Structural Dynamics

10.1 INTRODUCTION

In addition to static analyses, the finite element method is a powerful tool for
analyzing the dynamic response of structures. As illustrated in Chapter 7, the
finite element method in combination with the finite difference method can be
used to examine the transient response of heat transfer situations. A similar
approach can be used to analyze the transient dynamic response of mechanical
structures. However, in the analysis of structures, an additional tool is available.
The tool, known as modal analysis, has its basis in the fact that every mechani-
cal structure exhibits natural modes of vibration (dynamic response) and these
modes can be readily computed given the elastic and inertia characteristics of the
structure.

In this chapter, we introduce the concept of natural modes of vibration via the
simple harmonic oscillator system. Using the finite element concepts developed
iearlier chapters, the simple harmonic oscillator is represented as a finite element
system and the basic ideas of natural frequency and natural mode are introduced.
The single degree of freedom simple harmonic oscillator is then extended to mul-
liple degrees of freedom, to illustrate the existence of multiple natural frequencies

and vibration modes. From this basis, we proceed to more general dynamic analy-
ses using the finite element method.

10.2 THE SIMPLE HARMONIC OSCILLATOR

The so-called simple harmonic oscillator is a combination of a linear elastic
ypring having free length L and a concentrated mass as shown in Figure 10.1a.
The mass of the spring is considered negligible. The system is assumed to be
wbjected to gravity in the vertical direction, and the upper end of the spring is
itiached to a rigid support. With the system in equilibrium as in Figure 10.1b, the
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Figure 10.1
(a) Simple harmonic oscillator. (b) Static equilibrium

position. (C) Free-body diagram for arbitrary
position X.

ce is in equilibrium with the spring force sO

S Fe=0=mg— kds; (10.1)

and x is measured positive
nx = 0, the system is atifs

gravitational for

m elongation of the spring

where 3y, is the equilibriu
brium position; that is, whe

downward from the equili

equilibrium position.
If, by some action, the mass is displaced from its equilibrium position.

the force system becomes unbalanced, as shown by the free-body diagram of
Figure 10.1c. We must apply Newton’s second law to obtain

d*x
Z F,=ma,=m—_——5 = mg — k(3 + X) (102)
dr?

Incorporating the equilibrium condition expressed by Equation 10.1, Equation 102

becomes

d*x k=0
me==z X =
dr?
order, linear, ordinary differential equation with con-
ume that the coefficients m and ke

(103)

Equation 10.3 is a second-
stant coefficients. (And physically, we ass
positive.) Equation 10.3 is most-often expressed in the form

d’x k d*x 5
—x:—d—ﬁ—ku)xzo (10-“

di2  m

The general solution for Equation 10.4 is
x(t) =A sin ot + B cos wf

where A and B are the constants of integration. Recall that the solution of8
second-order differential equation requires the specification of two constans
determine the solution to a specific problem. When the differential equation®
scribes the time response of a mechanical system, the constants of integration®

most-often called the initial conditions.

(103
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[ k
o =,/ — rad/sec (10.7)
m

and is a constant value determined by the physical char
In this simple case, the natural circular frequency,
on the spring constant and mass only. Therefore, if t

acteristics of the system,
as it is often called, depends
he mass is displaced from the

described, the oscillatory motion is
is free of all external forces excepti

Next, we consider the simple
ext. From Chapter 2, the stiffness

ng gravitational attraction,
harmonic oscillator in the fini
matrix of the spring is

. I -
[k”]=k[_1 1] (10.8)

and the equilibrium equations for the element are

te element con-

: : I
st examine the nodal forces in detail. MT
Figure 10.2 shows free-body diagrams of the spring element and mass,
iespectively. The free-body diagrams depict snapshots in time when the system

, ce, are dynamic free-body diagrams. As the mass of the

.9 is valid for the spring element. For T 2
U S mg

2 (a) (b)
d U
Z Fr=ma, = m—22 _

Figure 10.2 Free-
body diagrams of (@a
om which the force on node 2 is

spring and (b) a mass,
when treated as parts
d?u .
Hr=mg — m-12 (10.11) of afinite element
dr? ’

system.
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Substituting for f, in Equation 10.9 gives

1 =1 ) _ f
k[—l 1 ] {uz} o [mg —lmiiz} (10:12)

where ii, = d?u,/dt?. The dynamic effect of the inertia of the attached mass is
shown in the second of the two equations represented by Equation 10.12. Equa-
tion 10.12 can also be expressed as

0 0 1;1'1 1 —1 5] _ fl
L Il | A Y A
where we have introduced the mass matrix

[m] = [8 ,?1] (10.14)

and the nodal acceleration matrix

(10.15)

For the simple harmonic oscillator of Figure 10.1, we have the constraint (bound-
ary) condition u; = 0, so the first of Equation 10.13 becomes simply —ku, = fi,
while the second equation is

miio + kuy = mg (10.16)

Note that Equation 10.16 is not the same as Equation 10.3. Do the two equations
represent the same physical phenomenon? To show that the answer is yes, we
solve Equation 10.16 and compare the results with the solution given in Equa-
tion 10.6.

