Observation of Quantum Shock Waves Created with Ultra-Compressed Slow Light Pulses in a Bose-Einstein Condensate

Zachary Dutton,1,2 Michael Budde,1,3 Christopher Slowe,1,2 Lene Vestergaard Ha1,2,3

We have used an extension of our slow light technique to provide a method for inducing small density defects in a Bose-Einstein condensate. These sub-resolution, micrometer-sized defects evolve into large-amplitude sound waves. We present an experimental observation and theoretical investigation of the resulting breakdown of superfluidity, and we observe directly the decay of the narrow density defects into solitons, the onset of the "snake" instability, and the subsequent nucleation of vortices.

Superfluidity in Bose condensed systems represents conditions where frictionless flow occurs because it is energetically impossible to create excitations. When these conditions are not satisfied, various excitations develop. Experiments on superfluid helium, for example, have provided evidence that the nucleation of vortex rings occurs when ions move through the fluid faster than a critical speed \(I \). Under similar conditions, shock waves would occur in a normal fluid \(\phi \). Such discontinuities are not allowed in a superfluid, and instead topological defects (such as quantized vortices and solitons) are nucleated when the spatial scale of induced density variations becomes on the order of the healing length. Optical resolution, micrometer-sized defects evolve into large-amplitude sound waves.

We have used an extension of our slow light technique to provide a method for inducing small density defects in a Bose-Einstein condensate. These sub-resolution, micrometer-sized defects evolve into large-amplitude sound waves. We present an experimental observation and theoretical investigation of the resulting breakdown of superfluidity, and we observe directly the decay of the narrow density defects into solitons, the onset of the "snake" instability, and the subsequent nucleation of vortices.
where ψ_1, ψ_2 are the macroscopic condensate wave functions associated with the two states $|1\rangle$ and $|2\rangle$.

For the parameters listed above, the probe pulse is spatially compressed from 0.8 km in free space to only 50 μm at the center of the cloud, at which point it is completely contained within the atomic medium. The corresponding peak density of atoms in $|2\rangle$, proportional to $|\psi_2|^2$, is 1/34 of the total atom density. The $|1\rangle$ atoms have a corresponding density depression.

From Eqs. 1 and 2, it is clear that to minimize the spatial scale of the density defect, we need to use short pulse widths and low coupling intensities. However, for all the frequency components of the probe pulse to be contained within the transmission window for propagation through the BEC (17), we need a pulse with a temporal width τ of at least $2D_{1/2} / \Omega_c \approx 0.3$ μs to avoid severe attenuation and distortion ($D = 520$ is the column density of a condensate in the z direction times the absorption cross section for on-resonance two-level transitions). Furthermore, we see from Eq. 2 that to maximize the amplitude of the density depression, it would be best to use a peak Rabi frequency for the probe of $\Omega_p \sim \Omega_c$. This also severely distorts the pulse.

Both of these distortion effects accumulate as the pulse propagates through clouds with large D. This motivated us to introduce a roadblock in the condensate for a light pulse approaching from the left side ($z < 0$). By imaging a razor blade onto the right half of the condensate, we ramp the coupling beam from full to zero intensity over the course of a 12-μm region in the middle of the condensate, determined by the optical resolution of the imaging system. In the illuminated region ($z < 0$), our bandwidth and weak-probe requirements are well satisfied and we get undistorted, unattenuated propagation through the first half of the cloud to the high-density, central region of the condensate. As the pulse enters the roadblock region of low coupling intensity, it is slowed down and spatially compressed. The exact shape and size of the defects created with this method are dependent on when absorption effects become important.

