
ES128: Homework 6 
Solutions 

 
 
Problem 1 

Calculate the mass matrix for the two-dimensional square element shown in 
Fig. 1. The element has uniform thickness t and uniform density ρ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 

The shape functions are )1)(1(
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Problem 2 
The four node parallelogram element shown below has uniform density and 
thickness. By integration, determine the consistent mass matrix (Hint: use the 
results of Problem 1 and the isoparametric formulation). 

 
 

 
 
 
 
 
 
 
 
 
Solution 
The shape functions in the parent domain are  
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The gradient in the parent domain is     
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The element coordinate matrix is [x y]=
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The Jacobian matrix is J=(GN)[x y]= 
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, and det(J)=1.  
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The mass matrix is given by ∫∫∫ ∫ ∫
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Problem 3 

Cross-sectional area of the bar (as shown in Fig. 3) varies linearly from 0A  at 

the left end to 0Aγ  at the right end, where γ  is a constant. Determine the 

consistent mass matrix that operates on axial degree of freedom 1u  and 2u . 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Solution 
The shape functions are  
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The mass matrix is m= ( ) dx
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Problem 4 

Only axial motion is permitted in the system shown in Fig. 4. Let k=1 and 

m=2. Determine the fundamental vibration frequency 1ω  of the given system. 

Then calculate 1ω  after condensing the system to a single degree of freedom 

using Guyan reduction. 

 
 
 
 
 
 
 
Solution 

The global stiffness matrix is 
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The global mass matrix is 
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The left end is fixed, so the equations of motion can be expressed as 
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where ω  is  the natural frequency, and we can obtain mk /6180.01 =ω =0.437 

and mk /6180.12 =ω =1.1441 . 

 
Use Guyan reduction, let node 2 the master node, and eliminate the degree of 

freedom of node 1, so K ][kmm= ; K ][ kms −= ; K ][ ksm −= ; K ]2[ kss= . 

The transformation matrix  
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The reduced stiffness maxtrix is [ ] k
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Problem 5 

A particle of unit mass is supported by a spring of unit stiffness, so 1 ω =1. 
There is no damping. At time t=0, when the particle has zero displacement 
and zero velocity, a unit force is applied and maintained. Use the central 
difference method to calculate displacement versus time over successive time 
steps as follows 
1) Use ∆ t=0.5 and go to t=7 
2) Use ∆ t=1 and go to t=7 
3) Use ∆ t=2 and go to t=10 
4) Use ∆ t=3 and go to t=15 

 
Solution 
Using the central difference method, we can obtain the function ( )11 , −+ = nnn ddfd . 

At t=0, 0d =0 and 0d
& =0. Based on 
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With ( )11 , −+ = nnn ddfd , we can get 1d , 2d … Fig. 5 shows the results for cases 1, 2, 3, 

and 4. As we can see, we can get the more accurate results by decreasing ∆ t. 
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