CS281 Practice Midterm Fall 2013

1. Fitting Via KL Divergence [?? Points]

Let p(k) be a one-dimensional discrete distribution that we wish to approximate, with support on nonnegative integers. One way to fit an approximating distribution q(k) is to minimize the Kullback-Leibler divergence:

$$KL(p || q) = \sum_{k=0}^{\infty} p(k) \ln \frac{p(k)}{q(k)}$$

Show that when q(k) is a Poisson distribution, this KL divergence is minimized by setting λ to the mean of p(k).

2. **Combining Gaussians** [**?? Points**] Let r and s both be K-dimensional Gaussian random variates with mean μ and covariance Λ . Show that

$$u = (r - \mu)\sin\theta + (s - \mu)\cos\theta + \mu$$

is marginally Gaussian with mean μ and covariance Λ for any θ .

3. Linear Gaussian Models [?? Points] Suppose we have the following model:

$$x_1 \sim \mathcal{N}(0, \sigma^2)$$

 $x_n \sim \mathcal{N}(x_{n-1}, \sigma^2)$

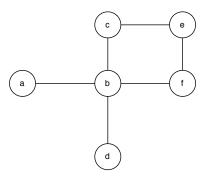
for n = 2, ..., N.

- (a) Write the joint distribution $p(x) = p([x_1, ..., x_N])$ as a multivariate Gaussian parameterized by its mean and *inverse* covariance matrix.
- (b) Now let us reason about the covariance structure. Write down a recurrence equation for the variance of x_n , and then solve this equation to derive an analytical expression for $var[x_n]$.
- (c) Suppose instead that we had the model

$$x_n \sim \mathcal{N}(ax_{n-1}, \sigma^2)$$

for $a \in \mathbb{R}$. What conditions on a would guarantee $\lim_{n\to\infty} \operatorname{var}[x_n] < \infty$?

4. **Undirected Graphical Models** [?? Points] Use the following graphical model answer the following questions:



- (a) Circle the maximal cliques.
- (b) What is the tree width of this graph?
- (c) Suppose we observe the value of node *e*, does the treewidth of the graph change? What is it?
- (d) Write down a factorization of the joint probability distribution over a, b, c, d, e in terms of potentials ψ that is consistent with this graph.
- (e) Draw a factor graph representation of this distribution that is consistent with the choices you made in part (d).

5. **Expectation-Maximization** [?? Points] Suppose we have a box of six-sided dice, which we know to consist of K types of dice. Each die type has a weight vector \bar{w}_k associated with it. Let $\bar{c} = (c_1, \ldots, c_M), \sum_{i=1}^6 c_i = R$ be the count vector associated with rolling a die R times, i.e., c_1 is the number of times that the die came up with a 1 when rolled R times, etc. So we have that

$$\bar{c} \mid k, R \sim \text{Multinomial}(\bar{w}_k, R)$$

(a) Write down the pmf for observing a count vector \bar{c} given R rolls and the knowledge that the observations came from a die of type k.

$$p(\bar{c} \mid k, R, \bar{w}_k) =$$

Suppose we know that the fraction of the dice that are of type $k \in 1, ..., K$ is π_k . Further we receive observation count vectors $\bar{c}^{(1)}, ..., \bar{c}^{(N)}$, each of which resulted from choose a die randomly with replacement from the box and rolling it R times. Let z_{nk} be 1 if the nth die is of type k. You will derive the EM updates for the parameters $\bar{w}_1, ..., \bar{w}_k$ and π for this model.

(b) Write down the likelihood observing a the set of count vectors $\bar{c}^{(1)}, \dots, \bar{c}^{(N)}$ specified above.

$$p(\bar{c}^{(1)},\ldots,\bar{c}^{(N)}|\bar{w}_1,\ldots,\bar{w}_k,\bar{\pi}) =$$

- (c) Write down the complete data log likelihood this model, where the complete data is both the count vector observations and the $\{z_{nk}\}$.
- (c) Write down the expected complete data log likelihood for this model.
- (d) Derive the EM updates for this model by maximizing the expected complete data log likelihood with respect to $\bar{w}_1, \ldots, \bar{w}_k$ and π .