Theoretical model. To accurately model the pulse compression and defect formation, we account for the dynamics of the slow light pulses, the coupling field, and the atoms self-consistently. At sufficiently low temperatures, the dynamics of the two-component condensate can be modeled with coupled Gross-Pitaevskii equations (4, 5). Here, we include terms to account for the resonant two-photon light coupling between the two components:

$$i\hbar \frac{\partial}{\partial t} \psi_1 = \left[\frac{\hbar^2 \nabla^2}{2m} + V(r) + U_{11} |\psi_1|^2 + U_{12} |\psi_2|^2 \right] \psi_1 - i \Omega_p |\psi_2|^2 \psi_1$$

$$- i \Omega_p |\psi_2|^2 \psi_1 + i N \sigma_i \hbar k_z c |\psi_2|^2 \psi_1$$

where \hbar is the Planck constant divided by 2π, ∇ is the spatial gradient operator, and $V(r) = \frac{1}{2} m a_0^2 \left(\alpha (x^2 + y^2) + z^2 \right)$ where m is the mass of the sodium atoms and $\lambda = 3.8$. Because of the magnetic moment of atoms in state $|2\rangle$, $V(r) = -2 V(r)$, and atoms in this state are repelled from the trap. The EIT process involves absorption of a probe photon and stimulated emission of a coupling photon, leading to a recoil velocity of 4.1 cm/s for atoms in state $|2\rangle$. This is described by a term in the second part of Eq. 3, containing $k_y = k_y - k_y$, the difference in wave vectors between the two laser beams. (Here, we use a gauge where the recoil momentum is transformed away.) Atom-atom interactions are characterized by the scattering lengths, a_{ij}, via $U_{ij} = 4\pi N \hbar^2 a_{ij} / m$, where $a_{11} = 2.75$ nm, $a_{12} = a_{22} = 1.20 a_0$, and N is the total number of condensate atoms. To obtain the light coupling terms in Eq. 3, we have adiabatically eliminated the excited-state amplitude $\psi_3 (31)$, because the relaxation from spontaneous emission occurs much faster than the light coupling and external atomic dynamics driving ψ_3. In our model, atoms in $|3\rangle$ that spontaneously emit are assumed to be lost from the condensate, which is why the light coupling terms are non-Hermitian.

The last term in each equation accounts for losses due to elastic collisions between high-momentum $|2\rangle$ atoms and the nearly stationary $|1\rangle$ atoms ($\sigma_i = 8 \pi a_0^2 c^3$).

The spatial dynamics of the light fields are described classically with Maxwell’s equations in a slowly varying envelope approximation, again using adiabatic elimination of ψ_3:

$$\frac{\partial}{\partial x} \Omega_y = - \frac{1}{2} f_{ij} \sigma_i \sigma_i N_i (|\psi_1|^2 + \Omega_v \psi_1^* \psi_2)$$

$$\frac{\partial}{\partial x} \Omega_y = - \frac{1}{2} f_{ij} \sigma_i \sigma_i N_i (|\psi_2|^2 + \Omega_v \psi_1 \psi_2^*)$$

$$\frac{\partial}{\partial t} \psi_2 = \left[\frac{\hbar^2 \nabla^2}{2m} + V(r) + U_{12} |\psi_1|^2 \right] \psi_2 - i \Omega_p \psi_1$$

In the region where the coupling beam is illuminating the BEC ($z < 0$), the light coupling terms dominate the atomic dynamics, and Eqs. 4 and 3 yield Eqs. 1 and 2 above. We have performed numerical simulations in two dimensions (x and z) to track the behavior of the light fields and the atoms. The probe and coupling fields were propagated according to Eq. 4 with a second-order Runge-Kutta algorithm (33) and the atomic mean fields were propagated according to Eq. 3, with an Alter-*
nating-Direction Implicit variation of the Crank-Nicolson algorithm (33, 34). In this way, Eqs. 3 and 4 were solved self-consistently (35). Profiles of the probe pulse intensity along \(z \) through \(x = 0 \) are shown in Fig. 2A. As the pulse runs into the roadblock, a severe compression of the probe pulse’s spatial length occurs. When the probe pulse enters the low coupling region, the Rabi frequency \(|\Omega| \) becomes on the order of \(|\Omega| \). Thus, the density of state [2] atoms, \(N_{[2]} |\psi_i|^2 \), increases in a narrow region, which is accompanied by a decrease in \(N_{[1]} |\psi_i|^2 \) (Fig. 2B). The half-width of the defect is 2 \(\mu m \). As the compression develops, absorption and spontaneous emission events eventually start to remove atoms from the condensate and reduce the probe intensity.

