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We suggest the binding of neutral atoms to a current carrying wire through the interaction between
the atomic magnetic dipole moment and the wire’s magnetic field. The theoretical description is based

upon an extension of the concept of supersymmetry to multicomponent wave functions.
for spin 3 particles is obtained directly in coordinate space.

A solution
Spin 1 particles are considered as well.

Experimentally, the system should be immediately realizable for 25 mK sodium atoms around a wire

with a diameter of 0.5 wm and a current of 400 mA.

PACS numbers: 32.80.Pj, 03.65.Ge, 11.30.Pb

The availability of cold atoms through the recent
development of laser cooling techniques [1] has resulted
in new possibilities for studying and utilizing de Broglie
wave optical phenomena. Recent work has shown, for
example, that long lived, localized bound states of atoms
can exist around a sinusoidally driven charged wire [2].

In this paper we suggest binding of cold atoms to a
thin wire with a steady current, through the interaction
between the 1/r magnetic field and the magnetic dipole
moment of the atom. The theoretical description of the
system involves an extension of the concept of supersym-
metry to multicomponent wave functions describing the
dynamics of spin particles.

Bliimel and Dietrich [3] considered the possibility
of binding very cold neutrons to a current carrying
wire. This proposal has yet to be realized due to the
small magnetic moment of the neutron and the lack of
appropriate cooling schemes. The theoretical description
presented in Ref. [3] relied on a power series solution
of the Schrodinger equation for a spin % particle in the
1/r magnetic field. The problem was treated also by
Pron’ko and Stroganov [4] and Voronin [5]. In Ref. [4],
the energy spectrum was determined from the dynamical
symmetry group and the wave functions were obtained
in the momentum representation. In Ref. [5] it was
discovered that the strongly coupled spinor component
equations were related by supersymmetry in a momentum
space representation, which allowed an analytical solution
to the problem in terms of standard functions of analysis.

In the course of investigating the problem of an arbi-
trary spin particle in a 1/r magnetic field, we discov-
ered a much simpler approach which can be carried out
in the coordinate space of the particle and utilizes super-
symmetry in a multicomponent representation. We used
this method to solve the case of a spin % particle and fur-
thermore to find the spectrum and eigenstates for the spin
I problem corresponding to bound states with vanishing
total angular momentum along the wire direction. The
suggested bound states can be immediately realized with
laser cooled sodium atoms which can be considered to be
spin 1 particles as discussed below.
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Consider a magnetic moment w in a magnetic field B.
The stationary Schrédinger equation is given by

HZ
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The magnetic moment can be written in terms of the spin
operator S as

Cp= —gueS/h, 2)

with g the Landé g factor and u( the Bohr magneton. We
choose the wire current / to be directed along the x axis
of a Cartesian system, and we write the magnetic field as

21 .
B = T[eZ cosfd — e, sinf], 3)
c

where r, 6 denote polar coordinates in the transverse y-z
plane, and e, and e, are unit vectors along the y and z
directions, respectively.

In the adiabatic limit (for large B fields) where the
Larmor precession frequency is large compared to the
atomic orbital frequency, the projection of the dipole
moment along the magnetic field is constant. As a
result, the atom-wire interaction potential reduces to a
scalar 1/r potential, and a hydrogenic energy spectrum is
obtained. With this motivation, we perform a rotation of
the spin quantization axes through the angle 6 around the
x direction with the operator exp(iS,0/%). Performing a
unitary transformation of the Schrodinger equation with
this operator, the # dependence in the magnetic dipole
coupling is eliminated and the eigenstates for the resulting
Hamiltonian may be written as

eiS;G/ﬁw(;:) — eimH% X(r)eikx. (4)
Here /im is an eigenvalue for the operator —i/i(9/96) rep-
resenting the component of the total angular momentum
along the wire direction.