Recalling that the solution of any differential equation is the sum of a homo-
geneous (complementary) solution and a particular solution, both solutions must
be obtained for Equation 10.16, since the equation is not homogeneous (i.c., the
right-hand side is nonzero). Setting the right-hand side to zero, the form of the
homogeneous equation is the same as that of Equation 10.3, so by analogy,
the homogeneous solution is

uyp(t) = Csin(wt + ) (10.17)

where w, C, and ¢ are as previously defined. The particular solution must satisfy
Equation 10.16 exactly for all values of time. As the right-hand side is constant,
the particular solution must also be constant; hence,

uap(t) = i”k_g — 3, (10.18)

which represents the static equilibrium solution per Equation 10.1. T he complete
solution is then

un(t) = ugn(t) + uzp(t) = + C sin(or + ¢) (10.19)
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)?quauon 10.19 represents a sinusoidal oscillation around the eqguilibrium posi-
Qi 2 7%, therefore, the on grven in Egquation 10.6. Given the

e o Tt e e e LS G e

' Ji = —kuy(t) = —k(8y, + C sin(wt + b)) (10.20)

Amplitude C and phase angle ¢ are determined by application of the initial con-
ditions, as illustrated in the following example.

Bl EXAMPLE 10.1 |

Asimple harmonic oscillator has k = 25 1b/in. and mg = 20 Ib. The mass is displaced
downward a distance of 1.5 in. from the equilibrium position. The mass is released from
that position with zero initial velocity at 7 = 0. Determine (a) the natural circular fre-
quency, (b) the amplitude of the oscillatory motion, and (c) the phase angle of the oscil-

latory motion.

B Solution
The natural circular frequency is

= E = L = 21.98 rad/sec
Vom 20/386.4

where, for consistency of units, the mass is obtained from the weight using g = 386.4 in./s>.
The given initial conditions are

ur(t =0) =9, + 1.5in. i, (t = 0) = 0in./sec

and the static deflection is 8, = W/k = 20/25 = 0.8 in. Therefore, we have u,(0) =
23in. The motion of node 2 (hence, the mass) is then given by Equation 10.19 as

uy(t) = 0.8 + Csin(21.98¢ + ¢) in.

and the velocity is
. du, .
iy(t) = rr = 21.98C cos(21.98¢ + &) in./sec

Applying the initial conditions results in the equations

u(t =0)=23=0.8+ Csind
ur(t) =0 =21.98C cos ¢
The initial velocity equation is satisfied by C = 0 or ¢ = /2. If the former is true, the

mitial displacement equation cannot be satisfied, so we conclude that ¢ = /2. Substi-

wting into the displacement equation then gives the amplitude C as 1.5 in. The complete
motion solution is

uy(t) = 0.8+ 1.5 sin<21.98t + %) = 0.8 4 1.5c0s(21.98¢) in.

S91
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a5 1.5 in. above and below the static equilibrium position

indicating that the mass oscillat
1.98 sec. Therefore, the cyclic

continuously in time and completes one cycle every 2m/2
frequency is
w
f=—=—F"°= 3.5 cycles/sec(Hz)
2 27
y referred to as the natural frequency. The time required

The cyclic frequency is often simpl
known as the period of oscillation, given by

to complete one cycle of motion is

1
— — = 0.286 sec
3.5

T =

~|=

Bpdiwrse - o T T o

Figure 10.3 Simple
harmonic oscillator
subjected to external
force FI(t).

10.2.1 Forced Vibration

Figure 10.3 shows a simple harmonic oscillator in which the mass is acted on by
a time-varying external force F(f). The resulting motion is known as forced
vibration, owing to the presence of the external forcing function. As the only dif-
ference in the applicable free-body diagrams is the external force acting on the
mass, the finite element form of the system equations can be written directly

from Equation 10.13 as

0 O i 1 ~1 u B f
[0 m]{ﬁ;}+k[—l 1“u;}—‘mg+‘F([)} (10.21)

While the constraint equation for the reaction force at node 1 is unchanged, the
differential equation for the motion of node 2 is now
miis + kuy = mg + F(1) (10.22)

The complete solution for Equation 10.22 is the sum of the homogeneous solu-
ons, since two nonzero terms are on the right-hand

tion and two particular soluti
lu-

side. As we already obtained the homogeneous solution and the particular so
tion for the mg term, we focus on the particular solution for the external force.

The particular solution of interest must satisfy

ml;t'2+ku2 = F(t) (1023]
exactly for all values of time. Dividing by the mass, we obtain
F(t
liy + 07Uy = -L)— (10.24)
m

where w? = k/m is the square of the natural circular frequency. Of particular
dynamic analysis is the case when external forcing func-

importance in structural
variation in time, since such forces are quite common.

tions exhibit sinusoidal
Therefore, we consider the case in which

F(t) = Fy sin Wyt (1025)
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where Fj is the amplitude or maximum value of the force and oy is the circular
frequency of the forcing function, or forcing frequency for short. Equation 10.24
becomes

F
iiy + 0’y = — sin w1 (10.26)
m

To satisfy Equation 10.24 exactly for all values of time, the terms on the left must
contain a sine function identical to the sine term on the right-hand side. Since the
second derivative of the sine function is another sine function, we assume a
solution in the form u,(t) = U sin os¢, where U is a constant to be determined.
Differentiating twice and substituting, Equation 10.26 becomes

F
—Uw} sin st + U sin ot = =2 sin oyt (10.27)
m
from which
F
= 2o (10.28)
w? — oy

The particular solution representing response of the simple harmonic oscillator
to a sinusoidally varying force is then
Fo/m .
uy(t) = 3 Sin w ¢t (1029)
w” — (,Of

' The motion represented by Equation 10.29 is most often simply called the forced
response and exhibits two important characteristics: (1) the frequency of the
forced response is the same as the frequency of the forcing function, and (2) if
the circular frequency of the forcing function is very near the natural circular
frequency of the system, the denominator in Equation 10.29 becomes very small.
The latter is an extremely important observation, as the result is large amplitude
of motion. In the case w; = w, Equation 10.29 indicates an infinite amplitude.
This condition is known as resonance, and for this reason, the natural circular
frequency of the system is often called the resonant frequency. Mathematically,
Equation 10.29 is not a valid solution for the resonant condition (Problem 10.5);
however, the correct solution for the resonant condition nevertheless exhibits
unbounded amplitude growth with time.

