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Abstract:  Departures of the geometry of the middle surface of a thin shell from the perfect 

shape have long been regarded as the most deleterious imperfections responsible for reducing a 

shell’s buckling capacity.  Here systematic simulations are conducted for both spherical and 

cylindrical metal shells whereby, in the first step, dimple-shaped dents are created by indenting a 

perfect shell into the plastic range.  Then, in the second step, buckling of the dented shell is 

analyzed, under external pressure for the spherical shells and in axial compression for the 

cylindrical shells.  Three distinct buckling analyzes are carried out: 1) elastic buckling 

accounting only for the geometry of the dent, 2) elastic buckling accounting for both dent 

geometry and residual stresses, and 3) a full elastic-plastic buckling analysis accounting for both 

the dent geometry and residual stresses.  The analyses reveal the relative importance of the 

geometry and the residual stress associated with the dent, and they also provide a clear indicator 

of whether plasticity is important in establishing the buckling load of the dented shells. 
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1. Introduction

Major efforts are underway to revise design codes for shell buckling [1,2] which will 

place more emphasis on analysis and quality assessment of the shell with the intent of allowing 

designs that are less conservative than those permitted by current design criteria based heavily on 

shell buckling experiments.  It has been a long-held view that the most deleterious imperfections 

for unstiffened shell structures are geometric departures of the middle surface from the perfect 

shape, assuming support conditions are adequate.  This view almost certainly arose after the 

pioneering work of von Karman and Tsien [3], Koiter [4] and others showed that relatively small 

geometric imperfections could explain the significant reductions below the predictions for 

perfect shells of experimentally measured buckling loads.  However, it is not known to what 

extent factors other than imperfection geometry contribute to the buckling loads seen in the large 

experimental data sets for cylindrical and spherical metal shells [5,6] used to establish design 
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knockdown factors.  In this paper, we carry out a systematic study to parse the roles of geometric 

imperfection, residual stress and plasticity in contributing to the buckling load reductions of 

metal spherical and cylindrical shells.  Our focus is primarily on shells designed to buckle 

elastically, although the role of material yield stress will be exposed.  Specifically, we carry out a 

two-step analytical process whereby the shell is first indented into the plastic range to create a 

localized dent with the accompanying residual stresses.  Then in the second step the shell is 

analyzed to ascertain the buckling reduction caused by the dent imperfection.  In the second step, 

we carry out both elastic and elastic-plastic buckling analyses and, to see the effect of the 

residual stress, we carry out the analyses both with and without the residual stress. 

 While we are unaware of studies similar to the one to be presented in this paper which 

focus on residual stresses accompanying localized dimple-like imperfections, there is a 

substantial literature on the influence of residual stress on buckling of welded shell structures, 

e.g., [7-9], dealing with both thick and thin walled shells.  There is also a small literature on the 

residual stresses in cylindrical shells formed by plastically bending flat plates into cylinders by 

various means, e.g., [10,11].  Most of these studies have been concerned with relatively thick-

walled shells which buckle in the plastic range.   

 Recent analytical and computational research on the imperfection-sensitivity of elastic 

shell buckling has placed emphasis on localized dimple-like imperfections which are generally 

regarded to be more realistic than imperfections in the shape of the buckling modes which 

generally extend in a highly correlated manner over the entire shell [12-14].  The present study 

follows in this path by focusing on dimple, or dent, imperfections created by indenting the shell 

into the plastic range.  Sections 2 and 3 deal with spherical shells and Sections 4 and 5 deal with 

cylindrical shells.  The first of the two sections on each type of shell presents results on the 

creation of the dent while the second of the two sections gives results from several buckling 

analyses used to parse the roles of the geometric imperfection, residual stress and plasticity.  The 

nonlinearity and buckling behavior of the spherical shell is such that the analysis can be 

meaningfully confined to axisymmetric behavior within a framework of ordinary differential 

equations, allowing for consideration of all the important parameters.  For the cylindrical shell 

the essential nonlinear buckling behavior is inherently two-dimensional, and a commercial code 

has been employed to perform both steps of the analyses. 



