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Using analytical modeling and detailed numerical simulations, we investigate properties of hybrid
systems of photonic crystal microcavities which incorporate a highly nonlinear ultraSlow light
medium. We demonstrate that such systems, while being miniature in sizesorder wavelengthd, and
integrable, could enable ultrafast nonlinear all-optical switching at ultralowseven single photond
energy levels. ©2005 American Institute of Physics. fDOI: 10.1063/1.1900956g

For many important applicationsse.g., quantum informa-
tion processing, integrated all-optical signal processing, etc.d
it would be highly beneficial to have strong and nearly in-
stantaneous interaction of light with light, preferably happen-
ing in a minimal volume. This can be achieved, in principle,
by exploiting intrinsic material nonlinearities. Unfortunately,
such nonlinearities are fairly weak, so one is forced to make
undesirable compromises in interaction time, device-length,
and/or power. To optimize the effects, we combine two ap-
proaches to enhance optical nonlinearities. One is structural:
We design a structure whose geometrical properties enhance
the nonlinear interaction; photonic crystalssPhCsd, have
been proven to be particularly suitable for this purpose.1 The
other approach is to use an ultraslow lightsUSLd medium
with extremely large nonlinear optical response. Nonlinear
Kerr coefficients—12 orders of magnitude larger than in
AlGaAs—have been measured in such systems.2 We show
how combining these two approaches can lead to all-optical
switches of unprecedented characteristics; such switches can
be less thanl3 in size, with switching times faster than 100
ps, and operating at extraordinarily lowseven single photond
energy levels. To our knowledge, single-photon nonlinear be-
havior of cavity-electromagnetically induced transparency
has only been discussed qualitatively using generic or heu-
ristic models.3–5 In contrast, we present results of realistic
numerical experimentssincluding material and radiative
lossesd on an exemplary system of a PhC microcavity con-
taining a single USL atom. In particular, we perform finite
difference time domainsFDTDd simulations with perfectly
matched layer boundary conditions,6 which simulate Max-
well’s equationssincluding dispersiond for such a system ex-
actly sapart for the discretizationd.

Consider a hybrid PhC microcavity, as shown in Fig. 1:
The resonance is confined laterally by index guiding and
axially by the one-dimensional PhC gap. We model a two-
dimensionals2Dd system, since the essential physics is the
same as that of its three-dimensionals3Dd counterpart, but
numerical requirements are now much more tractable. The
microcavity in Fig. 1 has only a single resonance that is
equally sand weaklyd coupled to an input and output wave-
guide with:

Tsvd ;
POUTsvd
PINsvd

= U iGIO

v − vRES+ isGIO + GRAD + GABSd
U2

, s1d

where POUT and PIN are outgoing and incoming powers,
GIO , GRAD, andGABS are, respectively, the widths due to cou-
pling to the waveguides, loss from the cavity due to the
coupling to the free-space radiation modes, and the intrinsic
material absorption, andvRES is the resonant frequency. The
transmission through the cavity is given by the dashed blue
curve in Fig. 2, whose width is<vRES/692. If there were no
radiation lossessGRAD=0d, this curve would peak at 100%
transmission.

Consider now the insertion of a single USL atom7 at the
center of the microcavity. This could be implemented by
using atomic force microscopy techniques, solid-state USL
materials,8 or a single-gas-atom PhC microcavity.9 The rel-
evant atomic levels of such an atom are shown in Fig. 3sad.
In general, one would need to ensure that each of the relevant
atomic transitions coincides with anevenresonant mode of
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FIG. 1. sColord PhC microcavity studied in this lettersdielectric profile
shown on the topd, and the electric fieldsall pointing out of the planed of its
resonant modesshown on the bottom, together with the high index material
sgrayd. High index material has«=12, and is surrounded with airs«=1d.
The cavity is implemented by introducing a defect into a periodic structure,
of perioda. Each periodic cell consists of a thick segmentsthickness 1.25a,
length 0.4ad, followed by a thin segmentsthickness 0.25a, length 0.6ad. The
defect is introduced by narrowing the length of the central thick element to
0.3a, and narrowing the length of its two neighboring thin elements to
0.25a. The incoming and outgoing waveguides have thickness 0.55a. The
runs are performed at a numerical grid resolution of 40pts/a. Consistency is
checked at 20pts/a, and 80pts/a.
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the cavity. Next, one would introduce a coupling field at
frequencyv23 into the cavity, in order to establish USL for
the probe frequenciesv which are close to thev13 transition.
The polarizability of a typical USL atom is shown in Fig.
3sbd.

