ES128: Homework 6 Solutions

Problem 1

Calculate the mass matrix for the two-dimensional square element shown in Fig. 1. The element has uniform thickness t and uniform density ρ .

Solution

The shape functions are $N_1(x,y) = \frac{1}{4}(1-x)(1-y), N_2(x,y) = \frac{1}{4}(1+x)(1-y),$ $N_3(x,y) = \frac{1}{4}(1+x)(1+y), \text{ and } N_4(x,y) = \frac{1}{4}(1-x)(1+y).$ The mass matrix is $\iiint_V [N]^T [N] \rho dV = \rho t \int_{-1-1}^{1} [N]^T [N] dx dy$ $= \rho t \begin{bmatrix} 4/9 & 2/9 & 1/9 & 2/9 & 0 & 0 & 0 & 0 \\ 2/9 & 4/9 & 2/9 & 1/9 & 0 & 0 & 0 & 0 \\ 1/9 & 2/9 & 4/9 & 2/9 & 0 & 0 & 0 & 0 \\ 2/9 & 1/9 & 2/9 & 4/9 & 2/9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4/9 & 2/9 & 1/9 & 2/9 \\ 0 & 0 & 0 & 0 & 2/9 & 4/9 & 2/9 & 1/9 & 2/9 \\ 0 & 0 & 0 & 0 & 0 & 1/9 & 2/9 & 4/9 & 2/9 \\ 0 & 0 & 0 & 0 & 0 & 1/9 & 2/9 & 4/9 & 2/9 \\ 0 & 0 & 0 & 0 & 0 & 2/9 & 4/9 & 2/9 & 1/9 \\ 0 & 0 & 0 & 0 & 0 & 2/9 & 1/9 & 2/9 & 4/9 & 2/9 \end{bmatrix}$

Problem 2

The four node parallelogram element shown below has uniform density and thickness. By integration, determine the consistent mass matrix (Hint: use the results of Problem 1 and the isoparametric formulation).

Solution

The shape functions in the parent domain are

$$N_{1}(r,s) = \frac{1}{4}(1-r)(1-s),$$

$$N_{2}(r,s) = \frac{1}{4}(1+r)(1-s),$$

$$N_{3}(r,s) = \frac{1}{4}(1+r)(1+s),$$

$$N_{4}(r,s) = \frac{1}{4}(1-r)(1+s).$$

The gradient in the parent domain is

$$GN = \begin{bmatrix} \frac{\partial N_1}{\partial r} & \frac{\partial N_2}{\partial r} & \frac{\partial N_3}{\partial r} & \frac{\partial N_4}{\partial r} \\ \frac{\partial N_1}{\partial s} & \frac{\partial N_2}{\partial s} & \frac{\partial N_3}{\partial s} & \frac{\partial N_4}{\partial s} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} s - 1 & 1 - s & 1 + s & -s - 1 \\ r - 1 & -r - 1 & 1 + r & 1 - r \end{bmatrix}$$

The element coordinate matrix is $[x y] = \begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 3 & 2 \\ 1 & 2 \end{bmatrix}$.

The Jacobian matrix is $J=(GN)[x y] = \begin{bmatrix} 1 & 0 \\ 0.5 & 1 \end{bmatrix}$, and det(J)=1.

The mass matrix is given by $\iiint [N]^T [N] \rho dV = \rho t \int_{0}^{1} \int_{0}^{1} [N]^T [N] \det J dx dy$

V	-1-1							
= <i>p</i> t	[4/9	2/9	1/9	2/9	0	0	0	0
	2/9	4/9	2/9	1/9	0	0	0	0
	1/9	2/9	4/9	2/9	0	0	0	0
	2/9	1/9	2/9	4/9	0	0	0	0
	0	0	0	0	4/9	2/9	1/9	2/9
	0	0	0	0	2/9	4/9	2/9	1/9
	0	0	0	0	1/9	2/9	4/9	2/9
	lo	0	0	0	2/9	1/9	2/9	4/9_

Problem 3

Cross-sectional area of the bar (as shown in Fig. 3) varies linearly from A_0 at the left end to γA_0 at the right end, where γ is a constant. Determine the consistent mass matrix that operates on axial degree of freedom u_1 and u_2 .

