
CS281 Practice Midterm
Fall 2013



1. Fitting Via KL Divergence [?? Points]

Let p(k) be a one-dimensional discrete distribution that we wish to approximate, with sup-
port on nonnegative integers. One way to fit an approximating distribution q(k) is to mini-
mize the Kullback-Leibler divergence:

KL(p || q) =
∞

∑
k=0

p(k) ln
p(k)
q(k)

Show that when q(k) is a Poisson distribution, this KL divergence is minimized by setting λ
to the mean of p(k).



2. Combining Gaussians [?? Points] Let r and s both be K-dimensional Gaussian random vari-
ates with mean µ and covariance Λ. Show that

u = (r− µ) sin θ + (s− µ) cos θ + µ

is marginally Gaussian with mean µ and covariance Λ for any θ.



3. Linear Gaussian Models [?? Points] Suppose we have the following model:

x1 ∼ N (0, σ2)

xn ∼ N (xn−1, σ2)

for n = 2, . . . , N.

(a) Write the joint distribution p(x) = p([x1, . . . , xN ]) as a multivariate Gaussian parame-
terized by its mean and inverse covariance matrix.

(b) Now let us reason about the covariance structure. Write down a recurrence equation
for the variance of xn, and then solve this equation to derive an analytical expression
for var[xn].

(c) Suppose instead that we had the model

xn ∼ N (axn−1, σ2)

for a ∈ R. What conditions on a would guarantee limn→∞ var[xn] < ∞?



4. Undirected Graphical Models [?? Points] Use the following graphical model answer the
following questions:

a

c

d

b f

e

(a) Circle the maximal cliques.

(b) What is the tree width of this graph?

(c) Suppose we observe the value of node e, does the treewidth of the graph change? What is
it?

(d) Write down a factorization of the joint probability distribution over a, b, c, d, e in terms of
potentials ψ that is consistent with this graph.

(e) Draw a factor graph representation of this distribution that is consistent with the choices
you made in part (d).



5. Expectation-Maximization [?? Points] Suppose we have a box of six-sided dice, which we
know to consist of K types of dice. Each die type has a weight vector w̄k associated with it.
Let c̄ = (c1, . . . , cM), ∑6

i=1 ci = R be the count vector associated with rolling a die R times,
i.e., c1 is the number of times that the die came up with a 1 when rolled R times, etc. So we
have that

c̄ | k, R ∼ Multinomial(w̄k, R)

(a) Write down the pmf for observing a count vector c̄ given R rolls and the knowledge that the
observations came from a die of type k.

p(c̄ | k, R, w̄k) =

Suppose we know that the fraction of the dice that are of type k ∈ 1, . . . , K is πk. Further
we receive observation count vectors c̄(1), . . . , c̄(N), each of which resulted from choose a die
randomly with replacement from the box and rolling it R times. Let znk be 1 if the nth die
is of type k. You will derive the EM updates for the parameters w̄1, . . . , w̄k and π for this
model.

(b) Write down the likelihood observing a the set of count vectors c̄(1), . . . , c̄(N) specified above.

p(c̄(1), . . . , c̄(N)|w̄1, . . . , w̄k, π̄) =

(c) Write down the complete data log likelihood this model, where the complete data is both
the count vector observations and the {znk}.

(c) Write down the expected complete data log likelihood for this model.

(d) Derive the EM updates for this model by maximizing the expected complete data log likeli-
hood with respect to w̄1, . . . , w̄k and π.