2.  Spherical shells: Step 1, creating the dent imperfection 

 The first step in the set of simulations is indentation of the perfect spherical shell to create 

the imperfection.  Equal and opposite inward-point forces are applied at the shell’s poles with 

magnitude large enough to cause plasticity.  Then, upon reducing the forces to zero, an 

axisymmetric dimple-shaped dent remains at each pole accompanied by an axisymmetric 

residual stress distribution.  The shell has radius R  and thickness t .  The shell is elastically 

isotropic with Young’s modulus E  and Poisson’s ratio  .  Reference throughout this section 

and the next will be to the elastic buckling pressure of the perfect shell, Cp , and the associated 

compressive equi-biaxial membrane stress at buckling: 
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The plastic behavior of the shell is also taken to be isotropic and characterized by 2J  flow 

theory.  The tensile (and compressive) yield stress is Y , the hardening exponent is N , and the 

tensile stress-strain curve (with continuous slope at yield) is 
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with   as stress and   as strain. 

 The strain-displacement relations of shell theory used for the axisymmetric deformations 

of the spherical shell are those of the small strain-moderate rotation theory of Sanders [15] and 

Koiter [16].  All the calculation in this paper assume the behavior of the spherical shell is 

symmetric about the equator with   as the meridional angle measured from the equator.  The 

problems considered are described by a 6th order nonlinear system of first order ordinary 

differential equations (ode’s) employing the vector of unknowns ( , , , , , )Q M N w u    where, in 

standard shell theory notation, Q  is the transverse shear force/length, M  is the meridional 

resultant moment, N  is the resultant meridional in-plane stress,   is the rotation, w  is the 

outward normal displacement, and u  is the tangential displacement.  The formulation of the 



incremental equations and the solution method is outlined in [17].  A finite difference method is 

employed for numerical solution and most of the simulations used 200 equally spaced nodal 

points between equator and pole.  Each incremental load step requires incremental moduli 

averaged through the thickness relevant to the shell theory formulation to be computed using the 

plasticity formulation.  For this purpose, stresses in the shell are saved at 8 points through the 

thickness at all the midpoints between the equally spaced nodes. 

 An inward force of magnitude P  directed toward the center of the sphere is applied at the 

pole to indent the shell, first increased to a maximum value and then unloaded back to 

zero.  Symmetry boundary conditions consistent with no external constraint are applied at the 

equator.  This process is illustrated in Fig. 1a for three values of the maximum force labelled as 

A , B  and C .  This example is computed for a shell with / 200R t  ,  0.3  , / 1Y C   , and 

0.25N  .  The nonlinearity of the monotonically increasing curve of force versus inward pole 

deflection is due to both the nonlinear elastic behavior of the shell and plasticity, with plasticity 

first occurring in this example for / 2 1.5PR D   and / 0.5polew t  .  The elastic bending 

stiffness is 3 2/ 12(1 )D Et   .  The residual dent shape after unloading for each of the three 

maximum indentation forces is plotted in Fig. 1b with ( )w   as the outward normal displacement 

of the shell middle surface.  For a shell with / 200R t  , the center of the dent to its edge extends 

roughly 10 degrees.   The width of the residual dent increases with increasing denting force and 

resulting dent amplitude.  Fig. 1c plots the distribution for case C of the three residual shell stress 

quantities.  These are the stress quantities (in addition to the dent shape) that enter the elastic 

buckling calculations in Step 2 in the next section which account for the residual stresses in the 

shell. 

 

 



 

Fig. 1 Illustration of the creation of a dent imperfection in Step 1.  a) Dimensionless inward 
directed pole force versus inward pole displacement normalized by shell thickness, including 
unloading back to zero pole force, for maximum forces of / 2 2,3& 4PR D  .  b) Residual dent 
shape for the three maximum forces.  c) Distribution of the normalized residual values of Q , 

M  and N  for the maximum force corresponding to C.  These were computed for / 200R t  ,  

0.3  , / 1Y C    and 0.25N  .  

