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10.1 |NTRODUCTIOI$
In addition to static analyses, the finite elernent method is a powerful tool for
analyzing the dynamic response of structures. As illustrated in chapter 7, the
irnite element method in combination with the finite difference method can be
used to examine the transient response of heat transfer situations. A similar
approach can be used to analyze the transient dynamic response of rnechanical
$ructures. However, in the analysis of structures, an additional tool is available.
The tool, known as modal analysis, has its basis in the fact that every mechani-
cal structure exhibits naturai modes of vibration (dynamic response) and these
nodes can be readily cornputed given the elastic and inertia characteristics ofthe
$ructure.

In this chapter, we introduce the concept of natural modes of vibration via the
sirnple harmonic oscillator system. using the finite element concepts developed
rnearlier chapters, the simple harmonic oscillator is represented as a finite element
s\stem and the basic ideas of natural frequency and natural mode are introduced.
The single degree of freedom simple harmonic oscillator is then extended to mul-
trple degrees of freedom, to illustrate the existence of multiple natural frequencies
.tnd vibration modes. From this basis, we proceed to more general dynamic analy-
ses using the finite element method.

tO.2 THE SIMPLE HARMONIC OSCILTATOR
The so-called simple harmonic oscillator is a combination of a linear elastic
gring having free length L and a concentrated rnass as shown in Figure 10.1a.
The mass of the spring is considered negligible. The systern is assumed to be
iublected to gravity in the vertical direction, and the upper end of the spring is
,uuched to a rigid support. with the system in equilibrium as in Figure 10" lb, the
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ffi r ffl lk(5it+'r)l-*i l-gi 'J... &r t. 
&+,. i"T,

(a) O) (c)

Figure tO't
t"l s''*-pri-n"ttonic oscillator (b) Static equilibrium

potiiiol' t"l rt"e-body diagram for arbitrary

oosition x'

gravitational force is in equilibrium with the spring force so

14= o: mg - k6'6 (10'1)

where b,, is the equilibrium elongation of the spring and x is measured positive

downward from the ffiili;ilp"sition; t# isl *n'"n ' : 0' the system is atils

equilibrium p::1ti:l;i"", 
the mass is displaced from its gwilrbrium positton'

If, bY some ac

theforcesvstemb":;;";;;;*""d'u"liiiu;il*free-bodvdiagramof
Figure 10'1c' We mrisTffi; i.I"*to"'* second law to obtain

dzx

lfr: ltlay: /71& : lllg - k(E" + r)

Incorporating the equilibrium condition expressed by Equation 10' 1' Equati.n 10'2

becomes

** +kx- o (10'3)

ot"

Equation 10.3 is a second-order, linear, ordinary differential equation with c0n'

stant coefflcients. (And ft yrirally, we assume ittut the coefficients m artdk'''e

positiv".l nquatio' 10.3 i, ,"o*t-often expressed in the form

dzx k dzx
tw-

& *;^ dt2

solution for Equation 10'4 is

(10.4
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lO.2 The Simple Harmonic Oscillator

Equation 10.5 shows that the variation of dispracement of the mass as a tunc_
;':il1"fff il'jfrl*;Y;F'ulffi ;l'-"*"id;;;i'ti",,;;;;,,""10.5can

x(t):Csin(or*0) 
(10.6)where the constants A and-^B have been replaced.by-constants of integration c andQ' PerEquation 10.6' rhemass oscinates sinusoioatty 

^;;;";;f;"";ency a andwith consrant amprirude c plrar" ;;;i" o iri"ot*tive of position ur'rr" 0 sincex(0) : c sin g' Arso. nore ,tru,, .nz" iijr, -"^*"d about the equ'ibriumposltron, the osc'lation occurs auout trrut iorition. n" circurar frequency is

lk&)_\l-radlsec
tm
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(10.7)

trhi :tffit'J"JiJ:ifi i:i:11': ed bv th e phvsic ar charac reri s tic s or the sys tem.
onthespringc;;;;^;;^::':;:::;f;,i#Wi1,,ff;l"':.i:i;ilffi**##:
equilibrium position and released,',r*;il;;"ry motion o""uri at a constantrequency determined 

lr *: physical p*uti"r".. of the system. In the case
*T.::r""*,f:r?#rf 

tory motion ft a", 
"iu 

J 
^ 

as fre e v i b r at i i n,.in"" tr," system
y",,,";;;.1;.;H:iffi;31ffix1n,::lii3i1xffi1"_";;en,con_

text. From Chapter 2, the stiffner, _;;;;;;;; spring is

kro, - kf :, l'] (10.8)

and the equilibrium equations for the element are

which is identical to Eouation 2.4..However,the spring erement is not in staticequilibrium, ro ," .rrigxar1ne the nodal forces in dehil.Figure 10'2 shows free-body-di;;ffi; trre spring element and mass,respectively' The free-body,oirgrl.r a?p#riup.to,, in time wt"n tt sysremts m motion and' hence' are dfnamic it:;;;; diagrams. As the mass of theilJlil:$:i*:d negrigibre,'Eq;",i;;i6.nll'"oto 
ror rhe spring erement. For

( 10.e)

-f,- 11

'rt I

,,7
(a) (b)

(10. 10) _\ - -''- v/ Figure lO.2 Free_
body diagrams of (a) a
spring and (b) a mass,
when treated as pafts

(10. 11) of a finite element
system.

d, u,ffia* - m-
At, - mS - fz

fz: mg - me"3
dt2

lr.
from which the force on nod e 2 is
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I

i (10 12)

of the attached mass is

Equation 10.12. Equa-

Substituting for f2 in Equation 10.9 gives

t-I -1ll",l -{ ftoL-t r ll";l-l*s-milz
where i)z: dzurldt',. The dynamic effect of the inefita
shown in the second of the two equations represented by

tion 10.12 can also be exPressed as

[: 2){r;,1 +kl r, t']{::l:
where we have introduced the mass matrix

tm- [o ol
I - [o m j

{*rl ( 10. 13)

( 10. 14)

t 
.., I a,IuJ: lii, I

For the simple harmonic oscillator of Figure 10

ary) conditrorrul - 0, so the flrst of Equation 1

while the second equation is

and the nodal acceleration matrix

( 10. 15)