The resulting radial equation for y, defined through
Eq. (4), is in reduced units
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The distance p = r/r( is measured in units of ry,

_ 2 _ 28mol
o= e where C* = Pt 6)
Furthermore, the reduced transverse energy is defined as
E — n*k*/2M
- ™
C /2r0

The solution must be normalizable and vanish at p = 0.
In the following we assume that the quantum number m is
non-negative since the eigenvalue spectrum for Eq. (5) is
the same for =m.

For a spin % particle, the problem can be solved through
the use of supersymmetry which is a generalization of
the operator technique used for the harmonic oscillator
[6,7]. The Hamiltonian H,, in Eq. (5), corresponding to
total angular momentum m#, can be factored as

Hp = AyAn + Ky, (®)
where
3 . 3
A, = —a— + Wm(p)’ Am = -7+ Wm(p) (9)
P ap
are given in terms of the superpotential
Wa(p)
2m +1 1 1
_ 2p 2m + 1 2
- 1 _2m + 1 1 ’
2p 2p 2m + 1
(10

in a spin matrix representation where S, is diagonal. The
factorization constant K,, is proportional to the identity
operator
1
2m + 1)? 1. (b
Since A} A,, is positive definite, the ground state y,,o for
H,, is given as a normalizable solution to

Ame,O =0, (12)

and the ground state energy is obtained from Eq. (11) as
1

Km =

m0 = T A | 1y - 13
Em0 2m + 12 (13
The supersymmetric partner Hamiltonian H,, is defined as

H! = A,A" + K, (14)

which remarkably equals the Hamiltonian H,,+; for total
angular momentum (m + 1)4.

Except for the ground state energy in Eq. (13), the
spectra for H,, and H,} are identical, and the eigenstates
are connected by the A,,, A], operators. Hence the energy
spectrum for the Hamiltonian H,,, is obtained immediately
as the series of ground state energy levels in Eq. (13) for
m = my,

1

[20mg + n) + 17~
If x4+ is an eigenstate for H,,+ |, the state A, x,u+1 is an
eigenstate for H,, with the same eigenvalue. Thereby the

n=0. (15)

Emon =

eigenstates for the Hamiltonian H,,, are obtained from the
solutions to the ground state equation (12) with m = my
by applying a succession of the A* operators.

To solve the ground state equation (12), we transform
the wave function

x(p) = ®(p)p™, (16)

and change variables

o 14
T om+ 1 an
With
‘D+1/2>
b = . 18
(‘1371/2 (18)

Equation (12) then leads to the following equations for the
components of P

dz(l)_.]/;)_ 1
- - =D = D
d”’72 n 1/2 1/25
By 1s - 2n[—i P l}p_,/z. (1)
dn 27

Note that Eq. (19) is independent of m (shape invariance
[8]), and that the differential equation for ®_,/, is equiva-
lent to the eigenstate equation for a scalar hydrogen prob-
lem with the odd eigenvalue of —1. Unlike the ordinary
hydrogen solution, we do not require that ®_, >(0) is zero,
and we can in fact find a normalizable solution

® 1) = ki) = 2Ky () = Ko, (20)

where we have expressed the Bateman function k; in
terms of the more common modified Bessel functions
K() and K1 .

Solving Eq. (1), we obtain for the wave function ¢ [see
Egs. (4), (6), and (16)—(20)],

> 0 28, . 0N o . 1 "
Y(r) = <cos? — i i S]n§‘>eIMGelk,x 7?(,%)
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evaluated at n = (r/rp)/(2m + 1). A plot of the corre-
sponding radial probability distribution for quantum num-
ber m = 51/2 is shown in Fig. 1. Clearly, a particle
bound in such a state around a wire of radius less than
~800r; will have a very long lifetime.