Observation of localized impurity formation in a Bose-Einstein condensate. Experimental results are shown in Fig. 1. Figure 1A is an in-trap image of the original condensate of \(|1 \rangle \) atoms, Fig. 1B diagrams the beam geometry, and Fig. 1C shows a series of images of state [2] atoms as the pulse propagates into the roadblock. The corresponding optical density (OD) profiles along \(z \) through \(x = 0 \) are also shown. OD is defined to be \(-\ln(I/I_0)\), where \((I/I_0)\) is the transmission coefficient of the imaging beam. All imaging is done with near-resonant laser beams propagating along the \(y \) axis, and with a duration of 10 \(\mu m \). There is clearly a buildup of a dense, narrow sample of [2] atoms at the center of the BEC as the pulse propagates to the right. Note that the pulse reaches the roadblock at the top and bottom edges of the cloud before the roadblock is reached at the center, which is a consequence of the transverse variation in the density of the BEC, with the largest density along the center line. After the pulse compression is achieved, we shut off the coupling beam to avoid heating and phase shifts of the atom cloud due to extended exposure to the coupling laser, and we observe the subsequent dynamics of the condensate. (We found that exposure to the coupling laser alone, for the exposure times used to create defects, caused no excitations of the condensates.)

Formation of quantum shock waves. In considering the dynamics resulting from this excitation of a condensate, it should be noted that the roadblock “instantaneously” removes a spatially selected part of \(\psi_i \). The entire light compression happens in \(\sim 15 \) \(\mu \)s. After the pulse is stopped and the coupling laser turned off, the (2) atoms remaining in the condensate \(\psi_i \) have a recoil of 4.1 cm/s, and atoms that have undergone absorption and spontaneous emission events have a similarly sized but randomly directed recoil. Hence, the \(\psi_i \) component and the other recoiling atoms interact with \(\psi_i \) for less than 0.5 ms before leaving the region. Both of these time scales are short relative to the several-millisecond time scale over which most of the subsequent dynamics of \(\psi_i \) occur, as discussed below.

We first considered the one-dimensional (1D) dynamics along the \(z \) axis. Snapshots of both condensate components, obtained from numerical propagation in 1D according to Eqs. 3 and 4, are shown in Fig. 3A for various times after the pulse is stopped at the roadblock (and the coupling laser turned off). In the linear hydrodynamic regime, where the density defect has a relative amplitude \(A \ll 1 \) and a half-width \(\delta \gg \xi \) (where \(\xi = 1/(8\pi |\psi_i|^2|x_i|) \) is the local healing length, which is 0.4 \(\mu m \) at the center of the ground-state condensate in our experiment), one expects to see two density waves propagating in opposite directions at the local sound speed, \(c_s = (U_{11}|\psi_i|^2/m)^{1/2} \), as seen experimentally in (36). However, for the parameters used in our experiment, the sound waves are seen to shed sharp features propagating at lower velocities. Examination of the width and speed of these features and the phase jump across them shows that they are gray solitons. With \(\psi_i \) describing the slowly varying background wave function of the condensate, the wave function in the vicinity of a gray soliton centered at \(z_0 \) is

\[
\psi(z, t) = \psi_i(z, t) \left\{ \sqrt{1 - \beta^2} + \beta \tanh \left[\frac{\beta}{\sqrt{2\xi}} (z - z_0) \right] \right\}
\]