.1, we have the constraint (bound-

0.13 becomes simPlY -kuz: fr,

miiz+kuz:lTL8

Note that Equation 10.16 is not the same as Equation 10.3. Do the two equations

represent the same physical phenomenon? To show that the answer is yes, we

solve Equation 10.16 and compare the results with the solution given in Equa-

tion 10.6.
Recalling that the solution of any differential equation is the sum of a homo-

geneous (complementary) solution and a particular solution, both solutions mu$

be obtained for Equation 10.16, since the equation is not homogeneous (i.e., the

right-hand side is nonzero). Setting the right-hand side to zero, the form ofthe

ho-ogen"ous equation is the same as that of Equation 10.3, so by analogy,

the homogeneous solution is

u21,Q): Csin(o/ * d) (10'17)

where co, C, and $ are as previously defined. The particular solution must satisfy

Equation 10.16 exactly for all values of time. As the right-hand side is constant,

the particular solution must also be constant; hence,

u2pQ)

which represents the static equilibrium solution per Equation 10.1. The complete

solution is then

uzU) - uzn(t) + u2p!) : Esr + C sin(orr * 0)

(10.16)

( 10. 18)

(10. 1e)
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indicatingthatthemassoscillai:sl.5in.aboveandbelowthestaticequilibriumposition
continuously in time and completes one cycle every 2n l2l '98 sec' Therefore' the cyclic

frequencY is

f : * 
:'# : 3.5 cYcles/sec (Hz)

The cyclic frequencv is often simplv referre d2^'h" ,:1'!:i'!!,,i1i!3:2e 
time required

to complete one cycle of motionis known as the period of oscillation' given by

- 0.286 sec
11:' - f 3.5

I

Figure 1O'3 SimPle

harmonic oscillator

subjected to external

force F(t).

Ll illr,:,\ +kL j'
While the constraint

differential equation

10..2.1 Forced Vibration

Figurel0.3showsasimpleharmonicoscillatorinwhichthemassisactedonby
a time-varying "*,"-u1'force 

F(r)' The resulting motion tt k"3*.1 as 'forced

vibration,owing to the presence of the extemal foicing function. As the only dif-

ference in the applicabie free-body diagrams is the eiternal force acting on the

mass. the finite erement form of the system equations can be written directly

from Equation 10.13 as

l'] l::l:l*r !,(,) l (1021)

equation for the reaction force at node 1 is unchanged, the

for the motion of node 2 ts now

milz+ku2:mg+F(t)

ThecompletesolutionforEquation10'22isthesumofthehomogeneoussolu'
tionandtwoparticularsoluti.ons,sincetwononzerotermsareontheright.hand
side.Aswealreadyobtainedthehomogeneoussolutionandtheparticularsolu.
tion for trle m1r"t", *fT"t*;'1t; p'*i** solution for the external force'

The particular solution of interest must satlsry

mil2 * ku2: F(t) (10'23)

exactly for all values of time' Dividing by the mass' we obtain

i)z * a2wz: 
rQ)

where or2 - k I m is the square of the natural circular frequency' of particular

importance in structural dynamic analysis is the case when external forcing func'

tions exhibit sinusoidal iar\ation in time, since such forces are quite common'

Therefore, we consider the case in which

F (t) - Fs sin $f t (10'25)

(r0,22)

(10.24)
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where F6 is the amplitude or rnaximurn value of the fqtree and co1 is the circular

frequency of the forcing funetion, ar forcing freqwency for shoa"t. Equation 10"24

becomes
4, ,_ l% _.,

Ul" * (x\'' Wr1 '3:i *- Silxl {a\ i f
I tlt

TosatisfyEquation 10.24exactly foralLvaluesof time,the terrnsonthetreftmtlst
contain a sine function identical to the sine term on the right-hand side. Since the

second derivative of the sine function is another sine function, we assurne a

solution in the form u2Q) : {J sin lo1t , where U is a coirstant to be determined'

Differentiating twice and substituting, Equation 10.25 becomes
'ti

1 , 1'0

- {l w f sin ffi.y t 4 {i ir-nl' s Lrl tu} i' [ ::-: -*: sllt t* ;1'.l.t.,m

!i6 f rriLIr
ii'2 - l.^,l

.t

i}ls$

from whieh

The particular solution representing response of tire simple harmeinie oseillator

to a sinusoidally varying force is then

( 1S"26)

( { r1}"2'f }

( I ,J.rif$)

( [,s"Zs)

j

The motion represented by Equation tr0.29 is most often simpiy calledtkrcfarced

t.esponse and exhibits two irnportant charaeteristics: (l) the frequency of tlie
tbrced response is the sarne as the frequency of the foreing f'unction, and (2) if
the circular frequency of the foreing f"unctioll is very near the natural circutrar

tiequency of the system, the denominator in Equation 10.29 beeomes very smatrl"

The latter is an extrernely important observation, as the result is trarge al-nptritude

of motion. In the case o/ : tt, Equation 10"29 indieates an inflnite arnptritude'

This condition is known as resonance, and for this reason, the natural circular

ti'equency of the systern is often called ttrle resonantftequency.lMathematically,
Equation 10.29 is not a valid sotrution for the resonant eondition (Frolilem tr0.5);

however. the correct solution for the resonant eondition neverttrreless exiribits

unbounded amplitude growth with tirne.
The simple harmonic oscillator just modeled contains no derrice for energy

dissipation (damping). Consequenttr,v, the free vi$ration solution, Equa{ion X 0.20,

represents motion that continues without end. PhysicaXXy, sueh rnotion is not pos-

sible, since all systems contain sorne type of dissipation mectranism, such as

internal or external friction, air resistance, or devices specifieaXtry designed for the

ptrfpose. Similarly, the infinite amplitude indicated for the resonant condition

cannot be attained by a real system because of the presence of damping. t{owever,

Lelatively lzrge, yet bounded, amptritudes occur at or near the resonant frequency.

