
10.6 Mass Matrix for a General Element: Equations of Motion

Figure 1O.11 Differential elementof ageneral
three-dimensional body.

For the general case, we consider the three-dimensional body depicted in
Figure 10. ll and examine a differential mass dm: p dxdydz located at arbi-
trary position (r, ], z). Displacement of the differential mass in the coordinate
directions are (u, v, w) and the velocity components are (u, i, i,), respectively.
As we previously examined the potential energy, we now focus on kinetic energy
of the differential mass given by

ar : !{u2 + v2 + w2) dm : let + v2 + r.i,21p dx dy dz (10.g5)2' z',

Total kinetic energy of the body is then

r: 1 [ [[,u'+u2+ #tdn :: [ [[ (u2 -i2+,,i,zrpdrdydz (10.86]2JJJ 2J,],1
and the integration is performed over the entire mass (volume) of the body.

Considering the body to be a finite element with the displacement field
discretized as

M

u(.x,y.Z.tt: I t', x.1'.2)u;(.t): [N]{z}
i-l
M

f(x, ), z,t) - I ",(r, 
y,z)vi(.t): [N]{v} (10.87)

l:1
M

]r(x, ), z, t) : I t,(r, !, z)wi(.t): [N]{w}
r:l

(where M is the number of element nodes), the velocity components can be
expressed as

0u
t/(tI

0vi: - 
: tNl{i}

^-OT

3w

(10.88)

tNlt'.i'l
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The element kinetic energy expressecl in terms of nodal velocities and intetpola-

tion lunctions is then written as

r(,) - : f t t( t,ili l^/l/ t,rrllri} + {i'}7'tNlTtNl{i}' 2J\Jl
( r0.8e)

(10.90)

30)

l0)

Figure 1O'12 The rectanguLar eLemenl

of ExamPle 
.1 0.6.

Denoring rhe nodar "iJl"::l 

r 
;N11r'r'1;p d1''(')

It"il
{b}:{ti'}l

I r'irJ

a3Mxlcolumnmatrix,thekineticenergyisexpressedas

r,, : I 1{ [[[[t'vt't'vt r,r,rl]r,n, : l,,uu,u,L 'rr'l I o o lN]'[Nll

: jrar',)'"',,u, (lo er)

and the element t-nass matrix is thus identified as

l,ii" r: f f tltNr/rN' ,r,?,r' I lpdv'' roe2
LJ,]

Note that. * uo'",.""'.:,' ;' "'n '"f''' "".:ilil'i::"n',M 
x M 

'url
matrices. Therefbre' the mass matrix as derived is a 3M x 3M matrix' which is

alsoreadilyshowntobesymnetric.Also-rrotethatthernassmatrixofEqua.
tionl0.g2isacollsts/enlmassmatrix.Thetollowingexarnpleil]ustratesthe
computittions for a two-dimensional element'

Formulate the mass matr-rx for-the two-dimensional rectan-9ular element depicted in Fig

Lrre l0.l2.Theelementhasnnifofrlthickness5mmancldensityp 
:783 x l0 '-kg/mnt'
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I Solution
Per Equation 6.56, the interpolation functions in tenns of serendipity or natural coordi-

nates are

1

Nr(r, s) : -( I - r)( I

I
N:(r, ,i) : -( I f r)( I

.l

Nr(r, s) : ;(1 + r){t

I
Na(r,.r) : 

4(1 - 
r)(l +.s)

with r : (x _ 25)l15 and s : (-r'- 20)/10. For integration in the natural coordinates,

dx : l5 dr and dy : 10 ds. The mass matrix is 8 x 8 and the nonzero telms ale defined by

| | | r*r r*rp dvr"r : ,, j/ trut'tnttr5 dr)(10 ds)

- r5or5,, [ [ INti tNtdrdr' ,, r,

In this soiution, we compute a few terms for itlustration, then present the overall results.

For example,

ll 1l
rft50(5)fr

rrrr :150(5)p I I Ni dra': '-,,''p / | rl -rl2( l-trr.lrds
J J ,- lb t,r,
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.r)

s)

*.s)

l50r5t [tl r1't | - st']' 750 / 6'l \: 
16 pL .r r I : rJP\ q /

: 2.6(10) 3 ks

4(750): n ,7.8-10)(10) "

Similarly,

l1

rur: : 150(5) , I, !,N1N2 
dr o, :#o 

{, 1,,, - r2)(1 - s;2 dr ds

:#,[('-?) (+)(-,,] 
,

: tt?jt',t *3)(ro) 6 (;) : r 3(ro) 3ks
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If rve carry out all the integrations indicated to tbnrr the mass rnatrix. the final result fbr
the rectungular elerncnt is

[]n('')] :

2.6 r.3 O.j 1.3 0 0 0 0

1.3 2.6 t.3 0.1 0 0 0 0

0.1 1.3 2.6 1.3 0 0 0 0

1.3 0.7 1.3 2.(t 0 0 0 t)

0 0 0 0 2.6 1.3 0.1 i.3

0 0 0 0 1.3 2.6 1.3 0.1

0 0 0 0 0.1 1.3 2.6 1.3

0 0 0 0 1.3 0.7 1.3 2.6

(10) r kg

We observe that the element mass matrix is symmetric. as expected. Also note that stor-

ing the entire matrix as shown would be quite inefticient. since only the 4 r '1 sr.rbrnatrix

of nonzero terms is needed.

Having developed a general lbrmulation lbr the mass matrix of a trinite
element, we return to the determination of the equtrtions of motion of i-r strueturs
modeled via the linite element method and subjected to dynanic (that is, tirne-
dependent) loading. If we have in hand. as we do. the mass and stiffness rnatri-
ces of a finite element, we can assemble the global equations fbr a linite elenrent
model of a structure and obtain an expression fbr the total energy in the fbrnr

f,uf rrtw + f,r,tt'rxtrqt - {qt' tt'r: r
where {r7 } is the column rnatrix of displacements described in the global coordi-
nate system and all other terms are as previously defined. (At this point. we
reemphasize that Equation 10.93 models the response of an ideal elastic systen.
which contains no mechanism lbr energy dissipation.) For a system as described.
total mechanical energy is constant, so that dEldt:0. As the mechanical
energy is expressed as a function of both vclocity and displacement" the mini-
mization procedure requires that

dE 3E'dqt dEDq;_-__L___:_n;_lD
dr 0Q; Dt dc1; dr

where we now represent the total number of degrees of tieedont of the mociel as

P to avoid confusion with the mass matrix notation lMl. Application ol Equa-
tion 10.94 to the energy represented by Equation 10.93 yields a systcm of ordi-
nary diff-erential equations

lMllijl+lKl{q} :{F} ( r0.e5)

Equation 10.94 is not necessarily ntathematically rigorous in every case. Holv-
ever. lbr the systems under consideration, in which there is no energy rentoval
mechanism and the total potential energy includes the etl'ect of erternal lbrces, thc

( 10.93)

( 10.94t
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resulting equations of motion are the same as those given by both the Lagrangian

approach and variational principLes l5f'
Examination of Equaiion t0.g5 in light of known facts about the stiffness and

mass matrices reveals that the differential equations are coupled, at least through

the stiffness matrix, which is known to be symmetric but not diagonal' The phe-

nomena embodied here is refened to as elastic coupling, as the coupling terms

arise from the elastic stiffness matrix. In consistent mass matrices, the equations

are also coupled by the nondiagonal nature of the mass matrix; therefore, the term

inertia rouplirg is applied when the mass matrix is not diagonal. obtaining solu-

tions for coupt"O diifirential equations is not generally a straightforward prode-

cure. We show, however, that the modal characteristics embodied in the equations

of motion can be used to advantage in examining system response to harmonic

(sinusoidal) forcing functions. The so-calle dharmortic response is a capability of

essentially any finite element software package, and the general techniques are

discussed in the following section, after a brief discussion of natural modes'

In the absence ofexternally applied nodal forces, Equation 10.95 is a system

of P homogeneous, linear second-order differential equations in the independent

variable time. Hence, we have an eigenvalue problem in which the eigenvalues

are the natural circular frequencies of oscillation of the structural system, and

the eigenvectors are the amplitude vectors (mode shapes) corresponding to the

natura'l frequencies. The frequency equation is represented by the determinant

If formally expanded, this determinant yields a polynomial of order P in the vari-

able o2. Sttution of the frequency polynomial results in computation of P natural

circular frequencies and P modal amplitude vectors. The free-vibration response

of such u ,yrt"- is then described by the sum (superposition) of the natural

vibration modes as

l-.'lul+ [K]l : o (10.96)

bi(/) : A(,1)sin(o;r * $;) i:1.P (10.97)

latrr) : e(!l

I

p';'