The simple harmonic oscillator just modeled contains no device for energy
dissipation (damping). Consequently, the free vibration solution, Equation 10.20,
represents motion that continues without end. Physically, such motion is not pos-
sible, since all systems contain some type of dissipation mechanism, such as
internal or external friction, air resistance, or devices specifically designed for the
purpose. Similarly, the infinite amplitude indicated for the resonant condition
cannot be attained by a real system because of the presence of damping. However,
relatively large, yet bounded, amplitudes occur at or near the resonant frequency.
Hence, the resonant condition is to be avoided if at all possible. As is subsequently
shown, physical systems actually exhibit multiple natural frequencies, so multi-
ple resonant conditions exist.
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10.3 MULTIPLE DEGREES-OF-FREEDOM
SYSTEMS

Figure 10.4 shows a system of two spring elements having concentrated masses

attached at nodes 2 and 3 in the global coordinate system. As in previous exam-

ples, the system is subjected to gravity and the upper spring is attached to a rigid

de 1. Of interest here is the dynamic response of the system of two
springs and two masses when the equilibrium condition is disturbed by some
external influence and then free to oscillate without external force. We could take
the Newtonian mechanics approach by drawing the appropriate free-body dia-
grams and applying Newton’s second law of motion to obtain the governing
equations. Instead, we take the finite element approach. By now, the procedure of
assembling the system stiffness matrix should be routine. Following the proce-

dure, we obtain

support at no

) 3k -3k O

Figure 10.4 At [K]=| -3k 5k —2k (10.30)
spring-mass system -

exhibiting 2 degrees 0 2k 2%

of freedom. as the system stiffness matrix. But what of the mass/inertia matrix? As the masses

are concentrated at element nodes, we define the system mass matrix as

0 0 O
M]=|0 m 0 (10.31) |
0O 0 m

The equations of motion can be expressed as

l:].l U, Ry
(M1 U, ¢ +1K]y U2 g =8 (10.32)
Us Us; mg

orce at node 1.

where R is the dynamic reaction f
= 0, Equation 10.32 become

Invoking the constraint condition U1
m 0 U, 5k —2k Uy | _ | m8

AL EE AR

wo second-order, linear, ordinary differential equations in

As the gravitational forces
quilibrium condition, these

which is a system of t
the two unknown system displacements U, and Us.
indicated by the forcing function represent the static e
are neglected and the system of equations rewritten as

m 0 Uz 5k 2k U\ _ 0 ;
{0 m“Ug}th—Zk 2k J{Uz}‘{o} (10.34)
most finite element software packages do not include

As a practical mattef,
d, inclusion of the structural |

the structural weight in an analysis problem. Instea
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seek solutions in the form of harmonic motion as

Us(t) = A, s.in(wl + b) (10.35)
Us(t) = A, sin(wz + ¢)

A;

_uﬂ[’g }2”35} sin(wr + ) + [_Szkk ;ik]{Ai}sin(wH-d)) - {g}
(1036)
or

—_— 2 —
[5/{_2;:(0 Y ‘2}7/;0)2“2*5} sin(wr 4 ¢) = {8} (10.37)

Equation 10.37 is a system of two, homo
must be solved for the vibration amplitudes

d only
if the determinant of the coefficient matrix is zero Therefore, for nontrivial
solutions,
[Sk—ma?  _y ,‘
|k 2%k —me2| =0 (10.38)
which gives
(5k — mw?)(2k — mw?) — 442 — ¢ (10.39)

Equation 10.39 i known as
the physical System. As k an
eated as a quadratic equat
brmula to obtajn wo roots

the characteristic equation or frequency equation of
d m are known positive constants, Equation 10.39 i
ion in the unknown ®? and solved by the quadratic

(10.40)
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or

k

w; = —

m
(10.41)

| k
Wy = 6-
m

In mathematical rigor, there are four roots, since the negative values correspond-
ing to Equation 10.41 also satisfy the frequency equation. The negative values
are rejected because a negative frequency has no physical meaning and use of the
negative values in the assumed solution (Equation 10.35) introduces only a phase
shift and represents the same motion as that corresponding to the positive root

The 2 degrees-of-freedom system of Figure 10.4 is found to have two naturdl
circular frequencies of oscillation. As is customary, the numerically smaller of
the two is designated as o, and known as the fundamental frequency. The task
remains to determine the amplitudes Aa and As in the assumed solution. For this

purpose, Equation 10.37 is

2
\:Sk —me? -2 ” Az} N {0} (1041
—2k 2k — mw* Aj 0
As Equation 10.42 is a set of homogeneous equations, we can find no absolute
values of the amplitudes. We can, however, obtain information regarding te
numerical relations among the amplitudes as follows. If we substitute o’ = 0; =
k/m into either algebraic equation, we obtain A3 = 2A,, which defines the
amplitude ratio A3/ Ay = 3 for the first, or fundamental, mode of vibration. That
is, if the system oscillates at its fundamental frequency wi, the amplitude of
oscillation of my is twice that of m;. (Note that we are unable to calculate the
absolute value of either amplitude; only the ratio can be determined. The absolute
values depend on the initial conditions of motion, as is subsequently illustrated)
The displacement equations for the fundamental mode are then

Us(t) = A sin(o17 + &) .-
Us(t) = ADsin(e; + dp) = 247 sin(w1f + én) '

where the superscript on the amplitudes is used to indicate that the displacemens
correspond to vibration at the fundamental frequency.