Hence, the resonant condition is to be avoided if at all possible",4s is subseqtlently

shown, physical systems actually exhibit rnuitiple ilaturatr frequencies, so rnulti-
ple resonant conditions exist.
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I O.3 MULTIPLE DEGREES-OF-FREEDOM
SYSTEMS

Figure 10'4 shows a system of two spring elements having concentrated masses

uttu"n"a at nodes , -U iit ii" gl"t'"f cJordinate system' As in previous exam-

oles, the system i' '*u:"""i 
ffi"tt". an* th; ;;# spring :'"i:t::yo 

to a rigid

,upport at node r ' ot i"i"'*i t'E'" i' it'" oynumif '"'pon'" 
of the system of two

,p,ine'.una*"T1':i"1"?:*[""k"m;tt[H.iiff :"ll':i3Jd?il:
extemal influence ano

the Newtoniur, -"rt uniJ. "w"""t 
uv t u*i"g the appropriate free-body dia-

srams and applying N"*'"itt 
'""ond 

law of Lotion to obtain the governmg

equations. Instead, *" 
'"ft"iit" 

nnite element 
"ppt"""tt 

By now' the procedure of

assembling ,n" 'V"#"jtft"* 
mat'it should te routine' Following the proce-

dure, we obtain

I zn -3k l,l (10.30)
1r1: | -lt sk -?k I

Io -2k 2k)

asthesystemstiffnessmatrix'Butwhatofthemass/inertiamatrix?Asthemasses
are concentrated at "f"-"tit"Ots' 

we define the system mass matrix as

I-9 o 9l (10.31)
tMl:10 m 0l

lo o m)

;$--

,tr

;$-
Figure { O.4 A
spring-mass system

exhibiting 2 degrees

of freedom.

The equations of motion tun.l" expressed as

LMrl 'u',I+r/n{il; } :{ #;}""lArl L 
Iul l l*s f

whereRristhedynamicreactionforceatnodel.
Invoking the constraint condition ur : 0, Equation 10'32 become

which is a system of two second-order, rinear, ordinary differential 
.equations 

m

thetwounknown'v"'"i'it-'n*;;*yli?",?;Ttii""i?:'Hf,l1":Hll:
il;;;Jty the foriing function represent tne

;il;l;#d and the s'vstem of equations rewriften as

lry olfu,\*[ sr -#]t3:]=t3] (1034)

lo 'llu, l-l-zr' 2

As a practical matter' most flnite element software packages d9 
'not 

include

the structural weight l" ", 
il"ivrr, prout"-.in.t*c in.tution of the structural

(10.32)

+ l:ir -::l Ir: ] :\nz\ (1033)

Lr ;ltf )
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r::ii[';ff i:lff#'Tust be sete*ed bv the userorrhe sorrware. whethertoil"S:'3;i"'#*,ffi1*=ffi :';:*"0'"'*"'#iX#uu,"aonir,J

--,-:im:"?itiitli{il+::u:1,iry-.:6m::;,*iT;i[t,,"r",orutroil;;,,#o,#,:i,rf*r#"n,,j,,1"1s."i,""rvlJffi 
;sysrem,we

U2Q) -,42 sin(o/ * 6)

where A2and A: are d 
u3Q) - '43 sin(or a $) (10'35)

tached.to nodes ) *o :1" 
vibration amplitudes.of nodes 2 and 3(the masses at_

,:lf::,*,il;;,h;/; 
., rs an unknown, assurned haril;"il;;frequency

wrrh.respe* ro ,i." of ,fnase 
angle of such motion. p!"g,r.#ll[ o".iuuriu",

results in .ne assumed soturions ,na ,rorrtiuij;;,*" ;il"ion 10.34

A, I

A; Isin(t'l/ + O)

395

-a2[t il{t} ,,"(ar+o).f ::r ;rrr]{
0r

Itk-*r, -2k fle,lL -ztc
Equation 10.37 is a sv 

z* --)" ll;:/ sinlor * *' : 
{3 } (10'37)

musr be solvea ;;i#rr:, of rwo, homoseneous,al.gebraic 
equarions, which

y1* :r r'"' "g. " 
#r,:,t#',:1""fi I l',t:X"J#, 

and,q\. e'"' li",.* at geb r a. a

::,:L:^9:'"*nant of rhe coefficient marrix .rs 
nonrivial solutions irio otrysolutions, ---^4rvrv'r 'rilulx rs zero. Therefore, for nontrivial

{s}
0.36)(1

5k - m@2 _2k
-2k 2k - m0r2

k

m

k:S_-
m

-0 ( 10.38)
which gives

Equarionlo3eis-",::;,::';;;;,i;;:,|l,r*n**,"n,:,::r:,
me physical system. As k

[" -;1^l 
;;;;;;;f :ff i,:f , ffiy;ffifi ,] 

:t "on, 
tun r,. equ Jti o'n r 0 3 e i stotmula to obtain ,ro,oZt t'r' and solved by the quadratic

al

al (10.40)
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or

(D1 :

0)z :

(10.41)

r-T
lu;

In mathematical rigor, there are four roots' since the negative values conespond'

ingtoEquationl0.4lalsosatisfythefrequencyequation.Thenegativevalues
are rejected because ";;;ti;" 

f*qu"""y hu' nophysical meaning and use of the

negative values in ttre ass"umed solution (Equation 10.35) introduces only aphase

shift and fepresents ,tr" rurn" motion as thit corresponding to the positive root'

The 2 degree*"f+i"J"* system of Figure 10.4 is found to have two natural

circular frequencies of oscillatiln. As is customary, the numerically smaller of

the two is designated "t 
tt *O known as the funiamental tr.eOu'e19V' The task

remains to determine tir" "i"prri; 
s Az and Az in the assumed solution. For this

pu{pose, Equation 10.37 is

lsr,-*,2 ^,-r:..._,1[ 
o,l - Iol tro.+z)

L -zk 2k-mt'tz'1le: | - l0l
As Equation l0.42is a set of homogeneous equations' l^/e 

can find no absol

values of the amplitudes. we cafr, however, outuitt information tegardrng
,2 - ,.,2

ffiXn$::i"ffiTJ'j[i', rhe arnptitudes as rollows. Irwe substitute 
" 

='?,

k I m into either algebraic equation, we obtain A3 - 2A2;:T:lr,**:t;
Z'*rrr,)';r7;;;' ;'f;; - 2 rorthe first, or fundamental, mode of vibration' 1'

is, if the system oscillates at its fundamental freque"ty-:t;,:Y 
T:11,t;,fIS, lr Llrs DJ

oscillation of m2is twice that of m1. (Note that we are unable to calculate

absolure value of either amplitude; only rhe ratio can be dere*:*.IT,:li":
values depend on the initial conditions of motion, as is subsequently ill

The displacement equations for the fundamental mode are then

UzQ) : A\)sin( @fi + 0r)

U ze) : A(|sin(cor * 0r) - zA(f)sin(.u1r * 0r)

(10.