 To deal with the singularity at the pole due to the concentrated indentation force, we have 

taken a very small section of the shell at the pole within the region 0   to be rigid, with angle 

/ 2     measured from the pole and  

 𝛽଴ ൌ 0.048൫√1 െ 𝜈ଶ𝑅/𝑡൯
ିଵ/ଶ

       (2.3) 

For a shell with / 200R t  , 0 0.2o  ; the small influence of this modification is discussed and 

illustrated in [18].  When the yield stress is scaled such that /Y C   remains fixed, the 

dimensionless curves of / 2PR D  versus /polew t  in Fig. 1a are independent of /R t  for thin 

shells (e.g., /R t  larger than about 25).  For reference, / 1Y C    implies that / 0.00303Y E   

if / 200R t  .  The shapes of the dent in Fig. 1b are also independent of /R t  if they are plotted 

using the polar angle scaled as 𝛽൫√1 െ 𝜈ଶ𝑅/𝑡൯
ଵ/ଶ

.   

 With   denoting the inward deflection of the shell middle surface of the residual dent at 

the pole, i.e., res( )polew   , the normalized dent amplitude for three values of /Y C   is plotted 

as a function of the maximum imposed pole deflection during indentation in Fig. 2a and as a 

function of the maximum imposed indentation force in Fig. 2b.  The amplitude range of / t  



plotted in Fig. 2 is the relevant range for the present study.  Fig. 2c is a plot of the residual 

meridional in-plane resultant stress, N , averaged over the circular region at the pole of radius 

2.5 Rt  (approximately 10o  for / 200R t  ) and normalized by Yt .  One sees from this plot 

that the ratio of residual compressive stress associated with the dent to the yield stress depends 

almost entirely on the dent amplitude / t  with little dependence on /Y C   in the range of 

interest in this paper.  This finding will be seen to have implications for buckling.  We have re-

computed these curves using a strain hardening index 0.1N   rather than 0.25N  .  The two 

sets of curves are similar with no difference of any significance for our purposes.  As for the case 

in Figs. 1a and 1b, the dimensionless plots in Fig. 2, are found by performing calculations with 

different /R t  to be essentially independent of /R t  if / 25R t  .   

 

 

Fig. 2 Residual dent amplitude normalized by shell thickness, / t , versus maximum inward 
indentation pole deflection in a) and versus maximum indentation force in b) for three values of 

/Y C   for a shell with / 200R t  ,  0.3   and 0.25N  .  Plot c) presents the resultant stress 

component,  N , normalized by Yt  and averaged over the circular region at the pole of radius 

2.5 Rt  for the same three ratios of /Y C  .  The curves are essentially independent of /R t  

with these dimensionless variables. 

 

3. Spherical shells: Step 2, buckling of the dented shell under external pressure—3 analyses 

 To set the stage for this section we begin by presenting results for the buckling of a 

spherical shell with a ‘standard’ geometric dimple imperfection [14] that is subject to external 



pressure.  Both elastic and elastic-plastic buckling calculations are performed which reveal 

important insights into the role of the dimensionless yield stress parameter, /Y C  , in the 

buckling of imperfection-sensitive shells.  Identical axisymmetric geometric dimple imperfection 

(with no residual stresses) are introduced at each pole having an initial normal deflection of the 

middle surface given by (at the north pole) 

 
2( / )( ) I

Iw e        with 𝛽ூ ൌ 𝐵൫√1 െ 𝜈ଶ𝑅/𝑡൯
ିଵ/ଶ

     (3.1) 

The buckling pressure for a given imperfection amplitude   is the maximum pressure the shell 

can support.  The buckling pressures in Fig. 3 have been computed for 30 values of / t  over the 

range shown.  The elastic buckling pressure, computed with an elastic version of the code, lies 

just above the elastic-plastic computation for / 1Y C   , and an elastic-plastic calculation with 

/ 1.25Y C    (not plotted in Fig. 3) is identical to the elastic result, implying that up to the 

maximum pressure no plastic yielding occurs for any of the imperfect shells.  For lower yield 

stresses, e.g., / 0.75Y C    and 0.5, plastic deformation does occur before the shell reaches the 

maximum support pressure and this results in a lower buckling pressure, more so for smaller 

imperfection amplitudes than for larger amplitudes. 