Next we substitute the second natural circular frequency o’ = w5 = O/
into either equation and obtain the relation A; = —0.5A,, which defines the se¢
ond amplitude ratio as As3/A, = —0.5. So, in the second natural mode of vibré
tion, the masses move in opposite directions. The displacements correspondif

to the second frequency are then

Uy(t) = ADsin(waf + d2) 0
Us(t) = A(i)sin(wz +dn) = -O.SA(g)sin(wgr + ) .

where again the superscript refers to the frequency.
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Therefore, the free-vibration response of the 2 degree-of-freedom system is
given by

Us(t) = AD
Us(r) =

and we note the four unknown constants in the solution; speciﬁcally, these are the
amplitudes Ag), A¢

2) and the phase angles ¢, and $2. Evaluation of the constants
is illustrated in g subsequent example.

the reader’s mathemati
2 degree-of-freedom vibration problem m
problem [1]. The computed natural circylg
the problem and the amplitude ratios represent the eigenvectors of the problem.
Equation 10.45 represents the response o

f the system in terms of the natura]
modes of vibration, Such a solution is ofi

ten referred to ag being obtained by
modal superposition or simply

modal analysis. To represent the complete solu-
tion for the system, we use the matrix notation

(D ©
Uy | A | AY '
{U_;(t)} = {2A<2” } Sin(w;t + ¢;) + {—O.SA(? } Sin(wyt + ¢b,) (10.46)

which shows that the modes interact to produce the o

sin(wi 4 ¢1) + ADsin(g,r + )

245)sin(wit + ) — 0.542

. (10.45)
2'8In(w; + ¢by)

cal background, the analysis of the
ay be recognized as an eigenvalye
I frequencies are the eigenvalues of

verall motion of the system.

Given the system of Figure 10.4 with  — 40 Ib/in. and mg =
®

The natural frequencies of the system.
(b) The free Tesponse, if the initja] conditions are

U(t=0) = 1 in.

Solution

ter Equation 10.41, the natural circular frequencies are

\/? 40 \/40(386.4)
(UI = — —_— =

TV T 55— =27.8rad/sec
m 20/¢g 20
o -
6k 6(40) 6(40)(386.4)
Wy Siyfmmm fon 72 T —— =68.1 rad/sec
m 20/g 20

I free-vibration fesponse is given by Equation 10.35 a5
Valt) = AGsin(27.81 + ¢,) + ATSin(68.11 4 ¢y,

Us(t) = 24%)sin(27.8¢ + ¢,) — 0.547sin(68.17 + ¢,)
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The amplitudes and phase angles are determined by applying the initial conditions, which
are

Up(0) = 1 = ADsin &) + A sin b

U5(0) = 0.5 =2A)sin &) — 0.5Asin ¢

0,(0) = 0 = 27.84% cos & + 68.14%5 cos b2

U3(0) = 0 = 2(27.8)A"; cos &1 — 0.5(68.1)A' cos b,
n the four un-

The initial conditions produce a system of four algebraic equations i

knowns A(;’, A(?, &1, &,. Solution of the equations is not trivial, owing to the presence
of the trigonometric functions. Letting P = AY sin ¢ and @ = A sin ., the displace-

ment initial condition equations become

2P —-0.50 =05

which are readily solved to obtain
p=AUsing =04 and Q=AYsind, =06

Similarly, setting R = A(;’cos ¢y and S = A%)sin ¢, the initial velocity equations are

27.8R + 68.15 =0
2(27.8)R — 0.5(68.1)S = 0

tem in the variables R and S. Nontrivial solutions exist

representing a homogeneous sys
only if the determinant of the coefficient matrix is zero. In this case, the determinantis not
e no nontrivial solutions:

zero, as may easily be verified by direct computation. There ar
S = 0. Based on physical argument, the amplitudes cannot be zero, s We

hence, R =
must conclude that cos ¢; = cos ¢ = 0= ¢ =y =m/2.1t follows that the sine func-

tion of the phase angles have unity value; hence, A”z’ = 0.4 and Alg) = (.6. Substituting
the amplitudes into the general solution form while noting that sin(wt + m/2) = cosol;
the free-vibration response of each mass is

U,(t) = 0.4 cos 27.81 + 0.6 cos 68.1¢

Us(t) = 0.8 cos 27.8t — 0.3 cos 68.1¢

The displacement response of each mass is seen to be a combination of motions core:
sponding to the natural circular frequencies of the system. Such a phenomenon is chari
teristic of vibrating structural systems. All the natural modes of vibration participate in

the general motion of a structure.