where the superscript on the amplitudes is used to indicate that the displac

coffespond tb vibration at the fundamental frequency. 
\6^r , ,.,2 _ ,,,? _'o*K:il'}!"#,ffi;;,il;;ilil;ur'i'*lar jr_equencv,' -," = 6

into either equation and obtain the relation At : -0' 5 Az'lli:: *::f:,LlLr(Ltr\-rlr cf,rr\

ond amplitufie ratio as AzlAz: -0.5. So, in the second natural modeof

tion" the masses move in opposite directions. The displacements conesp(

to the second frequency are then

Uz(t) : A3) sin(or2 t + 0z) (l

uz(t) : A])sin(orz * fo) : -0. 5A(7)sin( u,zr t bz)

where agarnthe superscript refers to the frequency'

L
m
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,ru.ntl!rt"tot"' 
the free-vibration response ofthe 2 degree-of-freedom system is

u2e) _ A())sin(a1t+ dr) + A$)sin(a2t + g2)
U3Q) : 2A())sin(ap+ 

Sr) _ 0.5A(j)sin(<o, * fU e0.45)

1ld y" 1o* tfr,q foulunklown consrants in rheamplitudes A()), 4,zt ilil;;;r#;i:li""solution; specificaly, rhese are rhei' iir'J.;;; ;;"'"il:Jiijl,*ilr,es dr and 0,. E"i;;;;;;oior," .on,,un,,
,,-y.prn]lg on the.reader,s mathematical
1.1:F 

*::ftiedom vro.ation probrem ,r" ^':"-lqlund, 
the analysis of the

'!iii#:[t;]:;:trun*":*rid]:ff 
1*:!'_i{ff :itr"*,,":t:txi,v,

11i1"110.45 represents rhe .;*;#;i",il1 'n" 
eigenvectors of ihe probrem.

::i:: "f vibration. Such a solution i;-";;;';:tstem 
jn terms of tr'i naturJ

modal superposition or trionro,tr,",;ffi:#":I,rr,J,fr1l:::":l;::r:T:r,.:"fi ;::il313,:",xri1

397

h'i, 1,,"(cort+0r)+{ ::,r,}sin(o,2t+62) e0.46)

(a)

(b)

uzQ -o) -trG:o)_o
to

not
the equilibrium position of the
include the effeciof gruuiru.

l^o: 
/ ,vt : 27.8 radlsec

which shows that the modes rnteract to produce the overat mofion of the systern.

Given rhe sysrem of Figure ,;, *rtr _
The natural frequencies of the

: 40 lb/in. and, mg

The rre e ..,0 o-n",ll ;ffi :i, ll,'JillT;conditions are
uzG = o) - 1 in. uzG - o) - e.5 in.

These initial conditions are specified in referencesystem' so the computed dispracement functions do
Sof ution
r Equation 10.41 , the natural circular frequencies are

lTv;
l6kv; : 68. 1 radlsec

lree-vibration response is given by Equation 10.35 as

UzG) :A(i)sin (27.8r + 0r) + ertrsin(68 .1r + Qz)ut7) : 2A(j)sin (27.8r + 0r) - 0.5A(])sin(68. rr + 6z)

/--------
I 40(3s6.4)

l/ -------------v20
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The amplitudes and phase angles are determined by applying the initial conditions' which

ate

U2(o) :1 : A(|sin dr + a(?)sin Oz

U3(0) : 0'5 : 2A(|sinfi - 0'5A(])sin$2

U2(O) : O :21'SAolcos 0r * 68'1A(|cos $2

U3(0) : O :2(27 '8)A(|cos $t - 0'5(68'1)A(])cos S2

Theinitialconditionsproduceasystemoffouralgebraicequationsinthefourun.
k"",r;;;{;,;:ir,g2. Sotution of ihe equations is not trivial, owing to the presence

of the trigonometric tunJonr i"tting p : Ao sin g1 and e : A(7) sin 92, the displace'

ment initial condition equations become

P+Q:T
2P - 0'5Q :0'5

which are readilY solved to obtain

P : A(|sin Or : 0.4 and g : A(|sin4'' : 0'6

Similarly, setting R : A(| cos $1 and S : A(? sin $2 ' 
the initial velocity equations are

27.8R+68.1S:0
2(27.8)R - 0'5(68'1)S :0

representingahomogeneoussysteminthevariablesRandS.Nontrivialsolutionsexts|
only if the determinant of the coefficient matrix is zero' In this t"t".,]l"^lYminantisnot

zero,aSmayeasilybeverifiedbydirectcomputation.Therearenononffivialsolutions;
hence, R : S : 0. Based on physical argument' the amplitudes cannot be zero' so we

must conclude that cos or : cos 0z : 0 ? 0r : 6?,= " l' 'tt r.ofi;s that the sine func

tionofthephaseangleshaveunityvalue;hence'Att't:O'4andAtl):0'6'Sub$itutinfl
theamplitudesintothegeneralsolutionformwhilenotingthatsin(o/*rr12)=cosat'
the free-vibration response of each mass is

UzU) - 0.4 cos 27 .8r + 0'6 cos 68'lt

UzQ) - 0.8 cos 21 .8t - 0'3 cos 68'It

The displacement response of each mass is seen to be a combination of motions c0ffe'

sponding to the natural circular frequencies of the system. such a phenomenon is charac'

teristic of vibrating structural systems. A11 the natural modes of vibration participaF in

the gen etal motion of a structure'

I O.3.1 Many-Degfees-of-Freedom systems

As illustrated by the system of two springs and masses, there are

frequencies and two naturar modes or uiuration. If we extend the

two

analysis



lO.O Multiple Degrees_of_Freedom Systems

a system of sprinss 
T.t^.:.."r,having N degrees o^f freedom, as depicted in

ii-i',Xil, ll,i ; ruffi:l ;*"":#'i *5."..k ror a n ni te ;;;;";"* 
"r 

y s i s, rhe

LMl{u} + tKl{u} : {o} e0.47)
where [Ml is the systeo"t"''"in"'ti,"ffi#'il"ff:;"?l*ff jf 

d#:, if :#T;',?Xil,11$I;*modes, we assume, as in the r *J iJ"gr"".-f_freedom.u."r. thut

UiQ) : A; sin(or f g) (10.4g)

;J$:;"$ffi;n" 
assumed solution into the svstem equations leads to the fre-

llrl-a2yM11:g 
e0.4g)