 

 



Fig. 3  Buckling pressure as dependent on the amplitude of a geometric dimple imperfection 
(3.1) with no residual stresses for a strain hardening exponent 0.25N   in a) and 0.1N   in b).  
The top curve is based on an elastic calculation while the other three curves are based on an 
elastic-plastic calculation.  With / 1.25Y C   , the elastic-plastic calculation is identical to the 

elastic prediction implying no plasticity occurs prior to the maximum pressure.  These curves 
have been computed with / 200R t  , 0.3  and 1.5B  , but they are independent of /R t . 

 

The dimensionless plots in Fig. 3 reveal an important feature of spherical shell buckling 

[19] which has also been observed for cylindrical shells under axial compression [20].  With 

geometric imperfections, the maximum pressure (or maximum axial load for the cylinder) is 

attained while the shell is still in the elastic range if / 1Y C   , or at worse the shell only 

experiences minimal plastic yielding.  The primary focus in this paper will be on shells that have 

been designed to buckle elastically, and thus we will be mainly interested in shells whose yield 

stress is no less than the buckling stress of the perfect shell, i.e., / 1Y C   .   However, to 

provide additional insight we will show some results for / 0.75Y C   .  The study of 

cylindrical shells under axial compression in the next two sections will feature the geometry and 

material properties representative of a typical aluminum soda can with / 1.95Y C   .  One 

should be aware that the dramatic reduction of the load at buckling as a function of the 

imperfection amplitude characterizing spheres under external pressure and cylinders under axial 

compression helps explain why plasticity does not occur before the onset of buckling in the 

imperfect shells if / 1Y C   .  The same may not necessarily be true for modestly imperfection-

sensitive shell structures such as the cylindrical shell under external pressure or for columns and 

flat plates under compression, as will be discussed again in the concluding remarks. 

Now we consider buckling under external pressure of the spherical shells dented in Step 

1.  As mentioned in the Introduction, three types of buckling analyses will be used in Step 2 to 

parse the relative importance of imperfection geometry, residual stress and the influence of any 

additional plasticity prior to buckling.  For each dented shell, two elastic buckling calculations 

will be made, one accounting only for the geometry of the dent and the other including both the 

geometry and residual stresses.  The third calculation for each dented shell is an elastic-plastic 

analysis, accounting for dent geometry and residual stresses, whose purpose will be to determine 

if plasticity occurs prior to buckling during application of the pressure and, if so, what effect it 



has on the buckling pressure.  In the elastic-plastic buckling analysis, the full details of the 

plasticity distribution through the shell at the nodal mid-points are used; for each dent amplitude, 

the buckling analysis in Step 2 follows Step 1 seamlessly as a second form of loading. 

 

Fig. 4  Buckling of the dented spherical shell subject to external pressure for / 1.5Y C    in a), 

/ 1Y C    in b),  and / 0.75Y C    in c).  Results of three types of buckling analyses are 

plotted: an elastic analysis accounting only for the geometry of the dent; an elastic analysis 
accounting for both the dent geometry of the dent and residual stresses; and an elastic-plastic 
analysis accounting for the dent geometry and residual stresses.  The calculations have been 
made with / 200R t  , 0.3   and 0.25N  , but the curves are independent of /R t .   

 

 To recapitulate, a perfect spherical shell with prescribed parameters ( /R t ,  , /Y C   

and N ) is first dented (Step 1) and then this same shell, which is otherwise unloaded, is subject 

to external pressure (Step 2).  The maximum pressure the shell can support is identified as the 

buckling pressure and computed by each of the three methods mentioned earlier.  The plots in 

Fig. 4 summarize results for three levels of yield stress.  For each of the three yield stresses in 

Fig. 4, twenty-five shells indented over a range of dent amplitudes up to / 1.5t   were 

subsequently analyzed for buckling by the three methods.  The shells in Fig. 4 have / 200R t  , 

but the curves in this figure are essentially independent of  /R t .  The curves have also been 

computed for a hardening exponent 0.1N   and do not differ significantly from those plotted. 

