some path from here ϕ is true Until ψ is true

CTL and LTL

- •Which is more expressive?
- Incomparable!
- •E.g., formula $FG\phi$ cannot be expressed in CTL
 - "At some time in the future, ϕ is true from that time onwards)"
- E.g., $AG(EF\phi)$ cannot be expressed in LTL
 - "for all paths, it is always the case that there is some path on which ϕ is eventually true"

CTL*

- CTL* is strictly more powerful than both CTL and LTL
- Allows temporal operators (X, F, G, U) to be used without path quantifiers (A and E)
- Syntax
 - $\boldsymbol{\varphi} ::= p \mid \boldsymbol{\varphi}_1 \lor \boldsymbol{\varphi}_2 \mid \ldots \mid A \boldsymbol{\psi} \mid E \boldsymbol{\psi}$
 - $\boldsymbol{\Psi} ::= \boldsymbol{\varphi} \mid \boldsymbol{\Psi}_1 \lor \boldsymbol{\Psi}_2 \mid ... \mid \boldsymbol{G} \boldsymbol{\Psi} \mid \boldsymbol{F} \boldsymbol{\Psi} \mid \boldsymbol{X} \boldsymbol{\Psi} \mid \boldsymbol{\Psi}_1 \cup \boldsymbol{\Psi}_2$
- Semantics
 - $(M, s) \models A \Psi$ iff for all paths x from s in $M x, 0 \models \Psi$
 - ...
 - $x,i \models \phi$ iff $(M,x_i) \models \psi$
 - $x,i \models X\phi$ iff $x,i+1 \models \phi$

Modal µ-calculus

- A very powerful logic, adds fix-point operators
- A form of **dynamic logic**
 - Reasons about how actions a affect state
- Syntax
 - $\boldsymbol{\phi} ::= p \mid \boldsymbol{\phi} 1 \lor \boldsymbol{\phi} 2 \mid ... \mid [a] \boldsymbol{\phi} \mid \langle a \rangle \boldsymbol{\phi} \mid X \mid \boldsymbol{\mu} X. \boldsymbol{\phi}(X) \mid \boldsymbol{\nu} X. \boldsymbol{\phi}(X)$
 - [a] ϕ means for all states reachable by performing a single a action, ϕ is true
 - [K] ϕ means for all states reachable by performing any single action $a \in K$, ϕ is true
 - $\langle a \rangle \phi$ means for some state reachable by performing a single a action, ϕ is true
 - (In CTL, EX ϕ and AX ϕ is like (L) ϕ and [L] ϕ , respectively, where L is set of all actions)
 - μX . $\phi(X)$ is least fixed point of ϕ , νX . $\phi(X)$ is greatest fixed point of ϕ ,

© 2011 Stephen Chong, Harvard University

Encoding CTL in modal µ

- All operators in CTL (AX, AF, AG, A[U], EX, EF, EG, E
 [U]) can be encoded using A[U], E[U], EX
 - $AF\phi = A[true U \phi]$
 - $EF\phi = E[true \cup \phi]$
 - $AG\phi = \neg E(true \cup \neg \phi)$
 - $EG\phi = \neg A(true \cup \neg \phi)$
 - $AX\phi = \neg EX\neg\phi$
- \bullet Encoding in modal μ
 - $\llbracket \mathsf{EX} \phi \rrbracket = \langle \mathsf{L} \rangle \llbracket \phi \rrbracket$
 - $\llbracket A[\phi \cup \psi] \rrbracket = \mu X. \llbracket \psi \rrbracket \lor (\llbracket \phi \rrbracket \land [L]X)$
 - $\llbracket E[\phi \cup \psi] \rrbracket = \mu X. \llbracket \psi \rrbracket \lor (\llbracket \phi \rrbracket \land \langle L \rangle X)$

© 2011 Stephen Chong, Harvard University

Summary of temporal logics