;:ff l1,#:rJ,ff#*::::i::"rrtn7yy{teyt_,.rhesorurionof Equation10.4e
berearil,.,;*"*#iTi,",i#i[x'il,H::?:,H:ti:THf 

lxr,"J,i:il:Imany times, the finite element equari""r 
"*tir, u".otu"a uni"ri-iounou.y.onaitions are appried so that trr" equationr-b*;" into-og"n;o;. rri_'* pn"_nomenon exists when. oetermining tl" .y.i"* naturar frequencies and modeshapes' If the system isnot constrainea, rigiJuooy motion is possible and one ormore of the computednatural frequenci"rl?, uuuroeof zero.Athree_dimensional

i;;:""Tffr j'ilTJ""J#ednaturarfreq";;;;1:T"spondingtorigidbodytrans_

gli*91.",.ru;",*"1',r"1,i,ff#illji:"TlJJ":.:'ffi *f Un*:mltrepeated zero roots of the frequen;y Jq;ti"rr-
Assuming that con_strai";, *; pr;;;;lr'io,-o]"g, rhe frequencies resulringfrom the solution of Equation ro.+q *" ,;ustituted, one at a tir", into Equa_tron 70'47 and the untplitud" rlri"i ("tg";;;tors) computed for each narurar

ffi|!r.:t :?ration' 
The general sotutio"n for each degree of freedom is then

UiG) Au)sin(o5 t * e) i :1, t/
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vhich

ur un-

)sence

;place-

NS EXiSt

nt is not
llutions;
), so we
ne func-
stituting
: COS OJt ,

ns cofTe-

Ls charac-
icipate in

Figure f O. S A
spring-mass system
exhibiting arbitrarily
many degrees of
freedom.

r
j:7 (10.50)

illustrating that the dispracement of each mass is the sum of contributions fromeach of the N naturrl 
1od9s. Oi.pfu""rn"nt solutions expressed by Equa_tron 10'50 are said to be obtaine d b;';;;;;)perposition we aoo the indepen_dent solurions of the tinear oin r""riui 

"f,iujJi, or_otion.

o natural
ralysis to

Determine the natural frequencies
freedom system depicted i; Figure

and modal amplitude vectors for the
10.6a.

3 degrees-of-
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Ut:o

-f-"

-$-u,

-$;.

(b)

ffiXi:t*ent moder is shown in Figure 10.6b, with node and element numbers as

indicated. Assembly of the global stiffness matrix results in

l-k -k o ol
,r71 l-t 3k -zk 

I[K]:lo -zk 3k -k 
I

Lo o -k k J

Similarly, the assernbled global mass matrix is

[o o g ol
rMt:l : T I B 

I
Lo o o z*)

owing to the constrai nt u 1- 0, we need consider only the last three equations of motion'

(a)

Figure 10.6 SYstem with

3 degrees of freedom for

ExamPle 
'10.3'

given bY

fm 0 
1l lfi].11r {r }lt'} 

:t 
l}lo m c

Lo o 2r

Assuming sinusoidal respons e as (J; : Aisin(or/ + o) ,i :2'4 and substituting into

equations of motion leads to the frequency equation

l3k - a2m -2k o 
I

\ 'o--f,'* r-*'*\:o
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- C(k/m), the

which has the roots

C1 - 0. 1532 Cz : l.2gI2
The corresponding natural circular frequencies are

c3 - 5.0556

ar :0.391411 K

tm

.uz : l. n1Srf 
*

tm

,t :2'248518
lm

To obtain the amplitude ratios, we substitute the natural circular frequencies into theamplitude equations one at a time while setting (arbitr arrly) Ae) : t, i : t,2, 3 and solvefor the amplitudes A(i) and a(f . Using ,, .".Jlt, in

(ztc - alm)e()) - 2kArD - s

-zpe,l + (zt, _ a2rm)t(l _ kt()) : o

-t,q(t) + (r - 2azrm) e(? : g

Substituting at :0.39l4JEIm, we obrain

2.8at erlt - zrl| : s
*2A(:) + z.s+t e(l - A,1, : o

-A,1, +o.ao+zlf,):s
As discussed, the amplitude equations are homogeneous; explicit sorutions cannot beobtained. We can, however, determine the amplituJe ratios by setting ar;i: , ,o o5ruin

A(| :1'+235

A(1) :2'ostt
The amplitude vector corresponding to the fundamentar mode to1 is then represented as

{ar',}: A(:)[:*)

4q^r

Expanding the determinant and simplifying gives

",6 - 6 s:.,4 +, s(!)' r, - ( L)' - o

,;l:iffi'r"T"il:":'quation')*'Juunono# Se*in s @2

(c' - 6 sc, + 7 sc -,, ( *)' : o
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andthisistheeigenvectorcorrespondingtothe
with the values for the other two frequencies' or2

afe

eigenvalue ar ' Proceeding identically

and or3, the resulting amplitude vectors

la"'l : A'7'

[ai,rl:A"r'hlk]

[:*l;,]

This example illustrates that an N degree-of-freedom systsm exhibits N naturat

modes of vibration o";""fi, 
" ""i"ir 

.*ty1*it"oo*"it' and the correspond-

ing N amplituo* "ttto'J'"i"iia" 
d"*tylir" itt" examples deal with discrete

,p-,i'rpji.v,t1.,,*[j$;.fi#';*mnfi.t"ry"{,Tffi 1t
ricofnizable ".Yl-:lu N mode shapes, *n;;; the number of degrees of

narural frequencies "": I ::::,,"#ffi"*rir*r"r"nted by the flnite element

;;a;. (displacements in structural tt-t"Ii;.;;;til ;r" of the natural modes'*t**rilr::i#::x*?:Tl"'i:'::'1"ffi 
il;i'l"iin"*'oinrorlowing

sections.

1O.4 BAR ELEIIIIENTS: GONSISTENT

MASS MATRIX

In the preceq's .e' :l"ions 
of 

'ql'g- 31". fli:"#h H3?: :|i::fi^)'il:fri

il *;:':H:# ;"tlt';:'-:-:#J'#:R j;; ;;;l;;;'|he mas s o*he spring

elements in "ornp**oii'lotti";i;i***1-Tffiin 
tr'" general case of solid

structures, the mass " 
Ji'itiuot"a g"o'n*ituiii"ittrooghout the structure and the

inertia properties .f # -*"irr"i"p""O AitJ"iiV on"rft" mass distribution' To

illustrate the effects oidi*oifot"d mass' t""i# consiOer longitudinal (axial)

;ffi 
ti:;b*'l;*:t:#il$Ftt$""3"sthesameasthebarerementintro.

duced in Chapter 
' 
*ii *" "#i*9"*1oin"t*"" 

that displacements and ap-

olied forces are now ;J;J;;"',iln" a"p."i""i as inOi"ut"o' The free-body

iiun urn of a differentiiiii"il"ri"rr"tgrtt o"'i* ttt"wn in Figure L0'7b' wherc

cro-ss-sectionur ut"u eii ul"-"Jto"*'*' Appiil; newton'Jsecond law to the

differential element gives 
^.)

