CS281 Section 3: Undirected Graphical Models

- 1. How do we build, represent and work with joint probability distributions over a large number of variables?
 - (a) Our main tool is to exploit conditional independences.
 - (b) Graphical models, in general, are a way to represent the conditional independences of a joint probability distribution in a compact way, by representing them in a graph.
 - i. The nodes represent the variables.
 - ii. The edges represent something about the dependency among the variables.
 - (c) In class, we will talk about *Directed* graphical models, where the edges in the graph are directed, which try to capture the causal dependence of one variable on another.
 - (d) Today, we will talk about *Undirected* graphical models, where the edges are undirected.
- 2. Undirected Graphical Models
 - (a) Alternative names: Markov Random Field (MRF) or Markov network.
 - (b) How do UGMs represent conditional indepdencies:
 - i. **Global Markov Property**: for sets of nodes *A*, *B*, *C*,

$$x_A \perp x_B \mid x_C$$

if *C* separates *A* from *B* in the graph. x_A refers to the variables in set *A*.

ii. Note vice versa. The graph tells us which CIs *must* exist, not the other way around.



Figure 1: Example UGM

- iii. One way to think of a graph is that it specifies a set of join probability distributions, namely, those that satisfy that conditional indepdencies implied by the graph separation.
- (c) **Markov Blanket**: The markov blanket of a node t is defined as the set of nodes mb(t) that renders t conditionally independent of the rest of the nodes in the graph given mb(t). By the graph separation property, the markov blanket of a node of t is the set of t's immediate neighbors.
- (d) **pairwise Markov property**: if there is no edge between two nodes, then they are conditionally independent given the rest of the graph

$$s \propto t | \mathcal{V} \backslash s, t$$

.

- (e) pairwise Markov property implies global Markov property and vice versa. We won't go over the proof here.
- (f) **Expressiveness:** UGMS cannot represent the conditional independence of every probability distribution.
 - i. Remember that a UGM specifies which CIs definitely exist. There can be additional ones it doesn't capture.
 - ii. For example: consider a distribution over variables a, b, c where we sample a and b from indepedent prior distributions and c depends on both a and c. So p(a,b,c) = p(a)p(b)p(c|a,b).
 - A. *a* is unconditionally independent of *b*, so there should not be a path between *a* and *b*.
 - B. but both *a* and *b* must be connected *c*, so there will always be a path between *a* and *b*.
- (g) Parameterization of UGMS:
 - i. **Potential functions:** we associate a potential function $\psi_c(\mathbf{y}_c)$ with every clique of in graph, where psi_c is any function that assigns a non-negative value to any assignment of values of the variables in clique c.
 - ii. We then write $p(\mathbf{y}) \propto \prod_{c \in \mathcal{C}} \psi_c(\mathbf{y}_c)$.
 - iii. By the **Hammersly-Clifford** theorem: a positive distribution p(y) > 0 satisfies the CI properties of an undirected graph G iff p can be represented as a products of potentials, one per clique of G.
 - iv. **Gibbs distribution:** By the H-C theorem, we are free to assign the following distribution to a graph *G*:

$$p(\mathbf{y}|\theta) = \frac{1}{Z(\hat{\ })} \exp(-\sum_{c} E(\mathbf{y}_{c}|\hat{\ }_{c}))$$

- . This is called the Gibbs distribution. Here, *E* refers to an energy function which corresponds to the *compatibility* for the variable assignments.
- A. **Partition Function:** Z, the normalizing constant which is a function of θ .

v. **Pairwise MRFs:** It is often simplest to assume that the probability distribution can be factorized into pairwise potentials:

A.

$$p(\mathbf{y}|\theta) \propto \prod_{e_i j \in \mathcal{E}} \psi_{ij}(y_i, y_j)$$

- B. This restricts the probability distributions in our parameterization more.
- (h) How do we represent potentials functions?
 - i. **Maximum-Entropy or Log-Linear:** in this case we say the value of a potential on an input is a linear combination of some features of the input:

$$\log p(\mathbf{y}|\hat{}) = \sum_{c} \phi_{c}(\mathbf{y}_{c})^{T} \hat{}_{c} - Z(\hat{})$$

.

- (i) Example MRFs:
 - i. **Ising Model:** Binary variables $y_i \in \{-1, 1\}$ arranged in a lattice (say, 2-dimensional), where the potentials are pairwise and symmetric and $\psi(1, 1) = \psi(-1, -1) = e^J$ and $\psi(1, -1) = \psi(-1, 1) = e^{-J}$.
- (j) if J > 0 then we have two modes in which all the variables are the same.
- (k) if J < 0 then all the variables want to be different and we have a much more complex system.
 - i. Gaussian MRF: Each node and each edge is associated with a gaussian distribution.
- (l) It turns out that if we write the join of this distribution in *information form*:

$$p(\mathbf{y}|\mathbf{\hat{y}}) \propto \exp[\eta^T \mathbf{y} - \frac{1}{2} \mathbf{y}^T \Lambda \mathbf{y}]$$