ES128: Homework 6 Solutions

Problem 1

Calculate the mass matrix for the two-dimensional square element shown in Fig. 1. The element has uniform thickness t and uniform density ρ.

Fig. 1

Solution

The shape functions are $N_{1}(x, y)=\frac{1}{4}(1-x)(1-y), N_{2}(x, y)=\frac{1}{4}(1+x)(1-y)$,
$N_{3}(x, y)=\frac{1}{4}(1+x)(1+y)$, and $N_{4}(x, y)=\frac{1}{4}(1-x)(1+y)$.
The mass matrix is $\iiint_{V}[N]^{T}[N] \rho d V=\rho t \int_{-1-1}^{1} \int_{2}^{1}[N]^{T}[N] d x d y$

$$
=\rho t\left[\begin{array}{cccccccc}
4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 & 0 & 0 & 0 & 0 \\
2 / 9 & 4 / 9 & 2 / 9 & 1 / 9 & 0 & 0 & 0 & 0 \\
1 / 9 & 2 / 9 & 4 / 9 & 2 / 9 & 0 & 0 & 0 & 0 \\
2 / 9 & 1 / 9 & 2 / 9 & 4 / 9 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 \\
0 & 0 & 0 & 0 & 2 / 9 & 4 / 9 & 2 / 9 & 1 / 9 \\
0 & 0 & 0 & 0 & 1 / 9 & 2 / 9 & 4 / 9 & 2 / 9 \\
0 & 0 & 0 & 0 & 2 / 9 & 1 / 9 & 2 / 9 & 4 / 9
\end{array}\right] .
$$

Problem 2

The four node parallelogram element shown below has uniform density and thickness. By integration, determine the consistent mass matrix (Hint: use the results of Problem 1 and the isoparametric formulation).

Solution

The shape functions in the parent domain are

$$
\begin{aligned}
& N_{1}(r, s)=\frac{1}{4}(1-r)(1-s), \\
& N_{2}(r, s)=\frac{1}{4}(1+r)(1-s), \\
& N_{3}(r, s)=\frac{1}{4}(1+r)(1+s), \\
& N_{4}(r, s)=\frac{1}{4}(1-r)(1+s) .
\end{aligned}
$$

The gradient in the parent domain is

$$
\mathrm{GN}=\left[\begin{array}{cccc}
\frac{\partial N_{1}}{\partial r} & \frac{\partial N_{2}}{\partial r} & \frac{\partial N_{3}}{\partial r} & \frac{\partial N_{4}}{\partial r} \\
\frac{\partial N_{1}}{\partial s} & \frac{\partial N_{2}}{\partial s} & \frac{\partial N_{3}}{\partial s} & \frac{\partial N_{4}}{\partial s}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
s-1 & 1-s & 1+s & -s-1 \\
r-1 & -r-1 & 1+r & 1-r
\end{array}\right]
$$

The element coordinate matrix is $[\mathrm{xy}]=\left[\begin{array}{cc}\mathrm{o} & \mathrm{o} \\ 2 & 0 \\ 3 & 2 \\ 1 & 2\end{array}\right]$.
The Jacobian matrix is $J=(\mathrm{GN})[\mathrm{x} y]=\left[\begin{array}{cc}1 & 0 \\ 0.5 & 1\end{array}\right]$, and $\operatorname{det}(J)=1$.

The mass matrix is given by $\iiint_{V}[N]^{T}[N] \rho d V=\rho t \int_{-1-1}^{1} \int^{1}[N]^{T}[N] \operatorname{det} \mathrm{J} d x d y$

$$
=\rho t\left[\begin{array}{cccccccc}
4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 & 0 & 0 & 0 & 0 \\
2 / 9 & 4 / 9 & 2 / 9 & 1 / 9 & 0 & 0 & 0 & 0 \\
1 / 9 & 2 / 9 & 4 / 9 & 2 / 9 & 0 & 0 & 0 & 0 \\
2 / 9 & 1 / 9 & 2 / 9 & 4 / 9 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 / 9 & 2 / 9 & 1 / 9 & 2 / 9 \\
0 & 0 & 0 & 0 & 2 / 9 & 4 / 9 & 2 / 9 & 1 / 9 \\
0 & 0 & 0 & 0 & 1 / 9 & 2 / 9 & 4 / 9 & 2 / 9 \\
0 & 0 & 0 & 0 & 2 / 9 & 1 / 9 & 2 / 9 & 4 / 9
\end{array}\right] .
$$

Problem 3

Cross-sectional area of the bar (as shown in Fig. 3) varies linearly from A_{o} at the left end to γA_{o} at the right end, where γ is a constant. Determine the consistent mass matrix that operates on axial degree of freedom u_{1} and u_{2}.