 Begin by considering the shells in Fig. 4a and 4b which we have previously designated as 

having been ‘designed to buckle elastically’.  The first thing to note is that this designation is 

indeed justified.  The elastic analysis which includes residual stress and the complete elastic-



plastic analysis which includes the entire prior residual history are identical for / 1.5Y C    and 

virtually identical for / 1Y C   , except for very small dent amplitudes where plasticity does 

slightly reduce the buckling pressure.  Moreover, by comparing the two analyses which account 

for residual stresses with the elastic analysis that accounts only for dent geometry (the upper 

curve in each plot), one immediately sees that geometry accounts for a large fraction of the 

buckling pressure reduction for these imperfections.  This confirms the long, widely held notion 

that imperfection geometry is the dominant contributor to imperfection-sensitivity.  However, 

this conclusion must be tempered by the fact that accounting for the residual stress does lower 

the buckling pressure in these examples by an amount that should not be ignored, particularly so 

for the larger dent amplitudes.  Furthermore, note that the effect of the residual stress is larger for 

the shells in Fig. 4a with the higher yield stress.  This is easy to understand:  For a given dent 

amplitude, the higher the yield stress of the material, the higher the stress need to create the dent 

and thus the higher the residual stress.  This trend is consistent with the results in Fig. 2c that 

indicate that the residual in-plane stress for a given dent amplitude is proportional to the yield 

stress with little influence from /Y C  . 

 The main insight to emerge from the results in Fig. 4c for the shell that is not designed to 

buckle in the elastic range (having / 0.75Y C   ) is that plasticity occurring during the pressure 

loading does indeed lower the buckling pressure below what both elastic analyses predict.  This 

effect of plasticity is largest for the smaller dent amplitudes, not surprisingly because the perfect 

undented shell will buckle almost immediately after the membrane stress reaches yield, that is, 

when 0.75 Cp p .  It should be mentioned that no attempt has been made in this paper to 

analyze the plastic bifurcation problem for the perfect shell when / 1Y C   .  It is well known 

that the 2J  flow theory of plasticity employed in this study tends to be overly stiff leading to 

bifurcation predictions for perfect shells (and plates) that often exceed those obtained using 

theories with yield surfaces having higher curvature or corners, and often higher than 

experimental findings.  Nevertheless, once the imperfection amplitude becomes non-negligible 

the dependence of buckling predictions on yield surface curvature tends to disappear, as 

illustrated for spherical shells in [17].   We do not believe the choice of plasticity theory has an 

appreciable influence on the results in Figs. 2 through 4 nor those for cylindrical shells to follow. 



 Finally, it is also worth remarking that a dent imperfection with an amplitude / t  is not 

quite as deleterious to buckling as the ‘standard’ dimple imperfection as can be seen by 

comparing the results in Fig. 4 with those in Fig. 3. 

4.  Cylindrical shells: Step 1, creating the dent imperfection 

 The indentation process creating a dent for the cylindrical shell is essentially the same as 

that for the spherical shell.  For the cylindrical shell, however, the process is not axisymmetric 

and the commercial finite element code, ABAQUS Standard [21], has been used to carry out the 

calculations.  A specific shell is used to illustrate the indentation process and the subsequent 

buckling calculations in Step 2: it is a clamped cylindrical shell with dimensions and material 

properties of a typical aluminum soda can that has been tested extensively and analyzed [22].  

The shell’s length, radius and thickness are 104.1L mm , 28.6R mm  and 0.1t mm  such that 

/ 3.64L R   and / 286R t  .  The plasticity theory employed is again 2J  flow theory with the 

stress-strain curve (2.2) using 69E GPa  , 0.3  , 285Y MPa   and 0.1N  .  The 

cylindrical shell with these dimensions and material properties will be referred to as the 

‘reference shell’.  The classical buckling load (axial force) and associated compressive axial 

stress for a perfect elastic cylindrical shell are 

 
2

2

2

3(1 )
C

Et
F







,   
23(1 )

C

Et

R






        (4.1) 

The classical buckling stress for the shell dimensions listed above is 146C MPa   and thus  the 

reference shell has / 1.95C Y   .  In the terminology of this paper, the reference shell used to 

illustrate the effect of dent imperfections has been designed to buckle elastically.  The effect of 

decreasing the yield stress for this shell will also be investigated. 