10.3.1 Many-Degrees-of—Freedom Systems

As illustrated by the system of two springs and masses, there are two naturd
frequencies and two natural modes of vibration. If we extend the analysis 0
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10.3 Multiple Degrees-of-Freedom Systems

a system of springs and masses having N degrees of freedom, as depicted in
Figure 10.5, and apply the assembly procedure for a finite element analysis, the
finite element €quations are of the form

[MU{U} + [K){U} = {0} (10.47)

where [M] is the System mass matrix and [K] is the system stiffness matrix. To
determine the natural frequencies and mode shapes of the system’s vibration
modes, we assume, as in the 1 and 2 degrees-of-freedom cases, that

Ui(t) = A; sin(wt + b) (10.48)

Substitution of the assumed solution into the system equations leads to the fre-
quency equation

I[K]— o’[M]| =0 (10.49)

dinate axes. Therefore, if improperly constrained, a structural system exhibits
repeated zero roots of the frequency equation,

Assuming that constraints are properly applied, the frequencies resulting
from the solution of Equation 10.49 are substituted, one at a time, into Equa-
tion 10.47 and the amplitude ratios (eigenvectors) computed for each natural
mode of vibration. The general solution for each degree of freedom is then
expressed as

N

Uiey =) ADsin(w;r + d)  i=1N (10.50)

j=1

illustrating that the displacement of each mass is the sum of contributions from
¢ach of the N natural modes, Displacement solutions expressed by Equa-

' tion 10.50 are said to be obtained by modal Superposition. We add the indepen-
- dent solutions of the linear differential equations of motion.

Determine the natural frequencies and modal amplitude vectors for the 3 degrees-of-

freedom system depicted in Figure 10.6a.

399

Figure 10.5 A
spring-mass system
exhibiting arbitrarily
many degrees of
freedom.
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IU]ZO

400

D

,

i . Figure 10.6 System with
4 3 degrees of freedom for

Example 10.3.

m Solution
The finite element model is shown in Figure 10.6
indicated. Assembly of the global stiffness matrix results in

b, with node and element numbers

kK —k 0 0

—k 3k -2k O
[K1=

0o -2k 3k —k

0 0 -k Kk

Similarly, the assembled global mass matrix is

o 0 0 O
(M] = om 0 O
o 0 m O
0 0 0 2m

Owing to the constraint Uy = 0., we need consider only the last three equations of motion,

given by

m o o07(0 3%k -2k 0 (U 0
o m 0 dinbt+|-2% 3k kU= 0
o 0 2ml|i, o -k kU 0

Assuming sinusoidal response as U; = A sin(ot + &), 1 = 2. 4 and substituting into the

equations of motion leads to the frequency equation

3k — w’m —2k 0
—2k 3k — w’m —k =0
0 —k k —2w’m
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Expanding the determinant and simplifying gives

k k\? k\°?
w6—6.5—m4+7.5<—) w2—<—) =0
m m m

which will be treated as a cubic e

quation in the unknown 2. Setting w? = C(k/m), the
frequency equation becomes

k 3
(C*—6.5C?+75C — 1)(—) =0
m

which has the roots

C; =0.1532 C, =1.2912 C3; = 5.0556

The corresponding natural circular frequencies are

k

o

w; =0.3914

w3 = 2.2485

3= Sl&»!

To obtain the amplitude ratios, we substitute the natural circular frequencies into the
amplitude equations one at a time while setting (arbitrarily) A = 1, = 1,2, 3 and solve
for the amplitudes A(;) and A(i) . Using o, results in
(Bk — wim)AY — 2k4Y = ¢
~2kAY + (3k — wim) AP — kA =0
—kAY + (k - 202m)AY = o
Substituting w, = 0.3914/k/m, we obtain
2.8474%) — 240 = ¢
24 +2.8474D _ AY =0
A% 4069440 = ¢
As discussed, the amplitude equations are homogeneous; explicit solutions cannot be

obained. We can, however, determine the amplitude ratios by setting A(;) = 1 to obtain

AY = 1.4235
A =2.0511

The amplitude vector corresponding to the fundamental mode o is then represented as

1
{AD} = a0 14325
2.0511
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vector corresponding to the eigenvalue oi. Proceeding identically

and this is the eigen
frequencies, @2 and w3, the resulting amplitude vectors

with the values for the other two
are
1
(A®) = A7} 08544
—0.5399

1
(AP} = AT —1.0279
0.1128

s e ae e ——y

s that an N degree—of-freedom system exhibits N natural
d by N natural circular frequencies and the correspond-
ing N amplitude vectors (mode shapes). While the examples deal with discrete
spring-mass systems, where the motions of the masses are easily visualized as
recognizable events, structural systems modeled via finite elements exhibit N
natural frequencies and N mode shapes, where N is the number of degrees of
freedom (displacements in structural systems)
model. Accuracy of the computed frequencies as well as
of vibration to examine response to external forces is

sections.

This example illustrate
modes of vibration define

represented by the finite element
use of the natural modes
delineated in following

10.4 BAR ELEMENTS: CONSISTENT
MASS MATRIX

In the preceding discussions of spring-mass systems, the mass (inertia) matrix
in each case is a lumped (diagonal) matrix, since each mass is directly attached
to an element node. In these simple cases, W€ neglect the mass of the spring
elements in comparison to the concentrated masses. In the general case of solid
structures, the mass is distributed geometrically throughout the structure and the
inertia properties of the structure depend directly on the mass distribution. To
illustrate the effects of distributed mass, we first consider 10ngitudina1 (axial)
vibration of the bar element of Chapter 2.