(" *Yo")'+ - oA : (P e a'ffi (10'51)

\" 0x /



lO.4 Bar Elements: Consistent Mass Matrix

1 @ u(x,t) 
2

P-
i----- u1(x1,r) G u2(x2,t)*x

Figurc iO.Z
(a) Bar erement exhibiting time-dependent dispracement. (b) Free-body diagram of a
differential element.

where p is density of the bar material. Note the use of partial derivative operators,
since displacement is now considered to depend on bottr position unJti-". s,ru_
$ituting the stress-strain relation o : E E : E (0 u / 0 x), E^quation 10.5 1 becomes

403

(a)
(b)

Equation 10.52 is the one-dimensionar wave equation, the governing equation
for propagation of elastic displacement waves in the axial bar.

In the dynamic case, the axial displacement is discretized as

u(x, t)

,- 0'u 02 ut 
a*,

i /-azu o2r\
I Nie)(t#-p#)ta*-o i -r,2

where the nodal displacements a"re now expressed expricitly as time dependent,
but the interpolation functions remain dependent oniy on-the spatial variable.
consequently, the interpolation functio.r, L" identicai to trrose u'sea freviousryfor equilibrium situations involving the bar element: N1(x): | _ (x/L) and.
Nz(x). = x /L. Application of Galerkin's method to Equatio n 10.52in analogy toEquation 5.29 yields the residual equations as

l =+ Wt{u} - {f}

(10.s2)

( 10.s3)

(10.54)

( 10.s6)

Assuming constant material properties, Equation 1 0.54can

^f ,r,,02r.,t f o2upA J tvi(x)# dx_ 
^u J l/i(x>ffia.

00

be written as

i - r,2 (10.55)

Mathem attcal treatment of
that presented in Chapter 5

ult of the integration and
Orm is

the right-hand side of Equation 10.55 is identical to
and is not repeated here, other than to recall that the
combination of the two residual equations in matrix

fl-', r']{:: l: {r,
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Substituting the discretized approximation for a(.t, t), the integral on the left

becomes 
t

oo'[ r,r*r{ft o' : oo INi(Nrrir 
* Nzilz)dx i - r'2 (10's7)

"oo

wherethedouble-dotnotationindicatesdifferentiationwithrespecttotime.The
two equationr."n'"*"1'i'"i;;;il; 10'57 arewritten in matrix form as

f r N? NrNz.l ^.1i),t - q4!t-? ll{ll} : wttilt (r05s)

ooJL;;;' t;-laxlnzl 
:-u Lt 2)tilzl

uno ,fl" reader is urged to conflrm th: T:s1lt 
by performing the indicated integra-

tions. Also note that the mass matrix " 
ti--"ttic but not singular' Equa-

tion 10.58 defines tni 
'o'si'tenl 

mass matrix for the bar element' The term col-

sistentis used o**r" 
",ni 

irl"rp"tation functions used in formulating the mass

matrix are the 'u*" 
u] [ilil":"' *ith) th; used to describe the spatial van&

tion of dispra""*"r,,ltl-rio*r1r, uo1t",]o"r io je und 10.58 per Equation 10'55'

we obtain the dynamiJn"ii" "fJ-erit 
equations for a bar element as

+11 lltl:I + +[ j, t']l::I:t t] (105e)

k-,,7 -(- +az|)

-(-+o';27)

or

lml{i)}+ tkl{u} : {/} (10'60)

and we note that p AL : m isthetotal mass of the element' (Why is the signof

'n"'ff::l H;x3::"ffi;)"qoutio.."' 19t us-.ow determine the'natural ftequen-

cies of a bar eleme*'ii #*f'"iUl",ion. p". the foregoing discussion of ftee

vibration, we set ttre nodal force vector to zero and write the frequency equr

tion as /rn6'
l[k] - t'r2[n]l :0 \rv'vr''

to obtain

:0 (10,62)

.mk-r"T

Expanding Equation 1 0.62resu1ts in a quadratic equation ln o)"
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1O,4 Bar Elements: Consistent Mass Matrix

-0 (10.64)

Equation 10.64 has roots <o2 : 0 and a2 : l2k / m. The zero root arises because
we specify no constraint on the element; hence, rigid body motion is possible
and represented by the zero-valued natural circular frequency. The nonzero nat-
ural circular frequency corresponds to axial displacement waves in the bar,
which could occur, for example, if the free bar were subjected to an axial impulse
at one end. In such a case, rigid body motion would occur but axial vibra-
tion would simultaneously occur with circular frequency a1 : JI2ldrn:
(3.461L)J E /p-. The following example illustrates determination of natural cir-
cular frequencies for a constrained bar.

405

"(" 
- "*)

Using two equal-length flnite elements, determine the natural circular frequencies of the
solid circular shaft fixed at one end shown in Fisure 10.ga.

I Solution
The elements and node numbers are shown in Figure 10.8b. The characteristic stiffness of
each element is

2AE:
L

so that the element stiffness matrices are

Ir,r'1 - lr,r'1 - ryl _t,L L'

The mass of each element is

PALm- 
2

and the element consistent mass matrices are

l*"'l: l*"'l: #l? :]

L/2 L/2

(a)

Figure I O.8
(a) circular shaft of Example 10,4. (b) Model using two bar elements.