The computational details follow those presented in [13] where the effect of geometric 

dimple imperfections has been studied.  Step 1 indents a perfect shell and Step 2 buckles the 

dented shell under axial compression.  The mesh for the models was created by user-written 

codes; S4R elements with an element length of 0.914mm in both axial and circumferential 

directions, which is roughly 0.5√𝑅𝑡.  For the integrations, 11 section points through the 



thickness of the shell were selected. At the two ends of the cylindrical shell, two nodes (one at 

each end) were defined at the center of the circular cross section. These central nodes were used 

to apply the boundary conditions at each end of the shell. The central node at each end of the 

shell is connected with rigid links to the other nodes at the end of the shell. The rigid links 

constrain both the translational and rotational degrees of freedom with respect to the central 

node. Using this procedure, the simulations enforce clamped boundary conditions at both ends 

and prescribed end-shortening Δ. 

Overall rotation of the ends is suppressed. The geometrically nonlinear Riks arc length 

analysis was used to follow the nonlinear solutions.  The indentation of the shell is performed 

using a rigid spherical indenter (results for 3 indenter radii will be presented, 1IR  , 1.5  and 

2.5 mm ). At the start of the indentation process, the nearest point on the indenter is located 1 mm  

away from the shell mid-surface. A displacement of the sphere is imposed which translates it 

towards the shell. Contact between the rigid sphere and the shell is assumed to be a hard contact, 

and the option for separation during unloading is enabled. The tangential behavior of the contact 

interaction between the sphere and shell is assumed to be frictionless.  

The loading and unloading process used to create the dent in the reference cylindrical shell 

is illustrated in Fig. 5 for an indenter with 1IR mm .  The center of the dent is located at a point 

along the mid-length circumference.  In the example shown, the indenter is displaced a maximum 

of 40 times the shell thickness to C  (30 times the shell thickness after first contact) and then 

retracted back to its original position, A .  Plastic deformation occurs during loading, as seen in 

Fig. 6, and upon unloading, contact between indenter and shell is lost at point D .  The resultant 

dent amplitude is approximately / 3.4t   in this example. 



 

Fig. 5  Creating the dimple dent in the cylindrical shell.  The loading and unloading indentation 
process on the left.  The associated history of shell displacement, indentw ,  under the indenter 

versus imposed displacement of the indenter,  , on the right.  The residual dent amplitude is  .  

 

Fig. 6  Amplitude of the residual dent normalized by the shell thickness as a function of the 
maximum imposed indenter displacement normalized by the thickness.  These results have been 
computed for the reference shell cited in the text with three different radii of the indenter.  

 The results for the residual dent amplitude (the maximum inward residual normal 

displacement) in Fig. 6 reveal that there is essentially no sensitivity to the indenter radius over 

the range of radii and depth of indentation considered in the present study.  In addition, the 

results show that for maximum indenter displacements below about / 20t   (or about 10 times 

the thickness after first contact) essentially no plasticity occurs during indentation, and there is 

no residual dent.  The contrast with the spherical shell is striking.  In Fig. 2 it is seen that 

plasticity sets in at indent displacements of about ½ a thickness and substantial residual dents in 

the sphere, i.e., / 1t  , are produced by indentation amplitudes of only 3 to 5 times the shell 



thickness.  Comparable dents in the cylindrical shell require indentation amplitudes of more than 

20 times the shell thickness after first contact.  The non-zero Gaussian curvature of the sphere 

creates a much stronger coupling between bending and stretching than is the case for the cylinder 

which has zero Gaussian curvature.  Further ramifications of this difference are evident in the 

shape of the residual dent in Fig. 7 discussed next. 

 

Fig. 7  The shape of the residual dent in the reference cylindrical shell as created by the indenter 
with 1IR mm  and max( ) / 40t  .  The coordinates ( , )z  are the circumferential angle and 

axial distance both measured from the center of the dent which lies on the mid-circumference of 
the shell; ( , )w z  is the residual normal displacement caused by the indentation. 