Introduction of a highly dispersive polarizable object
into a cavity has two important effects. First, it changes the
resonant frequency of the cavity. According to perturbation
theory:1

ṽRES< vRESF1 −
a

2eVMODE
G , s2d

where the induced dipole momentp=aE shere, E is the
electric field at the position of the dipole, anda is the atomic
polarizabilityd, VMODE;seMODEd3xeuEu2d /euEMAX u2 is the
modal volume, ande is the dielectric constant of the host
medium. Note that sincea is in general complex, Eq.s2d
also causes an effective change inGABS as: G̃ABS<GABS
+vRESImhaj /2eVMODE. Second, this object results in a
change of geometry of the cavity, thereby modifying its cou-
pling to the free-space radiation modessGRADd. Usually,
power scattered by an induced dipole is`upu2. However, in
our case, both the induced dipole, and the cavity mode itself
scatter out of the cavity a significant portion of power into
the same single modesdipole far-field radiation expansiond.
Consequently, their fieldssrather than powersd add, and the
change in the radiated powerDPRAD has a component linear
in p. Since Rehaj@ Imhaj for a typical USL application:

GRAD < GRADsp = 0d + j Rehaj + … s3d

wherej is determined by the geometry of the cavity, and has
to be calculated for each cavity separately: One simulates

systems with a few different values ofa, and fitsGRAD to a
straight line. For our 2D cavity from Fig. 1, we calculatej
<0.0012c/ sa3e0d.

The enormous dispersive behavior,2 like the one shown
in Fig. 3sbd, drastically narrows the transmission resonance
width of the cavity for probe frequenciesv close tov13.

10

Intuitively, the large dispersion implies low group velocity,
so each “bounce” between the two mirrors of the cavity takes
a longer time, meaning that the light spends a longer time in
the cavity. For the particular case of the dipole shown in Fig.
3sbd, the FDTD calculation of narrowing gives a factor of
<3.3,11 as shown by the solid blue line in Fig. 2. Finally, we
introduce an additionalscontrold field into the cavity, with a
frequency close tov24, in order to perform the switching of
the probe fieldv.12,13The control field causes a Stark shift of
level u2l, sliding the whole dispersion curve in Fig. 3sbd side-
ways. This switching behavior is displayed by red, green,
and magenta curves in Fig. 2.

We can now use the analytical model14 to understand the
behavior of such devices in various USL parameter regimes.
We start by writing the expression fora of an USL atom, for
v close tov13 using arguments similar to those of Ref. 15:

a <
6e2f13

mev13
F DP

uVCu2
+ 2iG3S DP

uVCu2D
2G , s4d

where f13 is the oscillator strength ofu3l→ u1l transition,G3

is the decay width of stateu3l swhich can, in general, be
different than the free-space decay width of stateu3l: In our
case, it is larger by a factor,Ql3/VMODE fQ being the qual-
ity factor due to cavity-QEDsquantum electrodynamicsd ef-
fectsg, VC is the Rabi frequency of the coupling fieldsat
frequency v23d, and DP;v−sv13− uV24u2/4Dṽ24d, where
V24 is the Rabi frequency of the control field,Dṽ24=Dv24

− ig24, Dv24 is the difference in frequencies between the
control field, andv24, while g24 is the decay width of the
u4l→ u2l transition. For the application of interest, we can
approximate:Dṽ24<Dv24. We substitute Eqs.s2d–s4d, into
Eq. s1d to obtain:

FIG. 3. sad Schematic of atomic levels in a typical USL system.sbd Nor-
malized polarizability of the USL atom of interest: solid line is Rehaj, and
dashed line is Imhaj.

