ES128: Homework 3
Solutions

Problem 1
Derive the equilibrium equations and the relations between strains

(&1 sEpprE,s Evas Ery» €, ) and displacements in cylindrical coordinates with

x,=rcosd, x, =rsind,and x, =z.

Solution

Fig1

Fig. 1 shows an element ABCDEFGH of with 6 surfaces. In surface (1) (surface
ABCD), the stresses inr, @, and z directions are
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On surface (2) (surface BCFG), the stresses in @, r, and z directions are
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On surface (3) (surface EFGH), the stresses in r, 8, and z directions are
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On surface (4) (surface AEHD), the stresses in 8, r, and z directions are
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On surface (5) (surface AEFB), the stresses in z, r, and & directions are
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On surface (6) (surface DHGC), the stresses in z, r, and @ directions are
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The conditions that the momentums are zero yield that
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In the r direction, the resultant force is zero. Thus
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Since sin(d/2)~ 6 /2 and cos(f/2)~ 1, we obtain
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Similarly, the condition that the resultant force is zero in the ¢ direction gives
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The condition that the resultant force is zero in the z direction gives
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Next, let us analyze the relations between strains and displacements in cylindrical
coordinates

Consider first the displacement in the r-direction, u,. We see from Fig. 2a
that
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From the same figure, we see also that a radial displacement of a circumfer-

“ential element causes an elongation of that element and, hence, a strain in the 6-
direction. The element ab, which was originally of length r d#6, is displaced to a’b’

and becomes of length (r + u,) df. The tangential strain due to this radial dis-
placement is, therefore,
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On the other hand, as shown in Fig. 2b , the tangential displacement u, gives
rise to a tangential strain equal to
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The total tangential strain'is
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The normal strain in the axial direction is
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as in the case of rectangular coordinates.

- The shearing strain e, is equal to one-half of the change of angle £C'a’d’
— £Cab, as illustrated in Fig. 2c . A direct examination of the figure shows
that
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The first term comes from the change in the radial displacement in the 6-direction,
the second term comes from the change in the tangential displaccmént in the radial
direction, and the last term appears since part of the change in slope of the line
a'C' t:omes from the rotation of the element as a solid body about the axis through
o. .
'~ The remaining strain components, €., and €., can be, dcrwed_ with rc_fcrencc
to Figs. 2b and 2e. We have
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Fig. 2 D:splaccment in cylindrical polar coordinates. (From E. E.

Sechler, Elasticity in Engineering, Courtesy Mrs. Magaret Sechler.) A
 free-body diagram of an infinitesimal element of material and two
systems of coordinates are shown at the lower left corner. (a) Radial
strain due to variation of the radial displacement field in the radial
direction. (b) Circumferential strain due to variation of circumferential
displacement in the circumferential direction. (c) du,/dr and (1/r)du,/26
cause shear strain e,,. (d) du,/dr and du;/3z cause shear strain e,,.
{e) (1/r)du./30 and au,/3z cause shear strain e, ,.



Problem 2
Elastic bulk modulus B is defined as the stiffness under hydrostatic pressure,
namely,
AV
p=-B v
Here AV / V is the volumetric strain caused by the hydrostatic pressure p.
(a) Show that the volumetric strain AV / V' relates to the axial strains as
AV
?:‘C“xx +&, +tE,.
(b) Express the bulk modulus B in terms of Young’s modulus and
Poisson’s ratio.
(¢) What is the value of Poisson’s ratio when the material is
incompressible? Interpret your result under uniaxial stress state.
(d) Show that Poisson’s ratio must be smaller than 2. What would
happen if Poisson’s ratio were greater than /2?

Solution
(a) Assume that the original dimensions are X Y Z in x, y, and z directions,
respectively. After deformation, the current dimensions are X+ AX, Y+AY, and
Z+ AZ, respectively. The volumetric strain

AV (X+AX)Y +AY)Z +AZ)- XYZ

1% XYZ ’
where AX, AY, AZ are assumed to be small, compared to X, Y, Z, respectively.
We only keep the linear terms in the above equation
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(b) With Hooke’s law ¢, = %(ax - v(ay +0, )), &, = %(ay ~v(o, +0, )), and
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g, = %(az - v(ax +o, )), we obtain that
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Under hydrostatic pressure, o, =, =0, =-p, thus,
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(c) When v=0.5, the material is incompressible. For uniaxial stress state,

1 v 1 AV
&, =—0,;¢6,=¢,=——0,=———0,. Thus, —=¢,+¢,+¢&,=0.
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(d) Since E7a = 3 (—=3p). Thus v must be smaller than 1/2. If v is greater than

1/2, with hydrostatic pressure, the volume of the body can increase.




Problem 3
Stress concentration at geometric discontinuities is the most important practical
result in elasticity theory. For example, for a small circular hole in a large plate
under uniaxial stress S, the elasticity solution gives the hoop stress around the
hole:
Oy = S(1 —2C0Ss 20)

Here the polar angle € is measured from the loading direction. The problem is
solved in many elasticity textbooks.

a) Under uniaxial tension, indicate the highest tensile stress around the hole.

b) Under uniaxial compression, indicate the highest tensile stress around the
hole.

c) Calculate the stress concentration at the hole when the plate is under a
pure shear stress. Use the above solution and linear superposition.

Solution

(a) Under uniaxial tension, the tensile stress is the highestat 6 =7 /2 (o, =3S).
(b) Under uniaxial compression, the tensile stress is the highest at =0
(o4 =-S).

(c)
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In Fig. 3, case 1 is exactly same as case 2 (pure shear). The reason is as follows.
Take a triangle free body from case 1 as shown if Fig.4.
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Based on the force balance, it is easy to show that only the shear stress S is
applied on the surface AC, and the normal stress is zero. Thus case 2 can be
reduced to an easier problem of case 1. Based on linear superposition,

04 =S(1—2c0s20)-S(1—-2cos2(6+7/2))=—-4S cos20,

where 6 is shown in Fig.3. The tensile stress is the highestat 6 =z /2 (o, =4S).

Problem 4
An elastic layer is sandwiched between two perfectly rigid plates, to which it is
bonded. The layer is compressed between the plates, the direct stress being o, .

Supposing that the attachment to the plates prevents lateral strain ¢, , ¢,

completely, find the apparent Young’s modulus (that is o, /¢, ) in terns of E and v.

Show that it is many times E if the material of the layer has a Poisson’s ratio only
slightly less than 0.5, e.g., rubber.

Solution

The shear stresses vanish, but all the three axial stresses o, o,, o, are nonzero.

By symmetry, we note that
o,=0,
Because the elastic layer is bonded to the rigid plate, the two components of
strain vanish:
£, =&,=0
That is, the elastic layer is in a state of uniaxial strain: &, # 0. Using Hooke’s law,
we obtain that
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Using Hooke’s law again, we obtain that
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The apparent Young’s modulus
o, _ (1-v)E
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When v is only slightly less than 0.5, e.g., for rubbers, the apparent Young’s
modulus is many times E.