For a spin 1 particle, the eigenvalue problem for total
angular momentum m-= 0 reduces to a spin % problem
and a hydrogenic energy spectrum is obtained also in
this case. For larger m values, an attempt to factor [as
in Eq. (8)] and supersymmetrically connect the different
Hamiltonians leads to factorization constants K,,, which
are nondiagonal and therefore cannot be interpreted as
energies. However, a diagonalization of K,, results in the
eigenvalue zero (nondegenerate) and a doubly degenerate
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FIG. 1. Plot of the radial probability distribution correspond-

ing to the solution in Eq. (21) with m = 51/2. The horizontal
scale is in units of the “Bohr” radius ry [see Eq. (6)]. For a
wire current of / = 400 mA, a Landé g factor with |g| = % (as
in the ground states of sodium), and a mass M equal to the
sodium atomic mass, the Bohr radius ro = 7.4 A. This dis-
tance is inversely proportional to M and g/. The correspond-
ing binding energy for a spin % particle in the state shown is
Ez = 6 X 1079 eV. This energy is directly proportional to the
mass M and the square of g/ (note that the approximate bind-
ing energy for a spin 1 particle with m = 13 is about 4 times as
large [see Eq. (22)]). It is seen from the figure that the wave
function will have a negligible overlap with a wire of diameter
0.5 um corresponding to a radius r = 340r.

value which can be written as twice the sum of two spin
I .
5 energies,

1 1

e = ——m, m=1. (22)

2m?
Curiously, the spectrum in (22) agrees well with the
energy levels for higher m values as obtained from
numerical integration of the vector Schrodinger equation.
These calculations show that the levels for different m
values are nondegenerate and hence cannot be connected
by supersymmetry [9]. We conjecture that there is a
nearby problem which exhibits perfect supersymmetry
and that this problem can be reduced into two spin
% problems. Whether the method of supersymmetry will
yield complete solution to the spin 1 and higher spin
problems is as yet unknown.

For an experimental realization of the bound states,
there are two main requirements: The radius of the bound
states must be larger than the radius of the current carry-
ing wire, and the energy of binding of the magnetic dipole
to the wire must be larger than typical thermal kinetic
energies of the atoms. The quantities ry and C?/2r, [see
Egs. (6) and (7)] set the scale for the radius and binding
energy in the ground state. As an example, with a wire
current of 400 mA we can bind sodium atoms with ki-
netic energies corresponding to a temperature of 25 mK
in hydrogenic orbits of radius 0.5 um. Sodium atoms
can be laser cooled in polarization gradients to this tem-
perature [1], and in our laboratory, we have, furthermore,
succeeded in producing self-supporting, single crystalline
copper whiskers [10] of lengths on the order of 1 cm and
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diameters of 2—15 um. These whiskers are then thinned
by ion milling to a thickness of 0.2 um over a length of
a few millimeters. Note that the ground state for sodium
is a spin | system (the total internal angular momentum
is 1). For the experimental situation described here, the
atomic Zeeman shift is smaller than the internal fine struc-
ture splitting by 2 to 3 orders of magnitude—so it is a
very good approximation to regard sodium as an elemen-
tary spin 1 particle. It should also be noted that we have
verified experimentally that the thin wires can support the
required current density of 2 X 105 A/cm?. Furthermore,
electrical power dissipation will cause a heating of the
wire to temperatures less than 600 °C well below the melt-
ing point for copper at 1100 °C.

In this paper we have extended the concept of super-
symmetry to describe spinor particles. With this formal-
ism, the energy eigenvalue problem for a magnetic atom
around a current carrying wire is solved easily for par-
ticles with spin % as well as for spin 1 states with vanish-
ing total angular momentum along the wire direction. A
hydrogenic spectrum is identified in both cases, and the
wave functions are obtained by solving one scalar ground
state problem and operating on the resulting state by a se-
ries of first order differential operators. Progress has been
made on the spin 1 problem also for higher total angular
momentum states.

This problem also presents very interesting experimen-
tal challenges; the system may prove useful as an alter-
native to the Kapitza waveguide [2] for de Broglie waves
with similar binding energies and radii. For the Kapitza
waveguide, the states have a long but finite lifetime due
to quantum dynamical instabilities. In the magnetic case,
the lifetime is mainly limited by the wave function over-
lap with the finite sized wire, which can be minimized for
higher total angular momentum states.
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