
CS281 Section 3: Undirected Graphical Models

1. How do we build, represent and work with joint probability distributions over a large num-
ber of variables?

(a) Our main tool is to exploit conditional independences.

(b) Graphical models, in general, are a way to represent the conditional independences of
a joint probability distribution in a compact way, by representing them in a graph.

i. The nodes represent the variables.
ii. The edges represent something about the dependency among the variables.

(c) In class, we will talk about Directed graphical models, where the edges in the graph are
directed, which try to capture the causal dependence of one variable on another.

(d) Today, we will talk about Undirected graphical models, where the edges are undirected.

2. Undirected Graphical Models

(a) Alternative names: Markov Random Field (MRF) or Markov network.

(b) How do UGMs represent conditional indepdencies:

i. Global Markov Property: for sets of nodes A, B, C,

xA ⊥ xB | xC

if C separates A from B in the the graph. xA refers to the variables in set A.
ii. Note vice versa. The graph tells us which CIs must exist, not the other way around.

Figure 1: Example UGM
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iii. One way to think of a graph is that it specifies a set of join probability distributions,
namely, those that satisfy that conditional indepdencies implied by the graph sep-
aration.

(c) Markov Blanket: The markov blanket of a node t is defined as the set of nodes mb(t)
that renders t conditionally independent of the rest of the nodes in the graph given
mb(t). By the graph separation property, the markov blanket of a node of t is the set of
t’s immediate neighbors.

(d) pairwise Markov property: if there is no edge between two nodes, then they are con-
ditionally independent given the rest of the graph

s ∝ t|V\s, t

.

(e) pairwise Markov property implies global Markov property and vice versa. We won’t
go over the proof here.

(f) Expressiveness: UGMS cannot represent the conditional independence of every prob-
ability distribution.

i. Remember that a UGM specifies which CIs definitely exist. There can be additional
ones it doesn’t capture.

ii. For example: consider a distribution over variables a, b, c where we sample a and b
from indepedent prior distributions and c depends on both a and c. So p(a, b, c) =
p(a)p(b)p(c|a, b).
A. a is unconditionally independent of b, so there should not be a path between a

and b.
B. but both a and b must be connected c, so there will always be a path between a

and b.

(g) Parameterization of UGMS:

i. Potential functions: we associate a potential function ψc(yc) with every clique of
in graph, where psic is any function that assigns a non-negative value to any as-
signment of values of the variables in clique c.

ii. We then write p(y) ∝ ∏c∈C ψc(yc).
iii. By the Hammersly-Clifford theorem: a positive distribution p(y) > 0 satisfies the

CI properties of an undirected graph G iff p can be represented as a products of
potentials, one per clique of G.

iv. Gibbs distribution: By the H-C theorem, we are free to assign the following distri-
bution to a graph G:

p(y|θ) = 1
Z(`)

exp(−∑
c

E(yc|`c))

. This is called the Gibbs distribution. Here, E refers to an energy function which
corresponds to the compatibility for the variable assigements.
A. Partition Function: Z, the normalizing constant which is a function of θ.
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v. Pairwise MRFs: It is often simplest to assume that the probability distribution can
be factorized into pairwise potentials:
A.

p(y|θ) ∝ ∏
ei j∈E

ψij(yi, yj)

B. This restricts the probability distributions in our parameterization more.

(h) How do we represent potentials functions?

i. Maximum-Entropy or Log-Linear: in this case we say the value of a potential on
an input is a linear combination of some features of the input:

log p(y|`) = ∑
c

φc(yc)
T`c − Z(`)

.

(i) Example MRFs:

i. Ising Model: Binary variables yi ∈ {−1, 1} arranged in a lattice (say, 2-dimensional),
where the potentials are pairwise and symmetric and ψ(1, 1) = ψ(−1,−1) = eJ and
ψ(1,−1) = ψ(−1, 1) = e−J .

(j) if J > 0 then we have two modes in which all the variables are the same.

(k) if J < 0 then all the variables want to be different and we have a much more complex
system.

i. Gaussian MRF: Each node and each edge is associated with a gaussian distribu-
tion.

(l) It turns out that if we write the join of this distribution in information form:

p(y|`) ∝ exp[ηTy− 1
2

yTΛy]
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