9'l'

:

9t"'

i:t,P (10.98)

P

\-,u

Note that the superposition indicated by Equation 10.97 is valid only for linear

differential equations'
In Equatibn 10.97, the a(]) and g; are to be determined to satisfy given initial

conditions. In accord with previous examples for simpler systems, we know that

the amplitude vectors for a given modal frequency can be determined within a

single unknown constant, so we can write the modal amplitude vectors as



Y

wheretheBtermsareknownconstantsresultingtromsub.stitution'ofthenatural
circular frequencies into the governing equations tor the amplitudes' For a

system having p clegrees of ftJeclom, *" huu.2P unkuown constants A(i) and

,br, i : l, P in the motion solution' The constants are determined by application

of 2p initial conclitions. which are generally specified as the displacements and

velocities of the nodes at time r : 0. whil" the natural modes of h'ee vibration

are important in and of themselves, application of modal analysis to the harmon-

icallytbrcedresponseofstructuralsystemsisaveryirnportantconcept.Priorto
examination of the torceJ response, we derive a very important property of the

principal vibration modes'

1O.7 ORTHOGONALITY OF
THE PRINCIPAL MODES

Theprincipt'llmodesofvibrationofsystemswithmultipledegreesoffreedon
share a fundamental rnathematical proierty known as ttrthrtgttttctllr.r" The tree-vi-

bration response of a multiple aegiees-of-treedom system is described by Equa-

tion 10.95 with {F} : 0 as

cHAPTER lO Structural Dynamics

lA4ll4lIlKl{r/}:{0} (10.99)

-rl1.rul{A(r)}+ i,<1{e(i)} : o

and for anY other frequencY oi

-r]tul{e(r)}+ IKI{A(r)} :0 (10'101)

Multiplying Equarion t0.100 by {ailrlr and Equation l0.l0l b1 1A'ii}r gives

Assumingthtitwehavesolvedforthenaturalcircularfrecluenciesanclthemodal

","pfi*a! 
vectors via the assumecl solution lbrm17;(t) : A; sin(col + dl)' substi-

iuti* of a particular frequency cor into Equation l0'99 gives

1 1 i). 1001

(10.102)

(r0.103)

-cof { ei ir }tt.rz t { A(i) i + t A( r) i 
r 
t,( I { e(i) } : o

-r;{,c,',l'tul leiir} + lerir}'ItK1{aii)} :0

Subtracting Equation 10'102 tiorn Equation 10'103' we have

14tir )rtM1{e("}(ri - ,,,f) : o i + j (10.104)

lxrr))ILM1{A(/'} : o i +.i

In arriving at the result representecl bV !q111ion 
10' 104' we utilize the fact front

matrix allebra that Lel?irllc]: lclrlBllAl' where lAl' tBl' tcl are anY

threematricesforwhichtn"t'ipt.productisclefined.Asthetwocircularfie-
lu"n.i", in Equation 10. 104 are distinct' we conclude that
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Equation 10.105 is the mathematical statement of orthogonality of the principal
modes of vibration. The orthogonality property provides a very powerful mathe-
matical technique for decoupling the equations of motion of a multiple degrees-

of-freedom system.
For a system exhibiting P degrees of freedom, we define rhe modql matrix as

a P x P matrix in which the columns are the amplitude vectors for each natural
mode of vibration; that is,

tAl : [{at1r}{etzr} {a,"'}] (10.106)
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and consider the matrix triple product [S] : Vlr lM[Al. Per the orthogonality
condition, Equation 10. 105, each ofT-diagonal term of the matrix represented

by the triple product is zero; hence, the matrix lsl : Vlr lMltAl is a diagonal
matrix. The diagonal (nonzero) terms of the matrix have magnitude

s;; : {A(r)}7lMllA(,)l i : l, p (10.107)

As each modal amplitude vector is known only within a constant multiple (recall
in earlier examples that we set A('1' : I arbitrarily), the modal amplitude vectors

can be manipulated such that the diagonal terms described by Equation 10.107

can be made to assume any desired numerical value. In particular, if the value is

selected as unitv. so that

s;;: {A(')}'luleQtl:1 i:1, P (1 0.108)

then the modal amplitude vectors are said tobe orthonormal and the matrix triple
product becomes

lsl:[A]r[M]tAl:[1] (10.109)

where [1] is the P x P identity matrix.
Normalizing the modal amplitude vectors per Equation 10.108 is a straight-

forward procedure, as follows. Let a specific modal amplitude be represented by
Equation 10.98 in which the first term is arbitrarily assigned value of unity. The

conesponding diagonal term of the modal matrix is then

,1 al ^(,) ,(r) c
L L,m 1tA' j' A''r' : Sti : constant (10'110)

J:1 k:l

If we redefine the terms of the modal amplitude vector so that

alr)
A\I) .l 

-J /C..v u//
i :7, P (10.111)

the matrix described by Equation 10.109 is indeed the identity matrix.
Having established the orthogonality concept and normalized the modal

matrix, we return to the general problem described by Equation 10.95, in which
the force vector is no lonser assumed to be zero. For reasons that will become
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apparent, we introcluce the change of variables

{,1} : lAl{P}

where {p} is the column matrix of generaliz.etl tlisplacentents, which are linear

combinations of the actual nodal clisplacements {S}, and [A] is the normalized

modal matrix. Equation 10'95 then becomes

(10.112)

(r0.1r3)

(10.1i1)

(10. l 1s)

( 10. I 191

in Equatior 10. I 18.

tMllAl {ll + [K][A]{P} : tr}
Premultiplying bY [A]7, we obtain

AlrlMIAlIi,] + tAl? t'<llAl{p} : [Alr{F}

Utilizing the orthogonality principle, Equation 10'll4 is

t1l{r)l + [A]rtftltAl{p} : tAl? [r]

frtl{p} : [Al7 {F}

dragonal matrix c1efi ned

Now we must examine the stiflness effects as reprcsented by t'a It L f ltA I ' Given

that [K] is a symmetric matrix, the triple procluct [A ]/ tK ILA I is also a symmet-

ric matrix. Foilowing the previous development of orthogonality of the principal

modes, the triple proOuctlel.tKltAl is also easily shown to be a diagonal ma-

trix. The values oi the diagonal terms are fbund by multiplying Equation 10' 100

by {etrr }' to obtain

-ol{arir j'fulta"'} + {e " }'lr1{airr} : o i : r, P (10'1 16)

If the moclal amplitude vectors have been nonnalized as described previously'

Equation 10. I 16 is

{a"'}ttrl{4i;r} : 'i i:r.P ( 10.1 r 7)

hence, the matrix triple procluct LAI? t1(llAl produces a diagon.l matrix haring

cliagonal terms equaitn th. ,q.,ur"t of the natr-rrai circular frequencies of the prin-

cipal modes of vibration; that is,

tAlTtKltAl : (10.118)

1
co;,

Finally, Equation 10.115 becomes

tll{l} +
with matrix [o2] representing the

,1 0

0r]

Using the data of ExamPle I 0.3

[1] and tAl? t^'ltAl : [c')'].

normalize the rnodal matrix nnd verify that tAl? f Mlf Al =
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r Solution
For the flrst mode, we have

fm 0 0l
s,,: {Arlr}rtMl{A(1)}: t1 r.4325 2.0sr1ll 0 m 0 

|

Lo o 2m)
:11.4404m

so the first modal amplitude vector is normalized by dividing each

33824,fu, which gives the normalized vector as

I [ 0.2es6 
IlA"'l: _10.4289 Ir* I o.ooo+ |

Applying the same procedure to the modal amplitude vectors for the

modes sives

second and third

421

,.of rs I
2.051 l I

term by /S11 :

, [ 0.6s7s I

{e','}: _{ o.sors I {n"'}:v' [ -0.:sso J

and the normalized modal matrix is

I [ 0.2956 0.6s7.5

tAl: _l 0.4289 0.5618t* lo.eoe+ -o.35so

To verify Equation 10.109, we form the triple product

1 f 0.29s6 0.4289 0.6064 I
v)rlMllAl: - I 0.657s 0.5618 -0.3s50 |t 

fo.os:o _.0.7t24 0.0782 -l

f 0.2es6 0.6s7s 0.6e30 I
x | 0.a28e 0.s618 -0.7124 

|

L0.6064 -0.3s50 0.0782 J

as expected.