Solution

The shape functions are

$$N_1(x) = \frac{L - x}{L},$$
$$N_2(x) = \frac{x}{L}.$$

The function of cross-sectional area is $A_0 + (\gamma - 1)A_0 \frac{x}{L}$.

The mass matrix is
$$m = \rho \int_{V} N^{T} N dV = \rho \int_{0}^{L} N^{T} N \left(A_{0} + (\gamma - 1) A_{0} \frac{x}{L} \right) dx$$
$$= \frac{\rho A_{0} L}{12} \begin{bmatrix} \gamma + 3 & \gamma + 1 \\ \gamma + 1 & 3\gamma + 1 \end{bmatrix}.$$

Problem 4

Only axial motion is permitted in the system shown in Fig. 4. Let k=1 and m=2. Determine the fundamental vibration frequency ω_1 of the given system. Then calculate ω_1 after condensing the system to a single degree of freedom using Guyan reduction.

Solution

The global stiffness matrix is
$$\begin{bmatrix} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{bmatrix}$$
.
The global mass matrix is
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix}$$
.

The left end is fixed, so the equations of motion can be expressed as

$$\begin{bmatrix} m & \mathbf{0} \\ \mathbf{0} & m \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{bmatrix} + \begin{bmatrix} 2k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{0} \, .$$

Let

$$\begin{vmatrix} 2k - \omega^2 m & -k \\ -k & k - \omega^2 m \end{vmatrix} = 0,$$

where ω is the natural frequency, and we can obtain $\omega_1 = 0.6180\sqrt{k/m} = 0.437$ and $\omega_2 = 1.6180\sqrt{k/m} = 1.1441$.

Use Guyan reduction, let node 2 the master node, and eliminate the degree of freedom of node 1, so $K_{mm} = [k]$; $K_{ms} = [-k]$; $K_{sm} = [-k]$; $K_{ss} = [2k]$. The transformation matrix

$$\mathbf{T} = \begin{bmatrix} I \\ -K_{ss}^{-1}K_{sm} \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}.$$

The reduced stiffness maxtrix is $\widetilde{K} = T^{T}KT = \begin{bmatrix} 1 & 0.5 \end{bmatrix} \begin{bmatrix} k & -k \\ -k & 2k \end{bmatrix} \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} = 0.5k$

The reduced mass maxtrix is $\widetilde{\mathbf{M}} = \mathbf{T}^{\mathrm{T}}\mathbf{M}\mathbf{T} = \begin{bmatrix} \mathbf{1} & \mathbf{0.5} \end{bmatrix} \begin{bmatrix} m & \mathbf{0} \\ \mathbf{0} & m \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{0.5} \end{bmatrix} = \mathbf{1.25}m.$

Let $\tilde{K} - \omega^2 \tilde{M} = 0$, we obtain $\omega = \frac{1}{\sqrt{2.5}} \sqrt{\frac{k}{m}} = 0.4472$, which is close to 0.437.

Problem 5

A particle of unit mass is supported by a spring of unit stiffness, so 1 ω =1. There is no damping. At time t=0, when the particle has zero displacement and zero velocity, a unit force is applied and maintained. Use the central difference method to calculate displacement versus time over successive time steps as follows

1) Use $\Delta t=0.5$ and go to t=7

2) Use $\Delta t=1$ and go to t=7

3) Use $\Delta t=2$ and go to t=10

4) Use $\Delta t=3$ and go to t=15

Solution

Using the central difference method, we can obtain the function $d_{n+1} = f(d_n, d_{n-1})$.

At t=0, $d_0=0$ and $\dot{d}_0=0$. Based on $\dot{d}_0 = \frac{d_0 - d_{-1}}{\Delta t}$, we can obtain $d_{-1}=0$. With $d_{n+1} = f(d_n, d_{n-1})$, we can get $d_1, d_2 \dots$ Fig. 5 shows the results for cases 1, 2, 3, and 4. As we can see, we can get the more accurate results by decreasing Δt .

Fig. 5