FIG. 2. sColord Transmission through the system of Fig. 1. The dashed blue
curve presents the FDTD calculation when the USL atom is not present. The
solid blue curve presents the FDTD calculation with the USL atom present
fdispersion given by Fig. 3sbdg, and v13 exactly coinciding with the reso-
nance of the cavity without the USL atom present. Red, green, and magenta
curves present FDTD calculations when dispersion in Fig. 3sbd is shifted
sideways as: Redsv13→v13p0.999d, magenta sv13→v13p1.001d, and
greensv13→v13p1.003d. The dashed black curves are predictions of the
perturbation theory for their corresponding curves: They are obtained as
follows. First, we assume linear dependence of Rehaj close tov13, and
quadratic dependence of Imhaj close tov13, with fit parameters obtained
from Fig. 3sbd; these are needed for Eq.s2d. Second, with a series of inde-
pendent FDTD calculations we obtain a linear fit toGRAD in Rehaj, as
required by Eq.s3d. Next, we obtainGIO, and vRES from the dashed blue
curve above, and calculateVMODE with an independent simulation. Finally,
we substitute the expressions obtained by Eqs.s2d and s3d in this manner
into Eq. s1d, in order to obtain the black dashed curves shown here. As one
can see, perturbation theory models the true behavior very faithfully.
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where we define: 3e2f13/meVMODEeuVCu2;c/vG; vG has a
simple physical interpretation: It is the group velocity of
propagation in uniform USL media, consisting ofssamed
USL atoms, but with atomic density1/VMODE.

In regimes of strong USL effects,c/vG@1, so the real
part of the denominator of Eq.s6d can be approximated as
v−vRES+c/vGDP<c/vGDP, so TsDP=0d<GIO

2 / fGIO

+GRADsp=0dg2, which is the same as the peak transmission
of the cavity without the USL atom. Furthermore, for prop-
erly designed microcavities, and properly implemented
USLs, absorptionfterm proportional toG3 in Eq. s5dg, and
changes to the cavity geometryfterm proportional toj in Eq.
s5dg can both be neglected. Thus, the width of the transmis-
sion curvefEq. s5dg is given by<fGIO+GRADsp=0dgsvG/cd,
so the narrowing factor is<vG/c. To obtain switching, we
need to shift the resonance by more than its width:

c

vG

uV24u2

4uDṽ24u
. GRADsp = 0d + GIO. s6d

The optimal efficiency of our systems is apparent from Eq.
s6d. The right-hand side of the equation is the transmission
width of the cavity without the USL atom present: The larger
its Q, the more efficient the system. The left-hand side is just
the Kerr-effect induced change in the resonant frequency of
the cavity. The strength of this Kerr-effect is greatly en-
hanced because of three factors:sc/vGd can be made large,
Dṽ24 can be made smallsso we are exploring nonlinearities
close to the resonance which one cannot do in usual nonlin-
ear systems because of huge absorptiond, and for a given
incoming powerP24, the cavity enhancement effects and the
small modal volume both makeV24 large.

Before concluding, we estimate quantitative perfor-
mance characteristics of a 3D device of the type we describe.
First, we assume that the modal extent in the direction out of
the page in Fig. 1 is roughly the same as the modal extent in
the direction perpendicular to the waveguide in the plane of
the figure. This gives an estimate ofVMODE<0.009lRES

3 . As
an example, we will use a resonance of the sodium atom
with lRES=589 nm. We assume a resonance-narrowing fac-
tor due to USL ofc/vG<30, leading to a transmission width
sand hence the available operational bandwidth invd df
<25 GHz. sFor comparison, if we chose to use the experi-
mental parameters of Ref. 2, the narrowing factor would be
.107!d To implement switching, the induced Stark shift is:
uV24u2/ s4uDv24ud.2ppdf <2pp25 GHz.7 So, if we take
Dv24=60 GHzswhich would provide us with,10 GHz op-
erational bandwidth for the control fieldd, the needed inten-

sity of the control field in air sfor sodiumd would be
I24<50 GW/m2,2 while the field inside the cavity is:
uE24u2=2I24/ (ce0). The needed input power P24
=vRESU24/ s2Q24d=sepVMODEI24d / se0lRESQ24d, whereU24 is
the control field’s modal energy, andQ24<692 is its trans-
mission Q for the cavity of Fig. 1. We conclude thatP24
<8.5 mW. With similar reasoning, we can show that the
power in the coupling field needs to bePC<20 mW. Finally,
the number of the control-field photons needed to be present
in the cavity in order to induce the switching isN24
=VMODEeuE24u2/2"v24<11. Each of these photons spends
,Q24/v24,0.22 ps in the cavity, while the switching time is
,p /Dv24,52 ps; so the switching is performed by a total
of N24,2600 photons. By exploring even more extreme re-
gimes of USL parameters and/or higher-Q PhC cavities, one
can easily reach the single-photon optical nonlinearity opera-
tion regime, which has been elusive thus far.
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