
CS281 Section 2: Practical Optimization

Dougal Maclaurin

Since many parameter estimation problems in machine learning cannot be solved in closed
form we often have to resort to numerical optimization. In this section we will describe some of
the common optimization techniques used in machine learning. Even if you use canned routines
it’s helpful to understand what’s going on under the hood. Reference: Numerical Recipes (Press,
Teukolsky, Vetterling and Flannery) chapter 10.

1. Gradient Descent

How would we minimize some function f (x) given access to queries of both f (x) itself and
its gradient ∇ f (x)? If we start at some x = x0, an obvious strategy is just to go downhill:

xi+1 = xi − η∇ f (xi) (1)

This can actually be quite effective but it has some obvious problems. First, the parameter η,
known as the “learning rate” is fairly arbitrary. People often actually use an η that changes
with iteration number, so that the initial steps are large and they become smaller over time.
An alternative is not to use a fixed η at all, but to perform an explicit line search in the
direction of the gradient ∇ f (x). In high dimensions, it’s really the gradient that’s doing
most of the work whereas one-dimensional optimization is usually very easy.

In high dimensions there is another deep pathology that is particularly bad when the prob-
lem is ill-conditioned (the condition number of a matrix is the ratio of its highest to its lowest
eigenvalues. Matrices with large condition number are known as ’ill-conditioned’).

If we look at the example given, we see that stepping in the direction of the gradient can
lead to a zig-zag pattern, known as ’Hamming stitches’. So even when the function is a pure
quadratic, convergence can be very slow.

2. Newton’s method

If you don’t want to use an arbitrary η and you don’t want to perform a line search, you
can use Newtonian methods. The idea is to approximate f (x) as a quadratic form and to
jump straight to the minimum. For this, we need second derivative information. In one
dimension, this is easy:

f (x) ≈ f (x0) + (x− x0) f ′(x0) +
1
2
(x− x0)

2 f ′′(x0) (2)

So the Newtonian update rule just becomes:

xi+1 = xi − f ′(xi)/ f ′′(xi) (3)

1

Be cautioned that, naively implemented, the method will fail catastrophically if the function
is concave at some xi.

Note that this is equivalent to the Newton-Raphson rule for finding the roots of a function.
Finding a local minimum of a function is (almost) the same as finding the roots of its first
derivative.

What about higher dimensions, where x ∈ RD ? Now the second derivative is known as the
Hessian, A, which is a matrix of size D by D:

Aij =
∂

∂xi

∂

∂xj
f (x) (4)

The objective function’s Taylor expansion is:

f (x) ≈ f (x0) + (∇ f (x0))
T(x− x0) +

1
2
(x− x0)

T A(x− x0) (5)

So the Newton update rule is:

xi+1 = xi − A−1 · ∇ f (x0) (6)

This is fine, and it solves the problem of Hamming stitches. The problem is that if D is very
large, it can become unfeasible to even compute and store A (O(D2) time and space) let
alone invert it (O(D3) time). Additionally, if f (x) is not convex everywhere, then A may not
be positive definite, and the inversion may be either impossible, or give bad results. These
problems are circumvented using techniques such as nonlinear conjugate gradient and the
L-BFGS method.

3. Conjugate gradients

Imagine minimizing a poorly conditioned quadratic function like that shown in the Ham-
ming stitches example:

f (x) =
1
2

xT Ax− bTx (7)

Note that this is equivalent to solving the matrix equation

Ax = b (8)

Imagine what would happen if you rescaled things. If you squished the space so that the
elliptical contours become circles, the Hessian is the identity, and things become very easy.
You wouldn’t even need to use gradient information - just minimize the function along each
axis separately. Unfortunately the operation to do the squishing is to multiply by A1/2 which
has the same asymptotic complexity as just doing the inversion.

The insight of the conjugate gradient method is to note that it’s possible to construct a set of
directions, xi, that would become orthogonal to each other if the space were squished. Such
directions are known as conjugate directions, and they satisfy 〈xi, xj〉A = 0 where 〈·, ·〉A is
an inner product, defined as:

〈a, b〉A = aT Ab = (A1/2a)T(A1/2b) (9)

2

So if we can find a set of conjugate directions, then minimizing the function is easy - just
minimize along each conjugate direction in turn and you’re guaranteed to get there after
D steps. Now it’s easy to see how you would make a minimization algorithm based on
this insight. At each iteration, instead of searching in the direction of the gradient itself,
search in the direction of the conjugated gradient. That is, the projection of the gradient onto
the subspace orthogonal to the space spanned by the previous search directions. This can
be done with a procedure like Gram-Schmidt orthogonalization. As it turns out, however,
you only need to orthogonalize with respect to the most recent search direction. The other
relevant inner products are magically zero. To see this, consider first the conjugate gradient
method naively implemented. pi are the search directions and ri are the gradients.

p0 = r0 = −∇ f (x0) (10)
ri = ∇ f (xi) = b− Axi = ri−1 − αi−1Api−1 (11)

pi = ri −∑
j<i

rT
i Apj

pT
j Apj

pj (Gram-Schmidt orthogonalization) (12)

αi = argminα [f (xi + αpi)] =
rT

i pi

pT
i Api

(13)

xi+1 = xi + αipi (14)
(15)

There are some convenient orthogonality conditions due to this construction. First, we have
the following conjugacy due to the Gram-Schmidt procedure itself:

〈pi, pj〉A = 0, i 6= j (16)

Next, at each step, xi+1 is the minimizer of the quadratic form within the subspace Di, de-
fined as:

Di = span{r0, Ar0, A2r0, ..., Air0} (17)
= span{r0, r1, ..., ri} (18)
= span{p0, p1, ..., pi} (19)

This means that ri, the gradient at xi, is perpendicular to Di. Since ri ∈ Di and pi ∈ Di by
construction, we have the following orthogonality relations too:

rT
i rj = 0, rT

i pj = 0, rT
i Apj−1 = 0, j < i (20)

This means that all the terms in the Gram-Schmidt procedure except for the last one vanish,
and the conjugate gradient algorithm is modified as follows:

β =
rT

i Api−1

pT
i−1Api−1

=
rT

i ri

rT
i−1ri−1

(21)

pi = ri − βpi−1 (22)
(23)

3

4. Nonlinear conjugate gradient

The above procedure is a nice way to approximately solve A−1b for large matrices. But it can
also be extended to general optimization, even when you don’t have access to the Hessian.
The key observation is that α is the only quantity that requires the Hessian. But you would
find the same α if you just minimized the objective function along the search direction pi.
The only change that needs to be made is a pragmatic one. Instead of β as given above, we
like to use the following.

β =
(ri − ri−1)

Tri

rT
i−1ri−1

(24)

(25)

This is exactly the same as the previous β for the case of an exact quadratic form, but for
general functions this allows the algorithm to recover as orthogonality is lost, resetting the
search direction in line with the current gradient.

4