 

 The two plots in Fig. 7 show the residual normal displacement following indentation of 

the shell for the example in Fig. 5.  The plot on the left is the residual displacement around the 

circumference emanating from the center of the dent (at the middle of the shell) with the center 

taken to be at 0  .  The plot on the right displays the residual displacement along the axial 

direction (the z -direction) with the center taken to be at 0z  .   In the circumferential direction 

the shape and extent of the dent is similar to that of the spherical shell in Fig. 1.  For a cylindrical 

shell with / 286R t  , the dent half-width of about 10o   corresponds to a circumferential 

distance of 50t .  By contrast, the effective half-length of the dent in the axial direction is not 

well defined and it decays gradually towards the ends of the shell at 520z t  .  The significant 

spread of the residual deflection in the axial direction also reflects the fact that the cylindrical 

shell has zero Gaussian curvature.   



Residual stresses in the reference shell are plotted in Figs. 8 and 9 for two levels of dent 

amplitude, / 0.65 & 2.67t  .  Fig. 8 displays the circumferential and axial in-plane stresses, 

( ,0)    and ( ,0)z  , along the mid-circumference of the shell, averaged through the thickness 

and normalized by the initial yield stress.  Fig. 9 displays the same stresses averaged and 

normalized similarly but along the axial line passing through the center of the dent, i.e., (0, )z   

and (0, )z z .  The residual average in-plane stresses are dominantly compressive and have a 

value of about 0.3 Y  at the center of the dent for both dent amplitudes.  The residual in-plane 

stresses are also localized in the vicinity of the dent, comparable to the behavior of the dented 

spherical shell.  Unlike the cylindrical shell’s residual normal deflection, the residual stresses do 

not extend farther in the axial direction than in the circumferential direction 

 

Fig. 8  In-plane stresses averaged through the thickness and normalized by the yield stress 
plotted along the circumferential arc passing through the center of the dent of the reference shell, 
on the left for a dent amplitude / 0.65t   and on the right for / 2.67t  . 

 



 

Fig. 9  In-plane stresses averaged through the thickness and normalized by the yield stress 
plotted along the axial line passing through the center of the dent of the reference shell, on the 
left for a dent amplitude / 0.65t   and on the right for / 2.67t  . 

 

The variation of residual stresses with increasing residual dent amplitude are plotted in 

Figs. 10 and 11. Fig. 10 presents the circumferential and axial in-plane stresses ( ,0)    and 

( ,0)z  , along the mid-circumference of the shell, averaged through the thickness and 

normalized by the initial yield stress. Fig. 11 presents the same stresses averaged and normalized 

similarly but along the axial line passing through the center of the dent, i.e., (0, )z   and 

(0, )z z . For smaller dent amplitudes the residual stresses tend to be smaller as expected.  

 

 

Fig. 10  In-plane stresses averaged through the thickness and normalized by the yield stress 
plotted along the circumferential arc passing through the center of the dent of the reference shell, 
with increasing dent amplitude. 



 

 

Fig. 11  In-plane stresses averaged through the thickness and normalized by the yield stress 
plotted along the axial line passing through the center of the dent of the reference shell, with 
increasing dent amplitude. 

 

5. Cylindrical shells: Step 2, buckling of the dented shell under axial compression—4 
analyses 

 Four distinct analyses of the dented reference cylindrical shell have been performed:  two 

elastic buckling analyses, one ignoring the residual stress and the other accounting for the 

residual stresses; and two elastic-plastic buckling analyses, one ignoring the residual stress and 

the other accounting for the residual stresses. The geometry of the dent is accounted for in all 

four analyses.  As noted earlier, the shells are fully clamped at the ends suppressing end rotation 

and the axial displacement   of one end towards the other is imposed.  The axial displacement is 

increased until a first maximum in the axial compressive force, maxF , is attained which is defined 

as the buckling load.  In some cases, this first maximum is followed by a drop in axial force 

which is in turn followed by a subsequent increase in axial force.  For most of the range of 

parameters for the examples analyzed here the buckling loads plotted correspond to global 

buckling  in the sense that the load is a maximum.  In some cases, however, the buckling load 

corresponds to a local maximum such that the shell can support somewhat larger loads beyond 

this point.  In these cases, the deflections associated with the local buckling are relatively large 

so that, even though local, the buckling is likely to be regarded as undesirable from a structural 

standpoint. We consider the first local maximum as the buckling load because significant 



deflections occur at this stage in the loading history [13].  The results of the four analyses are 

presented in Fig. 12 as max / CF F  versus the dent amplitude / t .   