The bar element shown in Figure 10.7a1s the same as the bar element intro-
duced in Chapter 2 with the very important difference that displacements and ap-
plied forces are now assumed to be time dependent, as indicated. The free-body
diagram of a differential element of length dx is shown in Figure 10.7b, where
cross-sectional area A is assumed constant. Applying Newton’s second law t0 the

differential element gives

0 9%u
= A —cA=(pA dx)—a? (10.51)
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}'—" u(xp, 1) }—"" w1 [ dx |

(a) (b)
Figure 10.7

(@) Bar element exhibiting time-dependent displacement. () Free-body diagram of a
differential element.

where p is density of the bar material. Note the use of partial derivative operators,
since displacement is now considered to depend on both position and time. Sub-
stituting the stress-strain relation o = Ee = E (du/0x), Equation 10.51 becomes

9%u 92u
g arthy iy S 10.52
ax2 . a2 (10.52)

Equation 10.52 is the one-dimensional wave equation, the governing equation
for propagation of elastic displacement waves in the axial bar.
In the dynamic case, the axial displacement is discretized as

u(x, 1) = Ni(x)ui(t) + Na(x)uy(t) (10.53)

where the nodal displacements are now expressed explicitly as time dependent,
but the interpolation functions remain dependent only on the spatial variable.
Consequently, the interpolation functions are identical to those used previously
for equilibrium situations involving the bar element: Ni(x) =1-(x/L) and

N>(x) = x /L. Application of Galerkin’s method to Equation 10.52 in analogy to
Equation 5.29 yields the residual equations as

L
2u 9%u )
0
Assuming constant material properties, Equation 10.54 can be written as
L L
9%u 9%u ,
pA N,-(x)ﬁ dx = AE N,»(x)@dx i=1,2 (10.55)

0 0

Mathematical treatment of the right-hand side of Equation 10.55 is identical to
that presented in Chapter 5 and is not repeated here, other than to recall that the

fesult of the integration and combination of the two residual equations in matrix
form is

AE| 1 -1 u S B
T[—l ) “M;} = {f;} = [kl{u} = {f} (10.56)
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Substituting the discretized approximation for u(x, t), the integral on the left

becomes
L

82
pA/ N,-(x)—a—t% dx :pA/ Ni(Nyiiy + Napiipydx i =1,2
0

L

(10.57)

0
where the double-dot notation indicates differentiation with respect to time. The

two equations represented by Equation 10.57 are written in matrix form as

L
VIR A Y FA R
pA 2 2 2
0

and the reader is urged to confirm the result by performing the indicated integra-
tions. Also note that the mass matrix is symmetric but not singular. Equa-
tion 10.58 defines the consistent mass matrix for the bar element. The term con-
sistent is used because the interpolation functions used in formulating the mass
matrix are the same as (consistent with) those used to describe the spatial varia-
tion of displacement. Combining Equations 10.56 and 10.58 per Equation 10.55,
we obtain the dynamic finite element equations for a bar element as

pAL[2 1|]i AET 1 —1|[wm | _} S
”’[1 2“u;}+7[—1 1“1112}—{1”12} (1033

6

or
(i} + [k1{u) = (f} (10.60)

and we note that pAL = m is the total mass of the element. (Why is the sign of

the second term positive?)
Given the governing equ

cies of a bar element in axia

vibration, we set the nodal force vec

tion as

ations, let us now determine the natural frequen-
| vibration. Per the foregoing discussion of free
tor to zero and write the frequency equé-

|[k] — o’[m]| =0 (1061)

to obtain

|

|

|

|

l{ <k+ ,m) A om
_ 02— P il

‘1 6 3

. . . 3
a quadratic equation 1n @=

" ,m <k+ ,m>11
p— (D_'—— p— ' w___
3 6/ |
L= 0 (1062
|
|
|

Expanding Equation 10.62 results in

m 3 m 2
k—w:—)] —\k : ) =0 1063
( : 3) (+w 6) (
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or

k
w2<w2 - 12—) =0 (10.64)
m

Equation 10.64 has roots w? = 0 and »?> = 12k/m. The zero root arises because
we specify no constraint on the element; hence, rigid body motion is possible
and represented by the zero-valued natural circular frequency. The nonzero nat-
ural circular frequency corresponds to axial displacement waves in the bar,
which could occur, for example, if the free bar were subjected to an axial impulse
at one end. In such a case, rigid body motion would occur but axial vibra-
tion would simultaneously occur with circular frequency w; = +/ 12k/m =
(3.46/L)y/E/p . The following example illustrates determination of natural cir-
cular frequencies for a constrained bar.

EXAMPLE 10.4

Using two equal-length finite elements, determine the natural circular frequencies of the
solid circular shaft fixed at one end shown in Figure 10.8a.

H Solution

The elements and node numbers are shown in Figure 10.8b. The characteristic stiffness of
each element is

AE  2AE

LA L
so that the element stiffness matrices are
2AE | 1 —1
O] = [r@] =
k] = @] = 2250 1~
The mass of each element is

pAL
m=——

2

and the element consistent mass matrices are

)= )< 2L 1]

12 [1 2

L/2 L/2
(@) ®

[\SX )
we

Figure 10.8
(a) Circular shaft of Example 10.4. (b) Model using two bar elements.
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edure, the global stiffness matrix is

2AE 1 i,
Kl=—|-1 2 =1

L o -1 1

Following the direct assembly proc

and the global consistent mass matrix is

B 2 10
M] = =T 1 4 1
01 2
The global equations of motion are then
0 AL 2 10 l{l YAE 1 -1 0 U, 0
——1—2’ 1 4 1 U, + T -1 2 -1 U, ( = 0
o 1 2100, o -1 1]lus 0

Applying the constraint condition Uy = 0, we have

s g2 -

as the homogeneous equations governing free vibration. For convenience, the la

tion is rewritten as
HREES En iRt
1 2110 pL2—11U3‘0
Assuming sinusoidal responses

