ES128: Homework 6 Due in class on Wednesday, 5 May 2010

Problem 1

Calculate the mass matrix for the two-dimensional square element shown in Fig. 1. The element has uniform thickness t and uniform density ρ.

Fig. 1

Problem 2

The four node parallelogram element shown below has uniform density and thickness. By integration, determine the consistent mass matrix (Hint: use the results of Problem 1 and the isoparametric formulation)

Problem 3

Cross-sectional area of the bar (as shown in Fig. 2) varies linearly from A_{0} at the left end to γA_{o} at the right end, where γ is a constant. Determine the consistent mass matrix that operates on axial degree of freedom u_{1} and u_{2}.

Fig. 2

Problem 4

Only axial motion is permitted in the system shown in Fig. 3. Let $\mathrm{k}=1$ and $\mathrm{m}=2$. Determine the fundamental vibration frequency ω_{1} of the given system.
Then calculate ω_{1} after condensing the system to a single degree of freedom using Guyan reduction.

Fig. 3

Problem 5

A particle of unit mass is supported by a spring of unit stiffness, so $\omega_{1}=1$. There is no damping. At time $t=0$, when the particle has zero displacement and zero velocity, a unit force is applied and maintained. Use the central difference method to calculate displacement versus time over successive time steps as follows

1) Use $D t=0.5$ and go to $t=7$
2) Use $\mathrm{Dt}=1$ and go to $\mathrm{t}=7$
3) Use $\mathrm{Dt}=2$ and go to $\mathrm{t}=10$
4) Use $\mathrm{Dt}=3$ and go to $\mathrm{t}=15$

Compare the results obtained above in terms of displacements versus time. (Hint: implement the algorithm in Matlab)