The triple product with respect to the stiffness matrix is

f 0.29s6 0.4289 0.6064 I l- 3

tArrtKriAr : *lZZ;lZ :;:i:^ ;X,;T] L;
[ 0.2es6 0.6s75 o.6ee0 I

* | o.+zso o.s6r8 -o.it24 
|

L 0.6064 -0.3550 0.0782 )
which evaluates to

, I ::li:^
"n I inntz

0.6e30 I
-0.7124 

|

0.0782 I

o -l [,i o o-]
o l:lo ai ol

5.0557 1 l0 0 toil
- L JJ

LI*l

lm o oI
lo m 0 

|L0 0 2ml

[1 0 0l
:101 0l

L0 0 1l

-2 0l
3 -1 

|

-1 1 _.i

lAlrlKllAl =
0.1532 0

0 1.2912

00
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1O.8 HARMONIC RffiseCIs-sF uslNc
, vr- -niiooe 

suPERPosETeoN

Theorthogonalityconditionoftheprincipalmodesisespeciallyusefulinana.
lyzing the steady-st"t" t"tn*t"""t*it"'"lement models to harmonic forcing

tunctions. In thrs context' a harmonic forcing function is described as F(r; =

Fs sin o;/, where Fs ls a constant forc" magnTt"de and o-r1 is a constant circular

frequency of the t"t"i"g l'"tii"l lttt.t l" 
applying the mo'de 

'supelposltlon

method, a complete mod-al analysis must be pttfoittO l":O,t::j:" 
natural cir-

cular frequen.i"' unA'io""uiized modal amit'tod" u:ttot: $il-te' 
the normal-

ized modal matrix). ;;1;fi;;hniques of'^the previous section, the equattons

ol' motion lol the forced case become

t/l{li} + tcozl{p} : [A]7 {F} (10'120)

AssumingthatthestructuralmodelunderconsitlerationexhibitsPtotaldegrees
offreedom,Equationl0'l20representsu'"iofPuncoupled'ordinarydifferen-
tirl equations of the lorm

. \-.,',_(,) i_l.pii +aili :14,1'I
J:I

tl0.t2l)

( 10.122)

observingthattheright-handsideisaknownlinearcombinationofharmontc
forces (these are the #;;";;;eralized forces)' the solution to each of the

equations i, u ,o-tuti-oiloi pu-'titofut 
'olution' 

corresponding- to each of the

h armo nic rorc e ter m s, ii, y "Gv .11i, * 3;i:T[: r** 
t::r:1ff 

i :';fi i"J
oi a singt" degree-of-treedom system ln se

tion 10.12t are grven 0Y

pi(t) :L#+,sinoilt i - r' P

Hence, the generaltzecl clisplacements pi(r) are represented by a combination

of inrlependent harmonic 'ootion' 
having- frequencies 

'conesponding 
to the

forcing frequencies' N;'h;;'1i u to"ing r'"q"tncy is close in value to one of

the natural tr"qutnt'"', 
-the 

denominator teri- b"ttm"s small and the fbrced

response amplltude i' i;'gt; hence' there are many possibilities for a resonant

condition' .des muthematicrl convenience in

The mode superposition method provt'

obtaining the forced ;;;;;;' u"toyt3irt" lquations 
of motion become uncou-

pled and solution i' 'itightto'w.ardt fgw,1ver' 
Equation 10'122 gives the dis-

placement response i?'!"""t"rJto *^*-titlients 
rather than actual nodal

rlisplacements, owlng to tf,e transfofmation o"tcriueo by Equation 10' 112' As the

modal matrix is known, conversion ot'tt-,.,g"n..alizei diiplacements to actual

displacement, '"quite'' 
only multiplication by the normalized modal matrix'
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Again consider the 3 degrees-of-freedom system of Example 10.3 and determine the
steady state response when a downward force F : Fo sin o1 r is applied to mass 2.

I Solution
For the given conditions, the applied nodal force vector rs

[01
{Fu r} : I n, 

'in 
r,, !lo l

0.6064 I [ 0

-0.3550 ll r..tn-,r I --o.o782Jl o I

Leralized coordinates are then

0.4209F6 sin orlr
Di:

"5n
0.5618F6 sin torr

D):4

"5"
-0.7121Fs sinlurlt

D1 : '

\/m

:rnd the generalized forces are

r l- 0.29s6 0.1209

Alr {F}: _ | O.OSZS 0.-5618
v"t [ 0.69:o .o.jr21

The equations of motion lbr the gene

it i alP

iz*a?,P

it I alP

.(r sin o/ t

!5n

for which the solutions are

7r, (t) :
0.4209Fs sin tolr

(ai -,,;:)!,n
0.5618F6 sin coT r

p:(t) -0.7 124 Fs sin <': 1 t

@i -.)"6n
The actual displacements, x(t) : q(r) in this case. are obtained by application of Equa_
tion 10.112:

{j#[

t.r| : tAl{p} :
0.6s'7 5

0.561 8

0.3550

0.4209

-
u. -u,
0.5618
i-;(': - (r)1

-0.1124
(t); (r);

Fo sin cof t

,0"

0.6e30 I
-0.7124 

|

0.0782 J

1 [ 0.2es6- | oaroq!* 
Lo.aoo+
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Expanding, the steady-stute clisphcements rre gir en by

r (,,: (*+.#+.d+)1*-
\ 1:(#+,:+. #i) '|iryr,,, '

\r\1':(....r1.l+,l+)L**
\;; - -i --' t, L'ir- to l ltl

Ai.ewobservatronsneedtobemader.egardingtl-redisplacementscalculatedinthis
examPle:

l.Theciisplacernentofeaclrmassisasinusoidaloscillirtionabouttheequilibrium
position,andthecircularfrequencyoftheoscillationisthesameaSthefrecluency
of the forcing functron

T#:ffii:?.,#;il' principar modes or vib'ation *" :"0":::o:li:.:"1:::::2" The characterstlcs ol LIlc PrrrrurP4'

owing to the effects oi rr-,i n*uor circular.frequencies and modal amplitude vectors

in detennining the forced oscillation an'rplitudes'

3. The displacement solutions represent or.rly the fbrcecl notion ol each mass; ln

addition, tree vibration tooy ul'o exist in superposition with the fbrced response

4. Energy dissipation mechanisms are not incorporated into the model'

The mode superposition method may seem quite complicated and' when at-

tempting to obtain.of u'io* Uy t-tanO' t''t'methodls indeed tedious' However' the

required computatlon' o'" 
'"uO'fy 

amenable to digital computer techniques and

ouite easily orogro*-"tt' AaAitionut ramilications of computer techniques for

;;";,h*i *iui" discussed in a foliowing article'

I O.9 ENERGY DISSIPATION:
STNUCTURAL DAMPING

Tothispoint,thedynamicanaiysistechniquesclealtonlywithstructuralsystems
in which there rs no ,o..1runir. for. .n".gy clissipation. As stated earlier' all real

systems exhibit ,o.f, iffiotion ar-rd, uniike the iimple moclels presented' do not

oscillate fbrever, u, pr.J","o by the ideal model solutions. In structural systems'

the phenomenon of 
"r"rgJ 

drrJipation is ref'errecl to as dcunping. Damping mar

take on many physicat foims. inclucling devices specificilily designed for the pur-

pose (passiv. 
"no "ttiu" 

Jumping devices)' sliding friction' and the internal dis-

sipation characterlsrlc, o1 -oi.rlals subiecte<l to cyclic loading. In this sectron'

webeginwithanio""li,"a-odelofdampingtortiresimpleharmonicoscillator
and extend the damping concept to full-scale structural models'
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ff

iH
(b)

Figure lO.l3
(a) A spring-mass system with damping, (b) The schematic

representation of a dashpot piston. (c) A free-body diagram

of a mass wlth the damping force included.

Figure 10.13a depicts a simple harmonic oscillator to which has been added a

dashpot. A dashpot is a damping device that utilizes a piston moving through a

viscous fluid to remove energy via shear stress in the fluid and associated heat gen-

eration. The piston typically has small holes to allow the fluid to pass through but

is otherwise sealed on its periphery, as schematically depicted in Figure 10.13b.