AEk-
L/2

;']

_=+
x aE

2

(b)
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Assuming sinusoidal responses

(J, -- 42 sin(orr * 0) (Jz:

406

Following the direct assembly procedure' the global stiffness mafflx ls

,oul ), -rt i'lL"t=, 
Lo' :, rl

and the global consistent mass matrix is

,o'_11 I ll,r1: o li 
.i 

;l
The global equations of motion are thenb'+lil 

iltl] . ryl:; 
-i'ilt 

n] 
= [l]

Applying tt 
" "J"'t'uint 

condition (J1 : o' we have

'\YY'r'. o'+V 
ll|I.'+l:"' l I i: ] = [ : ]

asthehomogeneousequationsgoverningfreevibration.Forconvenience,thelastequa.
tion is rewritten as

tl llt;: l*ry,,'11' 
-"1{;i}=t:}

43 sin(orr * 0)

differentiating twice and substituting results in

-,,',[4 l]{ i, }.,",,, *., *'#l:, -,' 
l{ i:},inr'r * *' = [3]

--Lt 2ltArl u":.- .datsolutrons

Again, we obtain a set or homogen""i- 1t:o:11n[t;"]|.T,|ff l":5'4 E 1 p L', th,

J;',i ;. determinant of the coefficient matnr

il;";;;;;o"ation is given bv the determinant

\'l;-:; ;i;:l\:'
I

which, when expanded and simplified' is

7o4-loxto2+\2:o

Treating the frequency equation as a quadratic in ro2 ' the (oots are obtained as

o? = 0.1082I a?' = 1'3204lt

Substituting for \, the natural circular frequencles are

5.629
hJZ: L

L radls"c
p

1611 lE
(r)1



WlO.5 Beam Elements

For comparison purposesJ we note that the exact solution [2] forthe naturar circurar

i: ,t:ffii#t#Jn axiar uru.ution vi"iJi il t:lgu'*i,",*"i**rar 
rrequency

**f fl*$fr 
.ff ;::;:i,1:1;];J"f,,^:;?!|#;1"f; :iT:ffi"J"?JJi:

It is a]so informative to nore /ca^ L^r_r
approach is used r". * ffi::$::fi::t"m 

10'12) that, ir the lumped mass matrix

153 1 lE0)rr- l-' L \/t

407

3.696
a)2 :

L radlsec!
p

)qua-

rtl0ns

, the

The sorution forExampre I0.4 yielded two.naturar circurar frequencies forrree axiar vibration oru b;;;; ,, #ilio. sr"h ;;;;r, - ,r0",* number or
ffi,XJ.lf ?T:l"j;?,,u"*y;i;;;;;oi,,"ouo*".r,u,i"s";;;;;;srydistributed
motion 

"r """ri"#enr 
modeting. the parriat arn"*i,ii 

"c;;;"", governing

tr T nT tft T,:r:_.r_:H &x 
y Tffi T,i i;n,*:i Xfi ffi,Tl:

finite elemen, _od"f"n, 
approach is limited uy trr" Jir"i"u1.#ilirn"renr to the

. The inertia characteristics of a bar el
r u mped ma s s m ari x. si m i r ar to ; #;";'".ilT$." t,l "' 

:rA;:flTrT :,_ *,h :earlier in rhis chaprer. tn ttre trrrnpJi;ffi 
lpprgch, r,uritr,"iorur mass of the

elemenr is assumed to be concen-tia"J"i"":1,,o*.*-d 
rhe connecting material;rJ:#ff:a massress spring rirr, 

".iJri?r"ess. The rumped mass matrix for a

rm1:PlLlt ol
use of lumped mass 

2 Lo lJ (10'65)

rnenr mass marri x' ; tffi ffi '"."rTffi ,::T,t#:lt:111 
ad van rages. S ince the et e-

ff *:ffJi"Liil.#$::q'-;;;.'ffi ,:11,,f,11iliff ?,fl '"",X".ifS*Xi;
q'.n" ;; t J;ffi ;:f :* to qrovi de upper bo u n i' i"; ;;;;ri"r 

"i,"u 
r a, rr"-

mass matrices are ofre 
proof exists for lumped ,ut i""r.-iv"ul;n"i.rr, lumpedreasonabry,"";;^;;:J::,tJ,T:#*,:',,#fl 

#il*.ffi;s.roobiain

IO.5 BEAIU ETEITIENTS
we now deverop the mass,1a5jx.for a beam erement in flexural vibration. First,the consistent mass matrixir outuin"g us"t 

"":orq"ch anarogous to that for rheiffi fffi :lX$"rfl?:,1'secti on.. Fis u ;; i;., depi cts a d i rreren tia] e remenr orn,,n.,ii,uiion;ffi"J.ff.:'..n:T'*""" jlili:l?1j;lt*iru1;r;::fi;;



408 CHAPTER lO Structural DYnamics

Substituting

q(x, t)

'L 
1q

dx

Figure { O.9 Differential element of a beam

subjected to time-dependent loading'

0x2

#.
oartial derivatives, we apply Newton's second law of motion to the differential

Ll"*"nt in the y direction to obtain

av . azv

I", :ma!+ v + ffa, -v - q@'t)dx =(PAdi# (10'66)

wherepisthematerialdensityandAisthecross-sectionalareaoftheelement.
The quantity p a ,"p.",""i* 

'nu'* 
p"' unlt length in the x direction' Equation 10'66

simplifies to

Y - o1*.t = pe\ (10.67)

3x dt'

Aswearedealingwiththesmalldeflectiontheoryofbeamflexure'beamslopes'
therefore rotations, are small. Therefore, we negiect the rotational inertia of the

differential beam element and apply the *o-"nt""quilibrium equation' The result

ir lJ"tii."r to that of Equation 5 '37 ' tepeated here as

aI! : _v
A- 

v

the moment-shear relation into Equation 10'67 gives

azM
- q(x,t): OO#

Finally, the flexure formula
E2v

M

is substituted into Equation 10.69 to obtain the governing equation

beam deflection as 
)

L( ,,=*) - q(x,r):rA#
Ex2\ .\xr/

under the assumptions of constant elastic modulus E and moment

the governing equation becomes

Ezv \av
oA) + EI-=: -q(x,t)'^^at2 ' &oxu

(10.68)

(10.6e)

(10.70)

for dynamic

(10.71)

of inertta l*

(10.72)



lO,5 Beam Elements

As in the case of the bar element, transverse beam deflection is discretized
using the same interpolation functions previously developed for the beam func_
tion. Now, however, the nodal displacements are assumed to be time dependent.
Hence,

v(x, t) : N{x)v1e) + Nz(x)0r( t) -l N{x)vz1) * Nq(x)}zl) 00.73)
and the interpolation functions are as given in Equation 4.26 or 4.29.Application
of Galerkin's method to Equation 10.72 for a finite element of length r results in
the residual equations

i - I,4 ( 10.7 4)

As the last two terms of the integrand are the same as treated in Equation 5.42,
development of the stiffness matrix and nodal force vector are not repeated here.
Instead, we focus on the first term of the integrand, which repres"nt, ih" terms of
the mass matrix.

