
Harvard School of Engineering and Applied Sciences — CS 252: Advanced Topics in Programming Languages

Logical Relations Part 2

Lecture 2 Wednesday, September 6, 2017

In this lecture, we will continue exploring logical relations, by considering a proof that requires reason-
ing about contextual equivalence. The proof is enabled by using a logical relation over pairs of expressions
that implies contextual equivalence of a pair, instead of directly reasoning about contextual equivalence.
This lecture is based on lectures by Prof Amal Ahmed at the Oregon Programming Languages Summer
School, 20151, as reported in the notes by Lau Skorstengaard.2 This lecture and the next two follow the
notes quite closely.

1 System F

We briefly recap System F (i.e., simply-typed lambda calculus with polymorphic types). For simplicity, our
only base type is integers, and we don’t have any operations over integers.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]

v ::= n | λx :τ. e | ΛX. e
τ ::= int | τ1 → τ2 | X | ∀X. τ

E ::= [·] | E e | v E | E [τ]

e −→ e′

E[e] −→ E[e′] (λx :τ. e) v −→ e{v/x} (ΛX. e) [τ] −→ e{τ/X}

∆,Γ ` n : int
∆ ` τ ok

∆,Γ ` x :τ
Γ(x) = τ

∆,Γ, x :τ ` e :τ ′ ∆ ` τ ok
∆,Γ ` λx :τ. e :τ → τ ′

∆,Γ ` e1 :τ → τ ′ ∆,Γ ` e2 :τ

∆,Γ ` e1 e2 :τ ′
∆ ∪ {X},Γ ` e :τ

∆,Γ ` ΛX. e :∀X. τ
∆,Γ ` e :∀X. τ ′ ∆ ` τ ok

∆,Γ ` e [τ] :τ ′{τ/X}

∆ ` X ok
X ∈ ∆

∆ ` int ok
∆ ` τ1 ok ∆ ` τ2 ok

∆ ` τ1 → τ2 ok
∆ ∪ {X} ` τ ok
∆ ` ∀X. τ ok

2 Theorems for Free and Contextual Equivalence

In System F, polymorphic functions are unable to inspect values of polymorphic type. This means that there
are limitations on what polymorphic functions can do: their behavior has to be independent of the type of
the values they are given. This parametricity gives us “theorems for free”3. For example, the following
theorems hold.

Theorem 1. If ` e :∀X. X and ` τ ok and ` v :τ then e [τ] v −→∗ v (i.e., e is the identify function).
1Videos available at https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html.
2Available at https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf.
3“Theorems for free!”, by Philip Wadler, in 4th International Conference on Functional Programming and Computer Architecture, 1989.

https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

Lecture 2 Logical Relations Part 2

Theorem 2. If ` e :∀X. X → int and ` τ ok and ` τ ′ ok and ` v : τ and ` v′ : τ ′ then e [τ] v and e [τ ′] v′ cannot
be distinguished by any program (i.e., e [τ] v and e [τ ′] v′ are contextually equivalent).

Let’s formally define contextual equivalence. We first define contexts. Unlike evaluation contexts (which
we’ve seen previously), these contexts allow a “hole” for any subexpression.

C ::= [·] | C e | e C | C [τ] | λx :τ. C | ΛX.C

We also need a notion of context typing. We write C : (∆,Γ ` τ) =⇒ (∆′,Γ′ ` τ ′) if context C has a hole
that can be filled with an expression e such that ∆,Γ ` e : τ , and then C[e] will have type τ ′ under context
∆′,Γ′, i.e., ∆′,Γ′ ` C[e] :τ ′.

∆,Γ ` e :τ ∆′,Γ′ ` C[e] :τ ′

C : (∆,Γ ` τ) =⇒ (∆′,Γ′ ` τ ′)

We can now define contextual equivalence.