The force exerted by such a device is known to be directly proportional to the

velocitv of the oiston as

fa : -ci ( 1 0.123)

where /a is the damping force, c is the damping coef{icient of the device, and i
is velocity of the mass assumed to be directly and rigidly connected to the piston

of the damper. The dynamic free-body diagram of Figure 10. 13c represents a

situation at an arbitrary time with the system in motion. As in the undamped case

considered earlier, we assume that displacement is measured from the equilib-
rium position. Under the conditions stated, the equation of motion of the mass is

mi I ci * kx :0 (10.124)

Owing to the form of Equation I0.I24, the solution is assumed in exponential

fbrm as

x(t) - Ce" (10.12s)

where C and .r are constants to be determined. Substitution of the assumed solu-

tion yields

1ms2 + cs I k)Ce't :0 ( 10.1 26)

As we seek nontrivial solutions valid for all values of time, we conclude that

^t'+cs*ft:0
(r0.r27)

must hold if we are to obtain a general solution. Equation 10.121 is the charac-

teristic equation (also the frequency equation) for the damped single degree-of-

freedom system. From analyses of undamped vibration, we know that the natural
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trequency given by ,2 - k 1 ,r, is an important property of the system' so we mod-

ify the characteristic equation to

rL)^s'*-sfco-:u
tfL

Solving Equation 
-l0.128 by the quadratic lormula yields two roots, as expected'

given by

Jl : (10.129a)

fil./(;) -*''l (10.129b)

\ (1) : r ""t A sin co,'l I B cos ttr,rt ) ( r 0.1 30)

( 10.128)

;[(;)'

;[(;)'

The most important characteristic of the roots is the value of (c lm)2 - 4or2' and

there are three cases of importaucc:

1. lf (clm)2 *4co2 > 0. therootsaret'eal,clistinct,andnegative; andthe

clisplacement response is the sr-rm of decaf ing exponentials'

2. If (cl m)2 _ 4col : 0, we have a case of repeated roots; for thjs.situatitu.

the displacement is atrso shown to be a decaying exponential'.It is

convenient to ciefine ihis as a critical case and let the value of the darnping

coefficient c correspond to the so-called criticul dtttttltirtg c:oefficiettt.

Hence, c,1 : 4lolnt) ot t:r' :2nta'

3. If (c I nt)2 - 4col < 0' the roots of the characteristic equatlon are

irnaginary; this casc can be shOwn [2] to represent decaying sinustlidal

oscillations.

Regardless of the amount of cian-rping present. the free-vibration response. as

shown [y the prececling analysis. is an exponentially decaying lunction in time.

This gives more creclence to oilr previous discl-lssion of harmonic response' ln

whici we ignorecl the fiee vibrations. In general, a system response is defined

primarily u! tne appliecl lbrcing funcrions, as the natural (fiee, principal) vibra-

tions dle out with dirmping. The response of a damped spring-mass system cor-

responding to each of tt-r" i1rr." case.s of darnping is depicted in FigLrre I 0.14.

We now define the tlcuttltirtg ratio ztsl : t'l2ma and note that' if ( > l ' we

have what is known ts ove'rdctntpcrl motion: if ( : I . the motion is said to be

criticalLt' clcnnped: and if ( . t . ihe motion is ttnclerdamlted' As most structural

Systemsareunclerdampecl'wel.ocusonthecaseof(<l.Forthissituation.itis
readiiy shown [2] tnatihe response of a damped harmonic oscillator is described

by



lO.9 Energy Dissipation: Structural Damping

(a)

(|0.r31)

r(/rf .r{/rl

l^.. I

i\
: l\=--_

r'hl

t>l
(c)

Figure 1O.14 Characteristrc damped motions: (a) Underdamped.
(b) Critically damped. (c) Overdamped.

where o.7 is the damped natural circular freqttency, given by

n ^k@i: (l - (')-m
and the coefficients are determined by the initial conclitions.

while we demonstrate the effect of damping via the simple harmonic oscil-
lator, several points can be made that are applicable to any stiuctural system:

1. The natural frequencies of vibration of a system are reduced by the efrect
of damping, perEquarion 10.131.

2. The free vibrations decay exponentially to zero because of the etl'ects of
damping.

3. In light of point 2, in the case of forced vibration, the steady-state solution
is driven only by the forcing functions.

4. Damping is assumed to be linearly proportional to nodal velocities.

1O.9.1 General Structural Damping
An elastic structure subjected to dynamic loading does not, in general, have spe_
cific damping elements attached. Instead, the energy dissipati,on characteristics
of the structure are inherent to its mechanical properties. How does, for example,
a cantilevered beam, when "tweaked" at one encl, finally stop vibrating? (If the
reader has a flexible ruler at hand, many experiments canbe perfbrmed to exhibit
the change in fundamental frequency as a function of beam iength as well as the
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-_,-----1_---r{ i:**
+4l,Wtr-_=*-l

L

Figure {0"{5 A mode of a

bar element with damp ng.

decay of the motion.) The answer to the damping cluestion is complex. For

example, Structures are subjccted to the atmosphere, so ftat air resistancc is il

t-actor. Air resistance is. in gencral, proportional to velocity sqLlareci, so this ellcct

is noniinear. Fortunately, air rcsistancc in most cases is negligible. On the othet

hancl, thc internal friction of a maierial is not ncgligibie and must be considered.

lf we incorporate the concepts of danrping as applied to the simple harmonic

oscillator. the equations of motion of a finite elcment model of a structllrc becomc

lM){41 + lcllq} + trl{q} : {F(/)i ( 10. l.ll )

where IC] is the systern visccus damping matrix assen-iblcd by the usual rules. For

example, a bar elernent wittr-r damping is mathernatically modeled as a linear

spring and a cXashpot connected in paraliel to the element nodes as in Figure 10. 15.

fhc elentertt durnping matri r is

[,,,,,] : [j. ..]
and the element equations of motion are

(10.r33)

[,a(")]{;,} + [.'"']{,i} + [ft'"']{,,1 : { /"''} (10.134)

The elcment damping matrix is s1'mmetric and singular, and the individual terms

are assigned to the global damping matrix in the same manner as thc mass and

stiffhcss matrices. Assembly of the global cquations of motion for a finite ele-

rnent model of a clamped strlrcture is simple. Determination of the e1'fective vis-

cous damping coefficients fbr structural elements is not so simple.

Damping clue io intemal liiction is known as .gf ructLrrcLl dantping, and exper-

iments on many difl'ercnt elastic materials have shown that the energy loss per

rnotion cycle in structural damping is proportional to thE material stifTness and

the square of displacernent arnplitucle [2]. That is,

AU.r,.r.: xlrXr (io.i35)

where I is a dimensionless structural damping coefficient, /c is t]re material stiff-

ness, aild X is the displacement amplitude. By equating ihe energy loss per cycle

to the energy loss per cycle in viscous damping, an equivalent viscotts damping

coeflicient is obtained:

xk

tt,
i 10. 1-161
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;ffi".3r#tJiLgn'*cv of oscillation. rhat the equivarent damping coeffi-
trrat rinJreni:;;0":"""cv is s omewnu, 

"""1 
g]":1."1'il""tt';iilrpri"ation r,rngr" o"gr"" "i-i.ffi" 

are required for different fres;;;;;" ;;;e consider a
. o 

"m.r ",i-i 
gi";; ;,f;ff ]iT il,!; ;Jj :l:, 

: rEn;,- ;;; ; ;# #", dampi n g
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\frk
_ Lt/ kmc0 JEli - (10.137)

indicaring rhar the dan

:"'fr:"','T:T;;*itl"*",::f':ff ::'."#l;l','illi#agenera,sense,
, 

^o _ "#i,.ffi ;T Tij LTI r; ;i ffiilr:m:ru** :ii, j ffil:
{jj} + LAf LclLaypl

The transformed damping matrix

+ L,i2l{p} = [Alr {F(t 1s (10.138)

(10.140)

is easiry shown to be a 
[C']: tAlrLCilAl 

(10.139)

":!: i!"i,^;Jroi,i;,i"YilT:T:: ffi'jlt;li'the marrix is not necessarity diag-
of motion, and the simplification o;;;;il:t":."^t:Iin decoupling the equations
sarilv available. If, however, ,r* o"-pi"g;ili::;3r:iltonrnethod is nor neces-

where o and B are consranrs, '!rl*: "''t 
+ PtKl

rs a diagonart;; 
oLtAlrtMltAl + Pt'qlrtr<ltAl =our + F[ar2] (10.r41)

thar rhe asse.ion 
"r*1,11:^9'fTt:?l'l'equations,orrnorion 

are decoupred. Norea,, p 
" 
g, "; ;' ; fi?:ii t j 3; i 1?, ft :;i l;: y.:: in *,.l*mldil.:* : :{ij} + (a+ pio2l)ip} + L,u2l{p} : rori ro,,y 

