(CS281 Practice Midterm
Fall 2013



1. Fitting Via KL Divergence [?? Points]

Let p(k) be a one-dimensional discrete distribution that we wish to approximate, with sup-
port on nonnegative integers. One way to fit an approximating distribution (k) is to mini-
mize the Kullback-Leibler divergence:

KL(p||4) zlémi«) ln’;g,’j;

Show that when ¢(k) is a Poisson distribution, this KL divergence is minimized by setting A
to the mean of p(k).



2. Combining Gaussians [?? Points] Let r and s both be K-dimensional Gaussian random vari-
ates with mean y and covariance A. Show that

u=(r—p)sinf+ (s —p)cosb +pu

is marginally Gaussian with mean p and covariance A for any 6.



3. Linear Gaussian Models [?? Points] Suppose we have the following model:
X1~ N(O, (72)
Xn ~ N<xnflz 0'2)
forn=2,...,N.

(a) Write the joint distribution p(x) = p([x1,...,xn]) as a multivariate Gaussian parame-
terized by its mean and inverse covariance matrix.

(b) Now let us reason about the covariance structure. Write down a recurrence equation
for the variance of x,, and then solve this equation to derive an analytical expression
for var|x,].

(c) Suppose instead that we had the model
xXp ~ N(ax,_1,0%)

for a € R. What conditions on a2 would guarantee lim,,_, var[x,] < co?



4. Undirected Graphical Models [?? Points] Use the following graphical model answer the
following questions:

O——C—C

(a) Circle the maximal cliques.
(b) What is the tree width of this graph?

(c) Suppose we observe the value of node ¢, does the treewidth of the graph change? What is
it?
(d) Write down a factorization of the joint probability distribution over 4,b,c,d, e in terms of

potentials ¢ that is consistent with this graph.

(e) Draw a factor graph representation of this distribution that is consistent with the choices
you made in part (d).



5. Expectation-Maximization [?? Points] Suppose we have a box of six-sided dice, which we
know to consist of K types of dice. Each die type has a weight vector @y associated with it.
Leté = (c1,...,cm), Z?:l ¢; = R be the count vector associated with rolling a die R times,
i.e., c1 is the number of times that the die came up with a 1 when rolled R times, etc. So we
have that

¢|k, R ~ Multinomial(w@y, R)

(a) Write down the pmf for observing a count vector ¢ given R rolls and the knowledge that the
observations came from a die of type k.

p(clk, R, wy) =

Suppose we know that the fraction of the dice that are of type k € 1,...,K is 7. Further
we receive observation count vectors E(l), ., c(N ), each of which resulted from choose a die
randomly with replacement from the box and rolling it R times. Let z,x be 1 if the nth die
is of type k. You will derive the EM updates for the parameters @, ..., @, and 7t for this
model.

(b) Write down the likelihood observing a the set of count vectors ¢, ..., el specified above.

p(eW, ..., ey, ... Dy, 7) =

(c) Write down the complete data log likelihood this model, where the complete data is both
the count vector observations and the {z }.

(c) Write down the expected complete data log likelihood for this model.

(d) Derive the EM updates for this model by maximizing the expected complete data log likeli-
hood with respect to @y, ..., W, and 7.