U, = A, sin(mt + (b) U} = A3 Sin((x)t + ¢)

differentiating twice and substituting results in

-&[4 1“A2}sin<mz+¢)+2—4£[2 -IMAZ}““(“”H’)—{O}
A —1 1 As — o

1 2 3 pL2

omogeneous algebraic equat
zero. Letting X\ = 24E/p 1%,

f the coefficient matrix 1is
e determinant

Again, we obtain a set of h
only if the determinant O
frequency equation is given by th
IN—do? A=’ |
A—0? N-— 202 |
which, when expanded and simplified, is
7o' — 10Ne® + N =0

the frequency equation as a quadratic in w?, the roots are obtained as

w? = 0.1082\ w? = 1.3204\

Treating

Substituting for N, the natural circular frequencies are

1611 [E 5.629 |E
— - | — rad/sec

W = —

wy =
L P ) L P

st equa-

ions that have nontrivial solutions

the
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For comparison purposes, we note that the exact solution [2] for the natural circular
frequencies of a bar in axial vibration yields the fundamenta] natural circular frequency
as 1.571/L\/m and the second frequency as 4.712/L\/m. Therefore, the error for the
first computed frequency is about 2.5 percent, while the error in the second frequency is
about 19 percent.

It is also informative to note (see Problem 10.12) that, if the lumped mass matrix
approach is used for thig example, we obtain

motion of continuous Systems are discretized into a finite number of algebraic
equations for approximate solutions. Hence, the number of frequencies obtain-

-qua- able via a finite element approach is limited by the discretization inherent to the
finite element mode].

The inertia characteristics of bar element can also be represented by a
lumped mass matrix, similar to the approach used in the Spring-mass examples
earlier in this chapter. In the lumped matrix approach, half the tota] mass of the
element is assumed to be concentrated at each node and the connecting materia]

PAL[1 o
[m] = 7[0 IJ (10.65)
Use of lumped mass matrices offers computational advantages. Since the ele-
tions ment mass matrix is diagonal, assembled global mass matrices also are diagonal,
, the On the other hand, although more Computationally difficult in use, consistent

exists for lumped matrices. Nevertheless, lumped
Mmass matrices are often used, particularly with bar and beam elements, to obtain
reasonably accurate predictions of dynamic response.

10.5 BEAM ELEMENTS
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q(x, 1)
oM

L

\ dx V+ﬂ
ax

Figure 10.9 Differential element of a beam
subjected to time-dependent loading.

element in the y direction to obtain

simplifies to

vV .0 Aazv
W ) =pAr
ox ! LSRPY?

therefore rotations, are small. Therefore, we neg

is identical to that of Equation 5.37, repeated here as
oM
ax

-V

ZM (x. 1) A82v
—g(x, 1) = e
dx2 i P o

Finally, the flexure formula

9%y
M = EI,
9x2

beam deflection as
82

(EI 82V> A Ly
R —— ) —GUxI=
a2\ Py ) T 1 P

the governing equation becomes
4

2%v
PA‘T + Elzg}z = —q(x,1)

partial derivatives, we apply Newton’s second law of motion to the differential

A%
ZFy_——may:>V+adx—V—q(x,t)dx:(pAdx) ;

where p is the material density and A is the cross-sectional area of the element.
The quantity p A represents mass per unit length in the x direction. Equation 10.66

As we are dealing with the small deflection theory of beam flexure, beam slopes,
lect the rotational inertia of the

differential beam element and apply the moment equilibrium equation. The result

Substituting the moment-shear relation into Equation 10.67 gives

is substituted into Equation 10.69 to obtain the governing equation for dynamic

Under the assumptions of constant elastic modulus E and moment of inertia I,
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10.5 Beam Elements

As in the case of the bar element, transverse beam deflection is discretized
using the same interpolation functions previously developed for the beam func-

tion. Now, however, the nodal displacements are assumed to be time dependent.
Hence,

v(x, 1) = Ni(x)vi(2) + Na(x)81(1) + N3(x)va(r) + Na(x)05(1) (10.73)

and the interpolation functions are as given in Equation 4.26 or 4.29. Application

of Galerkin’s method to Equation 10.72 for a finite element of length L results in
the residual equations

; 92y 9%y :
/Ni(x)(pAgt—Q+E135;+61>=0 i=1,4 (10.74)
0
As the last two terms of the integrand are the same as treated in Equation 5.42,
development of the stiffness matrix and nodal force vector are not repeated here.
Instead, we focus on the first term of the integrand, which represents the terms of
the mass matrix.

For each of the four equations represented by Equation 10.74, the first integral
term becomes

L L s

55 = 0
pA/N,-(N,i}I+N261+N3i}2+N492)dx=pA/N,«[N]dx ,‘}l i=1,4

2

0 0 &,

(10.75)

and, when all four equations are expressed in matrix form, the inertia terms
become

I3 1)1 V]
pA/[N]T[Nde ol LRI (10.76)

%] V2

0 6 6,

The consistent mass matrix for a two-dimensional beam element is given by

L
[m@] = pA/[N]T[N] dx (10.77)
0

Substitution for the interpolation functions and performing the required integra-
tions gives the mass matrix as

156  22L 54 —13L

[mw}zgﬂ 2L 4L 131 -3L?
420 | 54 13L 156 -22L

—13L -3L2 -22L 4L?

(10.78)

and it is to be noted that we have assumed constant cross-sectional area in this
development.