(18–20). The dimensionless constant \(\beta \) char-

Fig. 2. (A) Compression of a probe pulse at the light “roadblock,” according to 2D numerical simulations of Eqs. 3 and 4. The solid curves indicate probe intensity profiles along \(z \) (at \(\times = 0 \)), normalized to the peak input intensity. The snapshots are taken at the indicated times, where \(t = 0 \) is defined as in Fig. 1C. For reference, the atomic density profile of the original condensate is plotted (in arbitrary units) as a dashed curve. The gray shading indicates the relative coupling input intensity as a function of \(z \), with white corresponding to full intensity and the darkest shade of gray corresponding to zero. The spatial turnoff of the coupling field is centered at \(z = 0 \) and occurs over 12 \(\mu m \), as in the experiment. The number of condensate atoms is \(1.2 \times 10^6 \) atoms, the peak density is \(6.9 \times 10^{13} \) \(\text{cm}^{-3} \), and the coupling Rabi frequency is \(\Omega_p = (2\pi)80 \) \(\text{MHz} \). The probe pulse has a peak Rabi frequency of \(\Omega_p = (2\pi)2.5 \) \(\text{MHz} \) and a 1/e half-width of \(\tau = 1.3 \) \(\mu s \). (B) Creation of a narrow density defect in a BEC. Density profiles of the two condensate components, \(N_{[1]} |\psi_i|^2 \) (dashed) and \(N_{[2]} |\psi_i|^2 \) (solid), are shown along \(z \) at \(x = 0 \) for a sequence of times. Note that the \(z \) range of the plot is restricted to a narrow region around the roadblock at the cloud center. The densities are normalized relative to the peak density of the original condensate indicated by the red dashed curve. The other curves correspond to times 1 \(\mu s \) (green), 4 \(\mu s \) (blue), and 14 \(\mu s \) (black). The width of the probe pulse is \(\tau = 4 \) \(\mu s \) and the other parameters are the same as in (A). An animated version is provided in (40).
characterizes the “grayness,” with $\beta = 1$ corresponding to a stationary soliton with a 100% density depletion. With $\beta \neq 1$, the solitons travel at a fraction of the local sound velocity, $c/(1 - \beta^2)^{1/2}$. As seen in Fig. 3A, after a shedding event, the remaining part of the sound wave continues to propagate at a reduced amplitude. Our numerical simulations show that the solitons eventually reach a point where their central density is zero and then oscillate back to the other side, in agreement with the discussions in (18, 20).

In Fig. 3A, each of the two sound waves sheds two solitons. By considering the available free energy created by a defect, one finds that when the defect size is somewhat larger than the healing length, and the defect amplitude A is on the order of unity, the number of solitons that can be created is approximately $A^{1 - 5\beta/2}(2\pi)^{1/2}$. One obtains a simple physical estimate of the conditions necessary for soliton shedding by calculating the difference in sound speed associated with the difference in atom density between the center and back edge of the sound wave. As confirmed by our numerical simulations, this difference leads to development of a steeper back edge and an increasingly sharp jump in the phase of the wave function. This is the analog of shock wave formation from large-amplitude sound waves in a classical fluid (3).

When the spatial width of the back edge has decreased to the width of a soliton with amplitude $\beta = (A^2)/2$ (according to Eq. 5), such a soliton is shed off the back. Its subsonic speed causes it to separate from the remaining sound wave. Furthermore, by creating defects with sizes on the order of the healing length, we excite collective modes of the condensate, with wave vectors on the order of the inverse healing length. In this regime, the Bogoliubov dispersion relation is not linear (4, 5) and, accordingly, some of the sound wave will disperse into smaller ripples, as seen in Fig. 3A.

Considering the evolution of a defect of relative density amplitude A and half-width δ in an otherwise homogeneous medium, we estimate that solitons of amplitude $\beta = (A^2)/2$ will be created after the two resulting sound waves have propagated a distance $\Delta = \frac{2A}{\delta^2}$

$$\frac{\Delta}{\delta} = \frac{1 - \frac{\xi}{2\delta}}{1 - \frac{\pi^2\xi}{\delta^2}}$$

This is in agreement with our numerical calculations. We conclude that the minimum soliton formation length is obtained for large-amplitude defects with a width just a few times the healing length. This dictates the defect width chosen in the experiments presented here. Narrower defects disperse, whereas larger defects, comparable to the cloud size, couple to collective, nonlocalized excitations of the condensate.

