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ES128: Homework 3 
Solutions 

 
 
Problem 1 
Derive the equilibrium equations and the relations between strains 

( rrε , θθε , zzε , θεr , rzε , zθε ) and displacements in cylindrical coordinates with 

θcos1 rx = , θsin2 rx = , and zx =3 .  

 

Solution 
  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

Fig. 1 shows an element ABCDEFGH of with 6 surfaces. In surface (1) (surface 
ABCD), the stresses in r, θ , and z directions are 
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On surface (2) (surface BCFG), the stresses inθ , r, and z directions are 
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On surface (3) (surface EFGH), the stresses in r, θ , and z directions are 
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On surface (4) (surface AEHD), the stresses in θ , r, and z directions are 
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On surface (5) (surface AEFB), the stresses in z, r, and θ  directions are 
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On surface (6) (surface DHGC), the stresses in  z, r, and θ  directions are 
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The conditions that the momentums are zero yield that  

rr θθ σσ = ; θθ σσ zz = ; zrra σσ = . 

In the r direction, the resultant force is zero. Thus 
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Since ( ) 2/2/sin θθ ≈  and ( ) 12/cos ≈θ , we obtain 
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Similarly, the condition that the resultant force is zero in the θ  direction gives 
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The condition that the resultant force is zero in the z direction gives 
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Next, let us analyze the relations between strains and displacements in cylindrical 
coordinates 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 



Problem 2 
Elastic bulk modulus B is defined as the stiffness under hydrostatic pressure, 
namely, 

 
V

V
Bp
∆
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Here ∆V / V  is the volumetric strain caused by the hydrostatic pressure p.   
(a) Show that the volumetric strain ∆V / V  relates to the axial strains as 

             zzyyxx
V

V
εεε ++=

∆
.  

(b) Express the bulk modulus B in terms of Young’s modulus and 
Poisson’s ratio. 

(c) What is the value of Poisson’s ratio when the material is 
incompressible?  Interpret your result under uniaxial stress state. 

(d) Show that Poisson’s ratio must be smaller than ½.  What would 
happen if Poisson’s ratio were greater than ½? 

 

Solution 
(a) Assume that the original dimensions are X Y Z in x, y, and z directions, 
respectively. After deformation, the current dimensions are X+∆X, Y+∆Y, and 
Z+∆Z, respectively. The volumetric strain  
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,  

where ∆X, ∆Y, ∆Z are assumed to be small, compared to X, Y, Z, respectively. 
We only keep the linear terms in the above equation 
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(b) With Hooke’s law ( )( ),1
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Under hydrostatic pressure, pzyx −=== σσσ , thus, 
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(c) When v=0.5, the material is incompressible. For uniaxial stress state,  
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(d) Since )3(
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∆
. Thus v must be smaller than 1/2. If v is greater than 

1/2, with hydrostatic pressure, the volume of the body can increase. 



Problem 3 
Stress concentration at geometric discontinuities is the most important practical 
result in elasticity theory.  For example, for a small circular hole in a large plate 
under uniaxial stress S, the elasticity solution gives the hoop stress around the 
hole: 

 ( )θσ θθ 2cos21 −= S  

Here the polar angle θ  is measured from the loading direction.  The problem is 
solved in many elasticity textbooks. 

a) Under uniaxial tension, indicate the highest tensile stress around the hole. 
b) Under uniaxial compression, indicate the highest tensile stress around the 

hole. 
c) Calculate the stress concentration at the hole when the plate is under a 

pure shear stress. Use the above solution and linear superposition. 
 

Solution 
(a) Under uniaxial tension, the tensile stress is the highest at 2/πθ =  ( S3=θθσ ). 

(b) Under uniaxial compression, the tensile stress is the highest at 0=θ  

( S−=θθσ ). 

(c)  
 
 
 

 
 
 
 
 
 
 
 
In Fig. 3, case 1 is exactly same as case 2 (pure shear). The reason is as follows. 
Take a triangle free body from case 1 as shown if Fig.4.  
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Based on the force balance, it is easy to show that only the shear stress S is 
applied on the surface AC, and the normal stress is zero. Thus case 2 can be 
reduced to an easier problem of case 1. Based on linear superposition,  

θπθθσ θθ 2cos4))2/(2cos21()2cos21( SSS −=+−−−= ,  

where θ  is shown in Fig.3. The tensile stress is the highest at 2/πθ =  ( S4=θθσ ). 

 
Problem 4 
An elastic layer is sandwiched between two perfectly rigid plates, to which it is 

bonded. The layer is compressed between the plates, the direct stress being zσ . 

Supposing that the attachment to the plates prevents lateral strain xε , yε  

completely, find the apparent Young’s modulus (that is zz εσ / ) in terns of E and v. 

Show that it is many times E if the material of the layer has a Poisson’s ratio only 
slightly less than 0.5, e.g., rubber. 
 

Solution 
The shear stresses vanish, but all the three axial stresses xσ , yσ ,  zσ  are nonzero. 

By symmetry, we note that 

                                                     xσ = yσ  
Because the elastic layer is bonded to the rigid plate, the two components of 
strain vanish: 

                                                   0== yx εε  

That is, the elastic layer is in a state of uniaxial strain: 0≠zε . Using Hooke’s law, 

we obtain that 
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Using Hooke’s law again, we obtain that 
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When v is only slightly less than 0.5, e.g., for rubbers, the apparent Young’s 
modulus is many times E. 
 