Definition 1. Expressions e1 and e2 are contextually equivalent, written ∆,Γ ` e1 ≈ctx e2 : τ , iff ∆,Γ ` e1 : τ
and ∆,Γ ` e2 :τ and for all contexts C such that C : (∆,Γ ` τ) =⇒ (` τ ′) we have

C[e1] −→∗ v ⇐⇒ C[e2] −→∗ v

Intuitively, if two expressions are contextually equivalent, then (e1 and e2 are well-typed and) no con-
text can distinguish the two expressions, i.e., can evaluate to different values depending on whether the
context’s hole is filled with e1 or e2.

Contextual equivalence allows us to talk about two programs being indistinguishable (by a context).
This is a useful concept in many ways. It can allow us to talk about different implementations behaving the
same. For example, given two implementations of a stack (say, one using a list, the other using an array),
if the two implementations are contextually equivalent, then from the perspective of a client, they behave
exactly the same. Or consider two programs that are identical except for a secret value (e.g., a password): if
the two programs are contextually equivalent, it means that no context can learn anything about the secret
value. Or consider an optimized version of a program: if the optimized version and the original program
are contextually equivalent, then the optimizations did not modify the behavior of the program in any
observable way.

So, how do we prove these theorems? We will define a logical relation such that if two expressions are
in the relation, then they are contextually equivalent. That means we can prove our free theorems using the
logical relation rather than contextual equivalence directly, but get the same result. If we tried to deal with
contextual equivalence directly, we need to quantify over all possible program contexts, which turns out to
be difficult.

3 Logical Relation for Contextual Equivalence

We will define two (families of) relations: one on values and one on expressions. Both relations are indexed
by type. We will then use these two relations to define our logical relation that will imply contextual
equivalence.

We will consider a few versions of these relations, until we get the right one.
Let’s start with the value relation. Relation Vτ will relate pairs of closed, well-typed values of type

τ . (For brevity, we won’t write this in our definitions.) Relate Eτ will relate pairs of closed, well-typed
expressions of type τ .

Let’s have an initial attempt at defining the value relation.

Vint = {(n, n) | n ∈ Z}
Vτ→τ ′ = {(λx :τ. e1, λx :τ. e2) | ∀(v1, v2) ∈ Vτ . (e1{v1/x}, e2{v2/x}) ∈ Eτ ′}

Page 2 of 4

Lecture 2 Logical Relations Part 2

Note that the definition for function types takes related inputs to related outputs.
We next consider polymorphic types ∀X. τ , which have values of the form ΛX. e. We can use the same

principle of taking related inputs to related outputs. Here, the inputs are types (i.e., we apply values ΛX. e
to types), and we don’t actually need to have any notion of “related types”, so we will allow any pair of
types.(Note that we need an arbitrary pair of types, since we want to use this to prove Theorem 2, which
allows arbitrary choice of types τ and τ ′.) But what is the relation we should use for the outputs?

V∀X. τ = {(ΛX. e1,ΛX. e2) | ∀τ1, τ2. (e1{τ1/X}, e2{τ2/X}) ∈ Eτ{???/X}}

What is the relation we should use for the output? Clearly it should be something related to τ since
e1 and e2 have type τ . But if we replace type variable X with either τ1 or τ2 (i.e., use either Eτ{τ1/X} or
Eτ{τ2/X}), then that would break the well-typedness requirements (since, e.g., e2{τ2/X}may not have type
τ{τ1/X}).

What we really need to do is replace type variable X with the pair of types (τ1, τ2)! We do this by
parameterizing the entire logical relation with a relational substitution, i.e., a substitution ρ that maps type
variables to pairs of types.

Vρ∀X. τ = {(ΛX. e1,ΛX. e2) | ∀τ1, τ2. (e1{τ1/X}, e2{τ2/X}) ∈ Eρ[X 7→(τ1,τ2)]
τ }

This substitution ρ also gives us a way to define the relation for type variables! Well, almost...