Observation of a localized condensate vacancy. We explored the soliton formation experimentally by creating defects in a BEC with the light roadblock. We controlled the size of the defects by varying the intensity of the probe pulses, which had a width $\tau = 1.3$ ms. OD images of state $|1\rangle$ condensates are shown for one particular case in Fig. 4. Immediately after the defect is created, the trap is turned off and the cloud evolves and expands for 1 ms and 10 ms, respectively. As seen from the 1-ms picture, a single deep defect is formed initially, which results in the creation of five solitons after 10 ms of condensate dynamics and expansion. The initial defect created in the trap could not be resolved with our imaging system, which has a resolution of 5 μm. By varying the probe intensity, we find a linear relation between the number of solitons formed and the probe pulse energy, as expected.

Dynamics of quantum shock waves. To study the stability of the solitons, we first performed 2D numerical simulations of Eqs. 3 and 4. Figure 3B shows density profiles, $N_1|\psi_1|^2$, obtained for the same parameters as used in Fig. 2B. Again, the profiles are shown...
at various times after the pulse is compressed and stopped. The deepest soliton (the one closest to the center) is observed to quickly curl and eventually collapse into a vortex pair. The wave function develops a 2π phase shift in a small circle around the vortex cores, which shows that they are singly quantized vortices. Also, the core radius is approximately the healing length. (Upon collapse, a small sound wave between the two vortices carries away some of the remaining soliton energy.) This decay can be understood as resulting from variation in propagation speed along the transverse soliton front. As discussed in (22–25), a small deviation will be enhanced by the nonlinearity in the Gross-Pitaevskii equation, and thus the soliton collapses about the deepest (and therefore slowest) point.

Observation of quantum shock waves, snake instability, and nucleation of vortices. Figure 5 shows experimental images of state |1⟩ condensates. After the defect was created, the condensate of |1⟩ atoms was left in the trap for varying amounts of time (as indicated in the figures). The trap was then abruptly turned off and, 15 ms after release, we imaged a selected slice of the expanded condensate (37), with a thickness of 30 μm along the y direction. The release time of 15 ms was chosen to be large enough that the condensate structures are resolvable with our imaging system (38). The slice was optically pumped from state |1⟩ to the |3S_{1/2}, F = 2⟩ manifold for 10 μs before it was imaged with absorption imaging by a laser beam nearly resonant with the transition from |3S_{1/2}, F = 2⟩ to |3P_{3/2}, F = 3⟩. The total pump and imaging time was sufficiently brief that no significant atom motion due to photon recoils occurred during the exposure. The slice was selected at the center of the condensate by placing a slit in the path of the pump beam.

In Fig. 5A, the deepest soliton is seen to curl as it leaves certain sections behind, and at 1.2 ms it has nucleated vortices. This is a direct observation of the snake instability. In Fig. 5B, at 0.5 ms, the snake instability has caused a complicated curving structure in one of the solitons, and vortices are observed after 2.5 ms. The vortices are seen to persist for many milliseconds and slowly drift toward the condensate edge. We observed them even after 30 ms of trap dynamics, long enough to study the interaction of vortices with sound waves reflected off the condensate boundaries. Preliminary results, obtained by varying the y position of the imaged condensate slices, indicate a complicated 3D structure of the vortices. In addition, the defect has induced a collective motion of the condensate, whereby atoms originally in the sides of the condensate fill in the defect. This leads to a narrow and dense central region, which then slowly relaxes (Fig. 5B).