" 
(10.142)

fi'ff ifffi l' ?i;: :ilt"J; ;t"T: ",x':f iJ,Eq 
u ati on r 0 1 42are de c o upred, r e r

it + (a + gr?) p, t ,? p, : f t, j,rir,t (10.143)

,{"#it'ff ":3iiii#ffi ::h",::xl::"f :1*,r:u'ossorgenerarityandtems on the right-nano side, assumed to be 
"'lllll?".10:143 

for oily one of the

and assume that the ",*,::1ffi;;;;,"T:: 
rorce such 

'nu' 
,o r-

Pi(t) : X; sin r.l 1t * y; cos a)7/ (10.14s)
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Equating coefficients of sine and cosine terms yields the algebraic equatlotls

[ ,i -,i -,,(o + e,i)] I ", I : I l. ] (,u.,*rr
L,r(.+P,i) 'i -'i llr'f-lol

for determination of the fbrced amplitudes X; ard Y;. The soltttions are

cHAPTER 1O Structural DYnamlcs

Substitution of the assumed solution into the governing equation yields

-Xia] sin to1/ - Y,.7 cos t,l1/ + (ct + 9,i)tl(X; cos l"o1t - Yisin orlt)

+ ai X ,sin orlr + colf' cos to7 1 - F1i sin o1 I

a,(.,i - -7)v-
(ri -'i)'+ <oi (c, + Fri)'

- f'o.,r1" + 9-;)
" - (ri - r7)'* torl(ct + B'i)'

To examine the character of the solution represented by

convert the solution to the form

piQ) : Zi sin(to/1 + Oi)

( r 0.146)

(l().1-18)

Equation 10.i2i5. u'e

(10.149)

with

to obtain

Zi : !f: . 'l
_, Yi

antl O, : tan 
o

sin(or11 f dr) (10.150)

(10.152t

./-.,1.("+B,i)\
oi:tan (ff) tlor5rl

Again, the mathematics required to obtain these solutions are algebraicalll'

tedioui: however, Equations 10.150 ancl 10.151 are perfectly general- in that the

equations give the solution fbr every eqllation in 10.142. provided the applied

nodal forces are harmonic. Such scllutions are easily generaled via digital com-

puter software. The actual displacements are then obtained by application ot

Equation 10. I 12, as in the case of undamped systems'

The equivalent viscous damping described in Equation 10. 140 is known as

Ra.yLeigh iantping [6] and used very often in structural analysis. [t can be shown.

by comparison to a dampecl single degree-of-fieedom system that

/l,l -,i)'*,f (o + B,i)']

a+Pur;:luiLt
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where (; is the damping ratio coresponding to the i th mode of vibration, that is,

,a,9'iLi:--1---' 2ai 2
(10.1s3)

represents the degree of damping for the i th mode. Equation 10. 1 53 provides a
means of estimating ct and B if realistic estimates of the degree of damping for
two modes are known. The realistic estimates are most generally obtained ex-
perimentally or may be applied by rule of thumb. The following example illus-
trates the computations and the effect on other modes.

Experiments on a prototype stmcture indicate that the effective viscous damping ratio
is ( : g.g3 (3 percent) when the oscillation frequency is to:5 rad/sec and ( : 9.1
(10 percent) for frequency o : 15 radlsec. Determine the Rayleigh damping factors ct

and B for these known conditions.

t Solution
Applying Equation 10.153 to each of the known conditions yields

058
U.UJ : 2(5) 2

- cr 158O.': r- , 
,

Simultaneous solution provides the Rayleigh coefficients as

o : -0.0375
B : 0.0135

0.2s

0.2

0.15

(i 0.1

0.05

0

-0.05 1 3 5 7 I 11 t3 rs 17 19 21 23 2s 2,7 29
@i

Figure 1O.16 Equivalent damping factor versus frequency for
Example 10.9.
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If we were to apply the equivalent damping given by these values to the entile fiequency

spectrum of a structure, the effectir,e damping ratio lbr any mode would be given by

-0.0375 * 0.0135 coi

lai

If the values of cr and B are applied to a rnultiple cleglecs-of-freedom system. the damp-

ing ratio for.each frecluency is difterent. To illustrate the variatiort. Figure 10.16 depicts

the modal 6a1.rping ratio as a tr.rnction of fi'ecluency. The plot shows that. ol'course, the

ratios fbr the specifiecl fiequencies are exact and the darnping ratios vary significar.rtly fot

other"flequencies.

Rayleigh clamping as just described is not the only approach to structural

damping used in iinite element analysis. Finite element software packages also

include options fbr specifying damptng as a material-dependent property. as

opposed to a property of the struotlrre, as well as defining specific damping

eiements (finite elements) that rnay be added at any geometric location in the struc-

ture. The last capability allows the finite element annlyst to examine the effects of

energy clissipation elements as applied to specitic locations'

1O.1O TRANSIENT DYNAMIC RESPONSE

In Chapter 7, finite difTerence methods fbr direct nlrmerical integration of finite

element models of heat transf'er problems are introduced. In those applications,

we deal with a scalar field variable. tempcratllre. and first-order governlng equr-

tions. Therefore, we need only to clevelop finite diffbrence approximations to first

derivatives. For structurai dynamic systems, we havc a set of second-order dif-

f'erential equations

tMltEl +tCl{E} +t,(l{6} :{F(1)} ( 10.1 54)

representing the assembled finite element rnodel ol a structure subjected to gen-

eril (nonharmonic) forcing functions. In applying finite difl'erence methods to

Equation 10.154, we assume that the state of the system is known at time / and

we wish to compute the clisplacements at time r + Ar; that is, we wish to solve

LMItE(/* Ar))+ tcltE(l + A/)} + tKl{E(/+ 
^1)} 

: {F(t+ aI)} (10'155)

for {E(r + A/)}.
Many finite difTerence tcchniques exist for solving the system of equations

represented by Equation 10. 155. Here, we describe Newmark's meihod [7] also

ref'erred to as the constant occeLeratiot'r method.In the Newmark method' it is as-

sumed that the acceleration during nn integration time step A/ is constant and an

averase value. For constant acceleration, we oan write the kinematic relations

.. Ltz
E(/ + A/) : E(1) + E(/)41 f 6a,' 

L̂

r :- -E(r - At) : 6t l) I b.,, A/

(10.156)

( 10.1 s7)
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(10.158)

(10.161 )

(10.162)

( l 0.1 63)

(10.164)
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The constant, average acceleration.is

i. E(r+Lt)+6(r)
_r, : _______2_

Combining Equations 10.156 and 10.158 yields

6(/ + a/) : E(/) + s(r)lr + Isr + ar) + Srrll* (10.159)

which is solved for the acceleration at t + Lt to obtain

s(/ + a/) : *tu,, + ar) - s(/)l - lS1,; - S1,; (10.160)Lt' a,t
If we also substitute Equarions 10. r58 and 10.160 into Equation 10.157, we find
the velocity at time t I Lt to be given by

E(r + a/) : ftut, * Ar) - E(/)l - E(/)

Equations 10.160 and 10.161 express acceleration and velocity at / + a/ in
terms of known conditions at the previous time step and the displacement at
t + Lt.If these relations are substituted into Equation 10.155, ." ottuin, after a
bit of algebraic manipulation,

4?
*lM){6(t + a/)} + ;tcl{6(/ + ar)} + tKl{s(/ + a/)}

: {F(t f Ar)} + tM) (rSr,t1 + fitarrtt + $f at,ti)

+ rcl(1a1r;t + frrar,;)
Equation 10.162 is the recurrence relation for the Newmark method. while the
relation may look complicated, it must be realized that the mass, damping, and
stiffness matrices are known, so the equations are just an algebraic system in the
unknown displacements at time t * Lt. The right_hand side of the system is
known in terms of the solution at the previous time step and the applied forces.
Equation 10.162 is often written symbolicallv as

trKl{6(r + A/)} : {F"n(/ + Ar)}

-4)[K]: LtrlMl+ Ltlcl+IKI

with

{r"ff(/ + A/)l : IF(t + Ar)]

+ tMt (rurr; + f rarrtr

+ rct (taorr + frtar'l)

4\
+ 
- {aur}J

(10. r 6s)
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The system of algebraic equations represented by Equation 10.163 can be solved

at each time step for the unknown displacements. For a constant time step At,

matrix tf<l is constant and need be computed only once. The right-hand side

{ F"r(r * Ar) } must, of course, be updated at each time step. At each time step, the

system of algebraic equations must be solved to obtain displacements. For this rea-

son, the procedure is known as an implicit method. By back substitution through

the appropriate relations, velocities and accelerations can also be obtained.