VρX = {(v1, v2) | ρ(X) = (τ1, τ2) and (v1, v2) ∈ V???}

What relation should we use to restrict the pair of values (v1, v2)? We again face a similar problem, that
we can’t use either τ1 or τ2 (since relations Vτ1 and Vτ2 require both elements of the pair to be of type τ1 or
τ2 respectively).

We address this issue by extending our notion of relational substitution, so that it maps a type variable
to not just a pair of types, but also a relation on pairs of values of those types.

Vρ∀X. τ = {(ΛX. e1,ΛX. e2) | ∀τ1, τ2, R ∈ Rel[τ1, τ2]. (e1{τ1/X}, e2{τ2/X}) ∈ Eρ[X 7→(τ1,τ2,R)]
τ }

VρX = {(v1, v2) | ρ(X) = (τ1, τ2, R) and (v1, v2) ∈ R}

With a few notional conventions, we will be ready to give our final and correct versions of the logical
relations. For a relational substitution ρ we write ρ1, ρ2, and ρR for the first, second, and third projections.
E.g., if ρ(X) = (τ, τ ′, S), then ρ1(X) = τ , ρ2(X) = τ ′, and ρR(X) = S. We write ρ1(τ) for the result of
replacing free type variables in τ using substitution ρ1, and similarly for ρ2(τ).

Vρint = {(n, n) | n ∈ Z}
Vρτ→τ ′ = {(λx :ρ1(τ). e1, λx :ρ2(τ). e2) | ∀(v1, v2) ∈ Vρτ . (e1{v1/x}, e2{v2/x}) ∈ Eρτ ′}
Vρ∀X. τ = {(ΛX. e1,ΛX. e2) | ∀τ1, τ2, R ∈ Rel[τ1, τ2]. (e1{τ1/X}, e2{τ2/X}) ∈ Eρ[X 7→(τ1,τ2,R)]

τ }
VρX = {(v1, v2) | ρ(X) = (τ1, τ2, R) and (v1, v2) ∈ R}

We define the relations for expressions by requiring that the expressions terminate in values in the appro-
priate value relation.

Eρτ = {(e1, e2) | ` e1 :ρ1(τ) and ` e2 :ρ2(τ) and
∃v1, v2. e1 −→∗ v1 and e2 −→∗ v2 and (v1, v2) ∈ Vρτ }

We would now like to define our logical relation that will imply contextual equivalence. Since contextual
equivalence is defined for expressions with free variables (see Definition 1), our logical relation will be as

Page 3 of 4

Lecture 2 Logical Relations Part 2

well. We thus need to provide an interpretation for type contexts ∆ and variable contexts Γ. (We write • for
an empty type context or variable context.)

D[[•]] = {∅}
D[[∆, X]] = {ρ[X 7→ (τ1, τ2, R)] | ρ ∈ D[[∆]] and R ∈ Rel[τ1, τ2]}
G[[•]]ρ = {∅}

G[[Γ, x :τ]]ρ = {γ[x 7→ (v1, v2)] | γ ∈ G[[Γ]]ρ and (v1, v2) ∈ Vρτ }

Note that the interpretation of variable context Γ requires a relational substitution ρ, because τ might
have free type variables. For relational type variable substitutions γ, we also use γ1 and γ2 to project the
first and second element of the pairs of types respectively, and write γ1(e) for the result of replacing free
variables in e using γ1, and similarly for γ2.

We now define our logical relation.

∆,Γ ` e1 ≈ e2 :τ ,∆,Γ ` e1 :τ and ∆,Γ ` e2 :τ and
∀ρ ∈ D[[∆]], γ ∈ G[[Γ]]ρ. (ρ1(γ1(e1)) , ρ2(γ2(e2))) ∈ Eρτ

Intuitively, we require for any relations substitutions ρ and γ that are consistent with ∆ and Γ, we have
that e1 and e2 (with appropriate substitutions for free variables and type variables) are in the relation Eρτ .

Page 4 of 4

	System F
	Theorems for Free and Contextual Equivalence
	Logical Relation for Contextual Equivalence