We performed the experiment with a variety of Rabi frequencies for the probe pulses, and saw nucleation of vortices only for the peak $\Omega_p > (2\pi)1.4$ MHz. The free energy of a vortex is substantially smaller near the border of the condensate where the density is smaller; thus, smaller (and hence lower energy) defects will form vortices very near the condensate edges, seen as “notches” in Figs. 3B and 5.

Conclusions. We have studied and ob-

Fig. 5. Experimental OD images of a |1⟩ condensate, showing development of the snake instability and the nucleation of vortices. In each case, the BEC was allowed to evolve in the trap for a variable amount of time after defect creation. (A) The deepest soliton (nearest the condensate center) curls as a result of the snake instability and eventually breaks, nucleating vortices at 1.2 ms. Defects were produced in BECs with 1.9×10^6 atoms by probe pulses with a peak $\Omega_p = (2\pi)2.4$ MHz and a coupling laser with $\Omega_c = (2\pi)14.6$ MHz. The imaging beam was -5 MHz detuned from the $|3S_{1/2}, F = 2⟩ \rightarrow |3P_{3/2}, F = 3⟩$ transition. (B) The snake instability and behavior of vortices at later times. The parameters in this series are the same as in (A), except that the peak $\Omega_p = (2\pi)2.0$ MHz, the number of atoms in the BECs was 1.4×10^6, and the pictures were taken with the imaging beam on resonance.
served how short-wavelength excitations cause a breakdown of superfluidity in a BEC. Our results show how localized defects in a superfluid will quite generally either disperse into high-frequency ripples or end up in the form of topological defects such as solitons and vortices, and we have obtained an analytic expression for the transition between the two regimes. By varying our experimental parameters, we can create differently sized and shaped defects and can also control the number of defects created, allowing studies of a myriad of effects. Among them are soliton-soliton collisions, more extensive studies of soliton stability, soliton–sound wall collisions, vortex-soliton interactions, vortex dynamics, interaction between vortices, and the interaction between the BEC collective motion and vortices.

References and Notes
27. We use the definition $\mathcal{U}_\alpha = E_{\alpha} - d_{\alpha} u_\alpha = E_{\alpha} - d_{\alpha} u_\alpha$, where E_{α}, d_{α} are the slowly varying electric field amplitudes, and u_α, d_α are the electric dipole matrix elements of the transitions.
35. For propagation of the Cross-Piteavskii equation in 1D, we typically used a spatial grid with 4000 points and $\Delta r = 0.040 \mu m$. In 2D simulations, we typically used a 75×75 grid with $\Delta r = 0.21 \mu m$ and $\Delta \xi = 0.057 \mu m$. To solve the equations self-consistently, we kept track of the wave functions at previous time points and projected forward to second order. Smaller time steps and grid spacing were also used to assure convergence of the results. To mimic the nonlinear interaction strength at the center of a 3D cloud, we put in an effective condensate radius calculated with the Thomas-Fermi approximation [39] in the dimensions that were not treated dynamically. In all calculations, the initial condition was the ground-state condensate wave function with all atoms in $|+\rangle$, obtained by propagating a Thomas-Fermi wave function in imaginary time.
40. Supplementary material is available at Science Online (www.sciencemag.org/cgi/content/full/1062527/DC1).

Supported by a National Defense Science and Engineering Grant sponsored by the U.S. Department of Defense (C.S.), the Rowland Institute for Science, the Defense Advanced Research Projects Agency, the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office OUSD Multidisciplinary University Research Initiative Program, the Harvard Materials Research Science and Engineering Center (sponsored by NSF), and the Carlsberg Foundation, Denmark.

15 May 2001; accepted 11 June 2001

Published online 28 June 2001; 10.1126/science.1062527

Include this information when citing this paper.

The Composite Genome of the Legume Symbiont Sinorhizobium meliloti

The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N_2) to ammonium (NH_4^+). We present here the annotated DNA sequence of the α-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be important for the environment. Most plants assimilate mineral nitrogen only from soil or added fertilizer. An alternative source powered by photosynthesis, rhizobia-legume symbioses provide a major source of fixed