The Newmark method is known tobe unconditionally stable l8l. while the

details are beyond the scope of this text, stability (more to the point, instability) of

a flnite difference technique means that, under certain conditions, the computed

displacements may grow without bound as the solution procedure "marches" in

time. Several finite difference methods are known to be conditionally stable,

meaning that accurate results are obtained only if the time step A/ is less than a

prescribed critical value. This is not the case with the Newmark method. This

does not mean, however, that the results are independent of the selected time step.

Accuracy of any finite difference technique improves as the time step is reduced,

and this phenomenon is a convergence concern similar to mesh refinement in a

finite element model. For dynamic response of a finite element model, we must

be concerned with not only the convergence related to the finite element mesh

but also the time step convergence of the finite difference method selected. As

discussed in a following section, finite element software for the transient dynamic

response requires the user to specify "load steps," which represent the change

in loading as a function of time. The software then solves the finite element equa-

tions as if the problem is one of static equilibrium at the specified loading con-

dition. It is very imporlant to note that the system equations represented by Equa-

tion 10.163 are based on the finite element model, even though the solution

procedure is that of the finite difference technique in time.

1O.11 BAR ELEMENT MASS MATRIX
IN TWO.DIMENSIONAL TRUSS
STRUCTURES

The bar-element-consistent mass matrix defined in Equation 10.58 is valid only

for axial vibrations. When bar elements are used in modeling two- and three-

dimensional truss structures, additional considerations are required, and the mass

matrix modifled accordingly. When a truss undergoes deflection, either statically

or dynamically, individual elements experience both axial and transverse dis-

placement resulting from overall structural displacement and element intercon-

nections at nodes. In Chapter 3, transverse displacement of elements was ignored

in development of the element stiffness matrix as there is no transverse stiffness

owing to the assumption of pin connections, hence free rotation. However, in the

dynamic case, transverse motion introduces additional kinetic energy, which

must be taken into account.
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(r 0.168)

(10. I 6e)

iNlrlNl d, {i} (10.170)
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Figure lO.lZ A bar element in two-otmensronal motion:
(a) Nodal displacements. (b) Differentiat element.

consider the differential vorume of a bar erement undergoing both axiar andtransverse displacement, as shown in Figure r0.r7. we 
"rr"i""-""afnami. sirualtion such that both displacement .o-pJn"nts vary with position and time. Thekinetic energy of the differential volume is

I f /auf /A'\rl rdr:-Doo"l (;) -(;) l:roAdx(ir2+it (r0.t66)2' L\d// \dr/ 1 z

and the total kinetic energy of the bar becomes
Lr

.: ]o o I u'a" + ]o ,t [ ;,a* tto.l671zJ.2'J-"
observing that the transverse. di"spru."-.n, .un L. expressed in terms of thetransverse displacements of the element nodes, using the same interpotationfunctions as for axial displacement, we have

",'ri',' 
r: ;] :;:;] i Iir'i lr rr',', r'

Using matrix notation, the velocities are written as

u(x.t):lNt t,,l''I'lutI
yrx. r) : lNr Nrlli', I

1", I
and element kinetic energy becomes

L1r
T : tpAlul' I fNl/lNldx{n} _r

/I

L
l^t
^-p Alr]' I
,l

0

dr
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Expressing the nodal velocities as

rs,l -.IU' -

the kinetic encrgy expression can be rev"ritten in the form

I --1: .-{b}/lli'.'}{blt'

':' I

i$
LLl I

i'. l

( r0.171)

,I, :, 1

: irar'oa / |- it 
t

o l lz o 1o-l

''J'1":#l? ?, \;l
r/tl foloz)

,[,vi
l,r\)1:t^ / [rj

Itt/
U

0 l/r 1/: 0

,vi o N1N
d.r {E} ( 10. 172)

ly'r1y'z 0 Ni 0

0 l/1N2 0 Ni

Fr.om Equatitrn l0.iT2. the mirss nlrtrir oi tht'hirr elentcnt in tno dinren:ions i:

identified as

0 N1N2

Ari 0

: 0 1y',2

Nr N: {)

(10.r73)

The mass matrix clefinecl by Ecluation 10.173 is described in the eiement

(local) coorclinate system. since the axial ancl transverse dircctions are defined in

terms of the axis 0f the elernent. FIow. then. is this m;rss rnatrix transformed to

the global coorclinate system of a structure'/ Recall that, in chapter 3, thc element

axial displacements are expressed in terms of global displiicements vie a rot:ltlon

transfbrmation of the element ,t axis. To rciterate. the transverse displacements

were no1 consiclerecl" as no stitfness is associated rvith the transverse motlon

|,trow, however, the transverse clispiacements ruust be incluclecl in the transforma-

tion to global coordinates becausc of the associated mass and kinetic ellergy'

Fig"ure 10. l8 clepicts a single node of a bar eiement oriented at angle 0 rela-

tive to-the X axis of a giobaL coordinate system. Nodai displacements in the

element fiame are ,2' 
"2 

ancl corresponding global displacements iire U3, U1.

respectively. As the clisplacenient in the two coorclit.late systems must be the

same. we have

ut-: LJtcos fl * Ua siu t)

i,l : [/-r sin t] * U.i cos 0

iiil

(10.1711

( I 0.1 751
Ilj r.r I
Ir':]

I e,rs ll trtl ti 
"l 

j: 
l-tinH cosel I
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lu';'l: Bf lm\)ltRl Q0.r11)
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l;l

(10.r7r)

(10.r12)

:nsions is

(1 0. r73)

: element
Cefined in
iormed to
e element
a rotatton
lacements
e motlon.
lnsforma-
nergy.

gle 0 rela-
nts in the
'e U:, U+,

rst be the

(10.174)

( 10.1 75)

Figure lO,i8 The reralon
of element and global dis-
placements at a single node.

As the same relation holds at the other element node, the complete transforma-
tion is

Ir'l Icoso sino 0 0 11,, )

1", l-l-sino cose o o ll'r I

l"; i:l ;' 0 cos' sinrll{t:[ :tnttut (ro176)
['rf L o o -sino cose_] lurJ

Since the nodal velocities are related by the same transformation, substitution
into the kinetic energy expression shows that the mass matrix in trre gtoual coor_
dinate system is

where we again use the subscript to indicate that the mass matrix is applicable to
two-dimensional structures.

If the matrix multiplications indicated in Equation l0.r7i are performed for
an arbitrary angle, the resulting global mass matrix for a bar element is fbund to be

lz o I

Itr,r'i'|:tllo 2 o
' Lr 6 lr 0 2

L0 I 0 ;l
( 1 0.1 78)

and the result is exactly the same as the mass matrix in the element coordinate sys_tem regardless of element orientation in the grobal system. This phenomenon
should.come- as no surprise. Mass is an absolute scalar property andiherefore in-
dependent of coordinate system. A similar developmenf t.uo, to th" *u.n" concru_
sion when a bar element is used in modeling three-dimensional truss sffuctures.

The complication described for including the additional transverse inertia
effects of the bar element are also applicable to the one-dimensional beam (flex_
ure) element. The mass matrix for the beam erement given by Equation r0.7gis applicable only in a one-dimensional model. If the flexure element is used in
modeling two- or three-dimensional frame structures, additional consideration
must be given to formulation of the element mass matrix owing to axial inerlia
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effects. For beam elements, most finite software packages include axial effects
(i.e., the beam element is a combination of the bar element and the two-
dimensional flexure element) and all appropriate inertia effects are included in
formulation of the consistent mass matrix.

M@
As a complete example of modal analysis, we return to the truss structure of Section 3.7,

repeated here as Figure 10.19. Note that, for the curent example, the static loads applied

in the earlier example have been removed. As we are interested here in the free-vibration

response of the structure, the static loads are of no consequence in the dynamic analysis.

With the additional specification that material density is p : 2.6(.lq-4 lb-s2/in.4, we

solve the eigenvalue problem to determine the natural circular frequencies and modal

amplitude vectors for free vibration of the structure.