Fig. 3

Solution

The shape functions are

$$
\begin{aligned}
& N_{1}(x)=\frac{L-x}{L} \\
& N_{2}(x)=\frac{x}{L}
\end{aligned}
$$

The function of cross-sectional area is $A_{\mathrm{o}}+(\gamma-1) A_{\mathrm{o}} \frac{x}{L}$.

The mass matrix is $\mathrm{m}=\rho \int_{V} N^{T} N d V=\rho \int_{\mathrm{o}}^{L} N^{T} N\left(A_{\mathrm{o}}+(\gamma-1) A_{\mathrm{o}} \frac{x}{L}\right) d x$

$$
=\frac{\rho A_{0} L}{12}\left[\begin{array}{cc}
\gamma+3 & \gamma+1 \\
\gamma+1 & 3 \gamma+1
\end{array}\right]
$$

Problem 4

Only axial motion is permitted in the system shown in Fig. 4. Let $\mathrm{k}=1$ and $\mathrm{m}=2$. Determine the fundamental vibration frequency ω_{1} of the given system. Then calculate ω_{1} after condensing the system to a single degree of freedom using Guyan reduction.

Fig. 4

Solution

The global stiffness matrix is $\left[\begin{array}{ccc}k & -k & 0 \\ -k & 2 k & -k \\ 0 & -k & k\end{array}\right]$.
The global mass matrix is $\left[\begin{array}{ccc}\mathrm{O} & \mathrm{o} & \mathrm{o} \\ \mathrm{o} & m & \mathrm{o} \\ \mathrm{o} & \mathrm{o} & m\end{array}\right]$.
The left end is fixed, so the equations of motion can be expressed as

$$
\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right]+\left[\begin{array}{cc}
2 k & -k \\
-k & k
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=0 .
$$

Let

$$
\left|\begin{array}{cc}
2 k-\omega^{2} m & -k \\
-k & k-\omega^{2} m
\end{array}\right|=0
$$

where ω is the natural frequency, and we can obtain $\omega_{1}=0.6180 \sqrt{k / m}=0.437$ and $\omega_{2}=1.618 \mathrm{o} \sqrt{k / m}=1.1441$.

Use Guyan reduction, let node 2 the master node, and eliminate the degree of freedom of node 1 , so $\mathrm{K}_{m m}=[k] ; \mathrm{K}_{m s}=[-k] ; \mathrm{K}_{s m}=[-k] ; \mathrm{K}_{s s}=[2 k]$.
The transformation matrix

$$
\mathrm{T}=\left[\begin{array}{c}
I \\
-K_{s s}^{-1} K_{s m}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.5
\end{array}\right] .
$$

Let $\tilde{\mathrm{K}}-\omega^{2} \tilde{\mathrm{M}}=0$, we obtain $\omega=\frac{1}{\sqrt{2.5}} \sqrt{\frac{k}{m}}=0.4472$, which is close to 0.437 .

Problem 5

A particle of unit mass is supported by a spring of unit stiffness, so $1 \omega=1$. There is no damping. At time $\mathrm{t}=\mathrm{o}$, when the particle has zero displacement and zero velocity, a unit force is applied and maintained. Use the central difference method to calculate displacement versus time over successive time steps as follows

1) Use $\Delta t=0.5$ and go to $t=7$
2) Use $\Delta t=1$ and go to $t=7$
3) Use $\Delta t=2$ and go to $t=10$
4) Use $\Delta t=3$ and go to $t=15$

Solution

Using the central difference method, we can obtain the function $d_{n+1}=f\left(d_{n}, d_{n-1}\right)$.
At $\mathrm{t}=\mathrm{o}, d_{\mathrm{o}}=0$ and $\dot{d}_{\mathrm{o}}=0$. Based on $\dot{d}_{\mathrm{o}}=\frac{d_{\mathrm{o}}-d_{-1}}{\Delta t}$, we can obtain $d_{-1}=0$.
With $d_{n+1}=f\left(d_{n}, d_{n-1}\right)$, we can get $d_{1}, d_{2} \ldots$ Fig. 5 shows the results for cases $1,2,3$, and 4 . As we can see, we can get the more accurate results by decreasing Δt.

Fig. 5