For each of the four equations represented by Equat ion lo.i 4,the first integral
term becomes

(10.7s)
and, when all four equations are expressed in matrix form, the inertia terms
0ecome

409

))

0)

tlc

r1)

f/02vEav\
J r/i(x,(.o A 

at, + Er,# * n)- o

L L lLlf..ptl N,1N,;1 *N201 *Nji2+N+oztdx:pAI*,rrr*l;j | ,:r,oo b ltul

,^ 
[LNr.'tr 

dx 

I, I
ensional beam element is given bymass matrix for a two-dim

,r,- (e)l ^ I
Lm',"', l

0

[ 156 22L s4 -r3L]
- 

p AL I zzr 4L2 BL _3L2 
|

420 | s+ r3L 1s6 _22L 
I

L - nL -3L2 -22L 1L2 |

The consistent

(r0.7 6)

QA.7t)t1/ltlltrl dx

Substitution for the interpolation functions and performing the required integra-
tions gives the mass mal.rix as

1,,

72)

l^"'l (10.78)

atea in this
and it is to be noted that we have assumed constant cross-sectional
development.
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Combiningthemassmatrixwithpreviouslyobtainedresultsforthestiffness
matrix and fbrce vector, the finite element equations of motion for a beam ele.

ment are

(10.7e)

andallquantitiesareaspreviouslydefined..Inthedynamiccase,thenodalshear
forces and bending -orn"ntt may be time dependent' as indicated'

Assemblyproceduresforthebeamelementincludingthemassmatrixare
identical to those for the static equilibrium case. The global mass.matrix is directly

assembled, using the individuai element mass matrices in conjunction with the

"i"-""tt"-gtoUit 
aisptacementrelations. While systemassembly is procedurally

straightfoniard, the process is tedious when carried outby hand. Consequently, a

"olnil"* "*umple 
is not attempted. Instead, a relatively simple example of natural

frequency determination is examined'

Using a single finite element, determine the natural circular frequencies of vibration of a

cantilevered beam of length L, assuming constant values of p 
' 
E' and A'

I Solution
ThebeamisdepictedinFigurel0'l0,withnodelatthefixedsupportsuchthatthebound-
ary (constraintj conditions-are Vr : 0r : 0. For free vibration, applied force and bending

momentatthefreeend(node2)areVz:Mz:0andthereisnoapplieddistributedload.
under these conditions, the first two equations represented by Equation 10.79 are con-

straint equations and not of interest. using the constraint conditions and the known applied

forces, the last two equations are

: 
{s}

: tsl

pALl rs6 --zzL1l: l * lLl 12

^n 
l-zzr 4L2 I I e, | - Lt l--or ;irl{;

For computational convenience, the equations are rewritten as

l:::, -r,:){

-1 x

-L

Figure 1O'1O The cantilevered beam of

Example 10.5 modeled as one element'
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lO.5 Beam Elements

with m : p AZ representing the total mass of the beam. Assuming a sinusoidal displace-
ment response, the frequency equation becomes

I rzl - rsoo2 -6\L + 22a2rl _ n
| -oxr t 22a2L 4L2()\ - a\ | - "

with L : 420 E I,/mL3 . After expanding the determinant and performing considerable
algebraic manipulation, the frequency equation becomes

5o4-lo2lo2+3\2:o
Solving as a quadratic in t'r2, the roots are

a? : 0.02945|, .3 : 20.37tt

Substituting for \ in terms of the beam physical parameters, we obtain

411

(l)1 - 3.517

as the finite element approximations to the first two natural circular frequencies. For com-
parison. the exact solution gives

,?^u" - 3.516 ,;*u" - 22.03 radlsec

The fundamental frequency computed via a single element is essentially the same as the
exact solution, whereas the second computed frequency is considerably larger than the cor-
responding exact value. As noted previously, a continuous system exhibits an infinite
number of natural modes; we obtained only two modes in this example. If the number of
elements is increased, the number of frequencies (natural modes) that can be computed
increases as the number of degrees of freedom increases. In concert, the accuracy of the
computed frequencies improves.

If the current example is refined by using two elements having length L/2 and the
solution procedure repeated, we can compute four natural frequencies, the lowest two
eiven bv

I trL l-nr"
<,l1 - 3.516 r1 *f 0)2 :24.511 *r,

and we observe that the second natural circular frequency has improved (in terms of the
exact solution) significantly. The third and fourth frequencies from this solution are found
to be quite high in relation to the known exact values.

0r2 : g2.soffiradlsecEI,
*Lt

As indicated by the foregoing example, the number of natural frequencies
and mode shapes that can be computed depend directly on the number of degrees
of freedom of the finite element model. Also, as would be expected for conver-
gence, as the number of degrees of freedom increases, the computed frequencies
become closer to the exact values. As a general rule, the lower values (numeri-
cally) converge more rapidly to exact solution values. While this is discussed
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in more detail in conjunction with specific examples to follow, a general rule of
thumb for frequency analysis is as follows: If the finite element analyst is inter-
ested in the first P modes of vibration of a structure, at least 2P modes should
be calculated. Note that this implies the capability of calculating a subset of
frequencies rather than all frequencies of a model. Indeed, this is possible and

extremely important, since a practical flnite element model may have thousands

of degrees of freedom, hence thousands of natural frequencies. The computa-
tional burden of calculating all the frequencies is overwhelming and unnecessary,

as is discussed further in the followins section.

I 0.6 MASS MATRIX FOR A GENERAL ELEMENT:
EQUATIONS OF MOTION

The previous examples dealt with relatively simple systems composed of linear

springs and the bar and beam elements. In these cases, direct application of
Newton's second law and Galerkin's finite element method led directly to the for-
mulation of the matrix equations of motion; hence, the elementmass matrices. For

more general structural elements, an energy-based approach is preferred, as for
static analyses. The approach to be taken here is based on Lagrangian mechanics

and uses an energy method based loosely on Lagrange's equations of motionl4l.
Prior to examining a general case, we consider the simple harmonic oscilla-

tor of Figure 10.1. At an arbitrary position .r with the system assumed to be in

motion, kinetic energy of the mass is

T- !**'
2

and the total potential energy is

1r-1,- 
tnf \, * D2 - ms(\, i x)

therefore, the total mechanical energy is

E*

(10.80)

( 10.81)

( 10.82)

(10.83)

( 10.84)

As the simple harmonic oscillator model contains no mechanism for energy

removal, the principle of conservation of mechanical energy applies; hence,

dE* , .A

-, - 0 - m*I +k(E', t x)i - mg*
dt

mi + fr(il, * x) - m8

and the result is exactly the same as obtained via Newton's second law in Equa-

tion 10.2.