As the global stiffness matrix has already been assembled, the procedure is not

repeated here. We must, however, assemble the giobal mass matrix using the element

numbers and global node numbers as shown. The element and global mass matrices for

the bar element in two dimensions are given by Equation l0.178 as

As elements 1,3,4,5,7, and 8 have the same iength, area, and density, we have

lutttl: lurrtl - lut+tl: lurstl : lmrlt) : lnrttt)

(2.6)(10) 11t.511+0)

6

0 2.6

5.2 0

0 5.2

2.6 0

while for elements 2 and 6

I M(2t1 _ | Arth)l _l-L"' I-
2.6(10) 1(1.s)(40"/4)

3.68

0

1.36

0

12 0 I ol
t*"'t:q4llo 2 o I 

IL 'j 6110 2 0l
Lo 1 o 2)

12 0 r 0-l

l0 2 o 1l

11 0 2 0l
L0 1 0 2)

"'- l'o I trot-t lb-sr/in.

J,]

ls,l0: 
t,u
LO

12 o I ol
l0 2 0 rl
lr 0 2 0l
L0 I 0 2_)

' 
?' I ,, o, I rb-s2/in

,lu l

f 136 0

| 0 '7.36: 
l :as o

L 0 3.68
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Figure 1O.19 Eight-element truss of
Example 10.10.

The element-to-global displacement relations are as given in Chapter 3. Using the direct
assembly procedure, the global mass matrix is

tArt -

Applying the constraint conditions U1

active degrees of fieedom becomes

: uz: U, : U.t: 0, the mass matrix for the
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Extracting the data tiom Sectior.r 3'7'

dom is

rI. 1-

1.5 0 0 0 -375
0 3.75 U - 1.75 t)

0 0 10.15 0 -l'325
0 -3.75 0 6.'1 1.325

-3.15 0 -1.325 1.325 5'075

0 0 1.325 -1.325 -1 325

00-3.7500
00000

the stitfness niatrix for the active clegrees of fiee

000
000

1.325 -3.75 0

- 1.325 0 0

- 1.325 0 t)

5.075 0 -3.75
0 3.75 0

-3.75 0 3.75

t05 lb/in,

The {rnite element model for the tfuss exhibits 8 clegrees of ti'eeclorn: hence' the charac-

teristic determinant

l-rtL,rrtl+ LKll : o

Table 1O.'l Natural Modes

FrequencY

yields,theoretically,eightnaturalflequenciesofoscillationandeightcort.esponilinr:
modalshapes(modalamplitudeVectors).Fortl-risexirnrplc,tlrerratula]nrodeswerecom.
puted using the student edition of the ANSYS program [9]' with the re-sults shown tn

Tablel0.l.ThecorrespondingmodalamplittrcleVcctors(nor.malizedtothemassmatllx
as discttssed relative to orthogonality) are shown in Table I 0 2'

Thefrequenciesareobseruedtobequiteiargeinrrragnitude.Theftrndamentalfie-
quency, about 122 cycles/sec is beyond the general complehension of the httman eye-

brain interface (30 Hz is the accepted cutoffbased on computer graphics lesearch [10])'

Thehightrequencresalenotuncommoninsuchstructures'Thedatausedinthisexample
corespondapproximatelytothematefialproperriesofalunrinunr:irligl.rtrnaterialwith
good stiftness relative to weight. Recallin-e the basic re lation u't : ,Tn ' high natural

frequencies should be exPected'

Tlremodesrrapesprovideanindicationoftheeeometricnatttt.eo|thenaturalnrodes
Assuch.thenumberslnTablel0.2arenotatallindicatii.eol.amplitr-rilevalues:instead

I

2
3

4

5

6
'7

8

't61 .r
2082.3
2958.7
4504.8
6790.9
1915.9
8664.5
8911.4

122.1

331 .4

410.1)

1t6.9
1080.8
1269.1
1379.0
l:128.8
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Table 1O.2 Modal Amplitude Vectors

441

Mode

Displacement

vt

U6

Ut
Ug

Ue

Uto
Ut
u12

0.2605
2.207

-0.7754
2.128
0.51s6
4.118

-0.1894
4.213

2.194

-3.282
0.1169

-2.686
3.8s5
2.556
0.9712
2.901

1.213 -3.5943.125 2.1412
2.888 2.370
1.95'7 -0.4322r.706 -3.934

- r.459 1.133
4.183 4.917

- 1.888 2.818

-1.445 -1.802
5.826 -0.934
0.142 -3.830

-4.214 0.569

- 0.055 1 .98 1

0.908 1.629
0.737 6.07'/
0.604 -3.400

4.772 -4.3681.058 0.727

-2.174 -0.464
-0.341 0.483

-2.781 3.956
- 3.319 - 4.407
4.392 1.205
4.828 5.344

(a) 
G)

Figure lO.2O
(a) Fundamental mode shape of the truss in Example 1 0.1 O.

(b) Second mode shape ofthe truss.

these are relative values of the motion of each node. It is more insightful to examine plots
of the mode shctpes; that is, plots of the structure depicting the shape of the structure if it
did indeed oscillate in one of its natural modes. To this end, we present the mode shape
corresponding to mode I in Figure 10.20a. Note that, in this fundamental mode. the truss
vibrates much as a cantilevered beam about the constrained nodes. On the other hand,
Figure 10.20b illustrates the mode shape for mode 2 oscillation. In mode 2. the structure
exhibits an antisymmetric motion, in which the "halves" of the structure move in opposi-
tion to one another. Examination of the other modes reveals additional differences in the
mode shapes.

Noting that Table 10.2 is, in fact, the modal matrix, it is a relatively simpte matter to
check the orthogonality conditions by forming the matrix triple products

IAf lMllAl : lrl
IAf tKltA): t,;2[1]

Within reasonable numerical accuracy, the relations are indeed true for this examole. We
leave the detailed check as an exerclse.
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'O.12 
PRACTICAL CONSIDERATIONS

The major problem inherent to dynamic structural analysis is the time-consuming
and costly amount of computation required. In a finite difference technique, such

as that represented by Equation 10.163, the system of equations must be solved at

every time step over the time interval of interest. For convergence, the time step

is generally quite small, so the amount of computation required is huge. In modal

analysis, the burden is in computing natural frequencies and mode shapes. As
practical finite element models can contain tens of thousands of degrees of free-

dom, the time and expense of computing all of the frequencies and mode shapes

is prohibitive. Fortunately, to obtain reasonable approximations of dynamic

response, it is seldom necessary to solve the full eigenvalue problem. Two practi-
cal arguments underlie the preceding statement. First, the lower-valued frequen-

cies and coresponding mode shapes are more important in describing structural

behavior. This is because the higher-valued frequencies most often represent

vibration of individual elements and do not contribute significantly to overall
structural response. Second, when structures are subjected to time-dependent
forcing functions, the range of forcing frequencies to be experienced is reason-

ably predictable. Therefore, only system natural frequencies around that range are

of concern in examining resonance possibilities.
Based on these arguments, many techniques have been developed that allow

the computation (approximately) of a subset of natural frequencies and mode

shapes of a structural system modeled by finite elements. While a complete dis-

cussion of the details is beyond the scope of this text, the following discussion
explains the basic premises. (See Bathe [6] for a very good, rigorous description

of the various techniques.) Using our notation, the eigenvalue problem that must

be solved to obtain natural frequencies and mode shapes is written as

t,Kl{A} : a21u11,+1 ( 10.17e)

The problem represented by Equation 10.119 is reduced in complexity by static

condensation (or, more often, Guyan reduction [11]) using the assumption that

all the structural mass can be lumped (concentrated) at some specific degrees

of freedom without significantly affecting the frequencies and mode shapes of
interest. Using the subscript a (active) to represent degrees of freedom of inter-

est and subscript c (constrained) to denote all other degrees of freedom Equa-

tion 10.179 can be partitioned into

In Equation 10.180, fMoolis a diagonal matrix, so the mass has been lumped at

the degrees of freedom of interest. The "constrained" degrees of freedom are

constrained only in the sense that we assign zero mass to those degrees. The

lower partition of Equation 10.180 is

lK,"l{A"} * [K..]{A.} : {0} (10. r 81)

lif,::l [f:.]l {lfl } 
:,'l'r;i 

[s]l {li.i } r'0 
''0,
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and this equation cirn be solved as

{A,} : -[K,,]'[K,,,]1A,,] ( 10.1 82)

to elin-rinate { A, }. Substituting Eqr-ration 10. lt32 into the upper partition o1 Equa-

tion 10.180. we obtain

([K""] - [K,,, ll K,.,.f 1[K.,, l){A.} : a2lM,,,,f{A,)r (10.183)

as the retlLtced eigenvttlue prcblem. Note that all terms of the clriginal stiffhess

matrix are retained but not those of the mass matrix. Another way of saying this

is that the stiffness matrir. is exact but the mass matrix is approximate.
The difficult part of this reduction procedure lies in selecting the degrees of

freedom to be retained and iissociated with the lumped nass terms. Fortunately,

finite element software systems have such selectiorr built into the software.