409
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Combining the mass matrix with previously obtained results for the stiffness
matrix and force vector, the finite element equations of motion for a beam ele-
ment are

vy Vi i —Vi(0)
O 6 —My(1) \
(e) (e) 1 s T 1
[m] ) + [£“] (= /[N] qx, ) dx+1 y o (10.79)
6, 0, 0 M (1)

and all quantities are as previously defined. In the dynamic case, the nodal shear
forces and bending moments may be time dependent, as indicated.

Assembly procedures for the beam element including the mass matrix are
identical to those for the static equilibrium case. The global mass matrix is directly
assembled, using the individual element mass matrices in conjunction with the
element-to-global displacement relations. While system assembly is procedurally
straightforward, the process is tedious when carried out by hand. Consequently, a
complex example is not attempted. Instead, a relatively simple example of natural
frequency determination is examined.

Using a single finite element, determine the natural circular frequencies of vibration of a
cantilevered beam of length L, assuming constant values of p, E, and A.

H Solution
The beam is depicted in Figure 10.10, with node 1 at the fixed support such that the bound-
ary (constraint) conditions are v, = 9, = 0. For free vibration, applied force and bending

moment at the free end (node 2) are Vo, = M, = 0 and there is no applied distributed load.
Under these conditions, the first two equations represented by Equation 10.79 are con-
straint equations and not of interest. Using the constraint conditions and the known applied
forces, the last two equations are

pAL[ 156 —22L || V2 L EL[ 12 —6L|fwn]| _ 0
w0 | —22r 42 |16 3 L-eL 42 Jle] 10
For computational convenience, the equations are rewritten as

156 —22L|[¥2] 420EL] 12 —6L7[wv] _ {0
—22L 4L? 6, L3 | —6L 4L* |16 ] O
E I

1
! ; o —
hrecsin. cpe oo o)

Figure 10.10 The cantilevered beam of
Example 10.5 modeled as one element.
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withm = p AL representing the total mass of the beam. Assuming a sinusoidal displace-
ment response, the frequency equation becomes

12\ — 156>  —6AL + 220°L | 0
—6AL +22w*L  4L2(\ —?) |

with N = 420E1,/mL>. After expanding the determinant and performing considerable
algebraic manipulation, the frequency equation becomes

S50 — 102 0” +3\* =0
Solving as a quadratic in w?, the roots are
o7 =0.02945\  ©} = 2037\

Substituting for N in terms of the beam physical parameters, we obtain

[ EI El
w, = 3.517,) — w, = 92.50 — rad/sec
mL3 mL3

as the finite element approximations to the first two natural circular frequencies. For com-
parison, the exact solution gives

El, - | EL
o =3.516 : w7 =22.03,/ — rad/sec
mL3 mL?

The fundamental frequency computed via a single element is essentially the same as the
exact solution, whereas the second computed frequency is considerably larger than the cor-
responding exact value. As noted previously, a continuous system exhibits an infinite
number of natural modes; we obtained only two modes in this example. If the number of
elements is increased, the number of frequencies (natural modes) that can be computed
increases as the number of degrees of freedom increases. In concert, the accuracy of the
computed frequencies improves.

If the current example is refined by using two elements having length L/2 and the
solution procedure repeated, we can compute four natural frequencies, the lowest two

given by
El, El,
W) = 3.516\/ - Wy = 24.5\/ :
mL?3 mL?

and we observe that the second natural circular frequency has improved (in terms of the
exact solution) significantly. The third and fourth frequencies from this solution are found
to be quite high in relation to the known exact values.

As indicated by the foregoing example, the number of natural frequencies
and mode shapes that can be computed depend directly on the number of degrees
of freedom of the finite element model. Also, as would be expected for conver-
gence, as the number of degrees of freedom increases, the computed frequencies
become closer to the exact values. As a general rule, the lower values (numeri-
cally) converge more rapidly to exact solution values. While this is discussed
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in more detail in conjunction with specific examples to follow, a general rule of
thumb for frequency analysis is as follows: If the finite element analyst is inter-
ested in the first P modes of vibration of a structure, at least 2P modes should
be calculated. Note that this implies the capability of calculating a subset of
frequencies rather than all frequencies of a model. Indeed, this is possible and
extremely important, since a practical finite element model may have thousands
of degrees of freedom, hence thousands of natural frequencies. The computa-
tional burden of calculating all the frequencies is overwhelming and unnecessary,
as is discussed further in the following section.

10.6 MASS MATRIX FOR A GENERAL ELEMENT:
EQUATIONS OF MOTION

The previous examples dealt with relatively simple systems composed of linear
springs and the bar and beam elements. In these cases, direct application of
Newton’s second law and Galerkin’s finite element method led directly to the for-
mulation of the matrix equations of motion; hence, the element mass matrices. For
more general structural elements, an energy-based approach is preferred, as for
static analyses. The approach to be taken here is based on Lagrangian mechanics
and uses an energy method based loosely on Lagrange’s equations of motion [4].

Prior to examining a general case, we consider the simple harmonic oscilla-
tor of Figure 10.1. At an arbitrary position x with the system assumed to be in
motion, kinetic energy of the mass is

1
T = mez (10.80)

and the total potential energy is
U, = %k(&., +x)* — mg(dy + x) (10.81)
therefore, the total mechanical energy is
Epm Tk U= %mxz + %k(a\,[ +x)°—mg®y+x)  (10.82)

As the simple harmonic oscillator model contains no mechanism for energy
removal, the principle of conservation of mechanical energy applies; hence,

dE/H
dt

=0=mx¥ +k(8; + x)x —mgx (10.83)

or
mx + k(8 + x) = mg (10.84)

and the result is exactly the same as obtained via Newton’s second law in Equa-
tion 10.2.

4