The user generally neecl specify only the number of degrees of freedom to be re-

tained, and the software selects those degrees of lieedom based on the smallest

ratios of diagonal terms of the stilfness and mass matrices. Other algorithms are

used if the uscr is interestcd in obtaining the dynamic modes within a specified

fiequency. In any case, the retained degrees o1 lreedom are most often called

dt'ncunir: tlegrees of freedom or nutster clegrees oJ'J'reedttm.

This discussion is meant to be fbr gencrai infbrmation and does not represent

a hard and fast methocl for reducing and solving eigenvalue problems. lndeed.

ref'erence to Equation 
-l0. 

182 shows that the procedure requires finding the in-
verse of a huge matrix to accomplish the rcduction. Nevertheless, several power-
ful techniques have been dcveloped around the general reduction idea. These

include subspace iteration [12] and the Liu.rczos method Ll3]. The user of a pirr-

ticular finite element analysis software syster-n must become lamiliar with the

variolrs options prcsented fbr dynarr-ric analysis, as multipie computational
schemes are available, depending on model size and user needs.

1O" 13 SUMMARY
Thc application of the llnite elernenl rnethod to structural clynamics is introduced in the

general context of linear systcms. The basic ideas ofnatural frequency and mode shapes are

introduced using both discretc spring-mtrss systems and general structural elements. Use of
the natulal modes o1'viblation to solve more -general problems of tbrced vibrtition is ern-

phasized. In addition. the Ncwlnark finite diffbrence rnethod tbr solving transient response

to general forcing tunctions is devcloped" TI.re chapter is intcnded only as a general intro-
duction to structural dynamics.Indeecl. many fine texts are de voted completely to the topic.

REFEREI,lGES
l. Inman, D. J. Engitrcering Vibrotittn, 2nd ed. Upper Saddle River. NJ: Plentice-

Hall. 2001 .

2. Hutton. D. Y. Applie d Mecl'tutit:ul Vil:rcLtittns. New York: McGraw-Hill, 1980.

3. Huebner, K. H., and E. A. Thornton. The F'inite El.enrent Method fbr Engineers,

2nd ed. New York: John Wilev and Sons. 1982.

443

)

a

.t

S

r1

t-

ilt

l)



cHAPTER lO Structural Dvnamics

4. Ginsberg, J . H. Advanced Engineering Dynamics, 2nd ed. New York: Cambridge

University Press, 1985.

5. Goldstein, H. Classical Mechanics,2nd ed. Reading. MA: Addison-Wesley, 1980.

6. Bathe, K.-J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 1996.

7. Newmark, N. M. "A Method of Computation for Structural Dynamics." ASCE

Journal of Engineering, Mechanics Division 85 (1959).

8. Zienkiewicz, O. C. The Finite Method, 3rd ed. New York: McGraw -Hlll, 1977 .

g. ANSIS (Jser's Reference Manual. Houghton, PA: Swanson Analysis Systems Inc.,

2001.

10. Zeid,I. CAD/CAM Theory ctnd Practice. New York: McGraw-Hill, 1991.

11. Guyan, R. J. "Reduction of Stiffness and Mass Matrices." AIAA Journal3, no.2
(1965).

12. Bathe, K.-J. "Convergence of Subspace Iteration." In Formulations and Numerical

Algorithms in Finite Element Analysls. Cambridge, MA: MIT Press, 1977.

13. Lanczos, C. "An Iteration Method for the Solution of the Eigenvalue Problem

ofLinbar Differential and Integral Operators." Journal ofthe Research ofthe
National Bureau of Standards 45 (1950).

PROBTEMS
10.1 Verify by direct substitution that Equation 10.5 is the general solution of

Equation 10.4.

10.2 Asimple harmonic oscillatorhas m : 3 kg, ft : 5 N/mm. Themass receives

an impact such that the initial velocity is 5 mm/sec and the initial displacement

is zero. Calculate the ensuing free vibration.

10.3 The equilibrium deflection of a spring-mass system as in Figure 10'1 is

measured to be l 4 in. Calculate the natural circular frequency, the cyclic
frequency, and period offree vibrations.

10.4 Show that the forced amplitude given by Equation 10.28 can be expressed as

u:.X', r+l
with X0 : Fol k equivalent irr, Orrr-rn andr : ay la = Jrequency raho.

10'5 Determine the solution to Equation 10'26 for the case <oy : co ' Note that' for
this condition, Equation 10.29 is not the correct solution.

10.6 Combine Equations 10.5 and 10.29 to obtain the complete response of a simple

harmonic oscillator, including both free and forced vibration terms. Show that,

for initial conditions given byr(t : 0) : r0 andi(r : 0) : v0, the complete

response becomes

"(/) 
: * sin tor * re cos co/ * t'|tr- to1l - r sin o/)

with Xs and r as deflned in Problem 10.4.

10.7 Use the result of Problem 10.6 with -rs - v0 : 0, r : 0.95, Xo : 2,

or : 10 radlsec and plot the complete response x(t) for several motion cycles.
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Problems

10.8 For the problem in Example 10.2, what initial conditions would be required so

that the system moved (a) in the fundamental mode only or (b) in the second

mode only?

10.9 Using the data and solution of Example 10.2, normalize the modal matrix per

the procedure of Section 10.7 and verify that the differential equations are

uncoupled bY the Procedure.

10.10 Using the two-element solution given in Example 10.4, determine the modal

amplitude vectors. Normalize the modal amplitude vectors and show that matrix

product Alr IMIA] is the iclentity matrix.

10.11 The 2 degrees-of-freedom system in Figure 10.4 is subjected to an external

force F2 : 10 sin 8r lb applied to node 2 and external force F: : 6 sin 4r Ib

applied to node 3. Use the normalized modal matrix to uncouple the differential

equations and solve for the forced response of the nodal displacements. Use the

numerical data of ExamPle 10.2.

10.12 Solve the problem of Example 10.4 using two equal-length bar elements except

that the mass matrices are lumped; that is, take the element mass matrices as

, ,,,, r ,r,r pALll 0-l
lm l:lm'l: + Lo t.l

How do the computed naturai frequencies compare with those obtained using

consistent mass matrices?

10.13 Obtain a refined solution for Example 10.4 using three equal-lengtb elements

and lumped mass matrices. How do the frequencies compare to the two-element

solution?

10.14 Considering the rotational degrees of freedom involved in a beam element, how

would one define a lumped mass matrix for a beam element?

10.15 Verify the consistent mass matrix for the beam element given by Equation 10'78

by direct integration.

10.16 Verify the mass matrix result of Example 10.6 using Gaussian quadrature

numerical integration.

10.17 Show that, within the acculacy of the calculations as given, the sum of all terms

in the rectangular element mass matrix in Example 10.6 is twice the total mass

of the element. WhY?

10.18 What are the values of the terms of a lumped mass matrix for the element in

Example 10.6?

10.19 Assume that the dynamic response equations for a finite element have been

uncoupled and are given by Equation 10.120 but the external forces are not

sinusoidal. How would you solve the differential equations for a general forcing

function or functions?

10.20 Given the solution data of Example 10.7, assume that the system is changed to

include damping such that the system damping matrix (afler setting u 1 : 0) is

given by

tct:

Show that the matrix product [A]i tCllAl matnx.

).

ple
at,

.e

f2, -ct^
l-c zc

Lo -c

ol
-cl.l

does not result in a diagonal
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10.21 Perlbrm rhe matrix rnultiplications indicatecl in Equation 10'177 to verify the

result given in Equation l0'178'

|t.22ForthetrussinExarnplel0.l0.refbrrrrulatethesystemlnassl-natflxuslng
Irrmpedelenrentmassmatrices.Resolvelbrtheliequenciesanclmodeshapes
usingthefiniteelementsottwareavailabletoyou.ilithasthe-lunlpedmatrix
availableasanoption(mostfiniteelementsoftwar.eincluclesthisoption).

10.23 If you fonnally ryp1y a leduction procetlure such as outlir.red in Section 1012'

which clegrees orrfreedo'n would be important to retain if' say' we wish to

compute only four of the eight frequencies'l