 

Fig. 12  Axial buckling load of the dented reference shell normalized by the classical elastic 
buckling load as a function of the dent amplitude / t .  The results of four distinct buckling 
analyses are presented:  an elastic buckling analysis with and without the residual stresses and a 
full elastic-plastic analysis with and without the residual stresses.   

Recall that the reference shell (a typical soda can) has been designed to buckle elastically 

with / 1.95Y C   .  Fig. 12 reveals that, indeed, plasticity plays no role in the buckling of the 

shell as can be inferred from the fact that the predictions of the full elastic-plastic buckling 

analysis and the elastic buckling analysis are essentially identical whether residual stresses are 

included or not.  This is completely consistent with our findings for the spherical shell.  The role 

of the dent’s residual stress is also consistent with what was found for the spherical shell.  An 

analysis which accounts for the residual stress of the dent predicts buckling loads that are 

between 15 to 30% lower than those predicted accounting only for the dent geometry for almost 

all dent amplitudes except the smallest.  To summarize, the main message of this paper conveyed 

clearly by Fig. 12 is that even if the shell buckles elastically, the effect of the residual stresses 

associated with the imperfections should not be ignored in a buckling analysis aimed at assessing 

imperfection-sensitivity. 



The role of the shell yield stress is presented in Fig. 13.  The perfect shell prior to denting 

has the same geometry as the reference shell.  Only the yield stress is varied in this figure.  For 

each value of the yield stress in Fig. 13, the shell is dented to produce a given dent amplitude 

(Step 1) and then followed as a continuing calculation (in Step 2) by an elastic-plastic buckling 

analysis accounting for both the geometry and residual stress of the dent.  The trends in Fig. 13 

as dependent on /Y C  are similar to those discussed for the spherical shell in Fig. 4.  

Specifically, except for the smallest imperfection amplitudes, plasticity in Step 2 has only a 

minor effect on the buckling load if / 1Y C   .  Only for lower values of the yield stress, i.e., 

/ 1Y C   , does plasticity have an appreciable effect on the predictions of the buckling load.  

Like the results for the spherical shell under external pressure, the results for the cylindrical shell 

under axial compression confirm the assertion that a highly imperfection-sensitive shell designed 

to buckle elastically when perfect, i.e., / 1Y C   , will indeed buckle elastically—or nearly 

so—even if imperfect.  This assertion is also in accord with an early result [20] for buckling of 

axially compressed cylindrical shells with sinusoidal geometric axisymmetric imperfections:  If  

/ 1.05Y C   , no plastic yield occurs before the buckling load is attained for any imperfection 

amplitude, while if  / 1Y C    plastic yielding occurs only for very small imperfection 

amplitudes.   



 

 Fig. 13  Axial buckling load of dented cylindrical shells normalized by the classical elastic 
buckling load as a function of the dent amplitude / t  for various ratios of yield stress to 
classical buckling stress.  Each of the buckling analyses in Step 2 is a full elastic-plastic analysis 
accounting for both the geometry of the dent and the residual stress.  Dents are created for each 
of the respective values of /Y C   and for each dent amplitude.   Prior to denting, all the shells 

are perfect having the same geometry as the reference shell.  The curve for the reference shell is 
the upper curve labeled by / 1.95Y C   .   

 

6.  Concluding Remarks 

 Localized dent imperfections have been created in otherwise perfect spherical and 

cylindrical shells by indenting them into the plastic range.  The primary focus is on shells that are 

designed to buckle elastically such that / 1Y C    where C  is the compressive buckling stress 

of the perfect shell.  The geometry and the residual stress associated with the dent imperfection 

are computed.  The dented shells are then analyzed for buckling, under external pressure for the 

spherical shell and under axial compression for the cylindrical shell.  Both elastic and elastic-

plastic buckling analyses have been performed and, with the aim of assessing how important the 

residual stress are, separate analyses were carried out: one ignoring the residual stresses and the 



other taking them into account.  On the one hand, the findings confirm the long-held view that 

the geometry of the imperfection (the deflection of the mid-surface from the perfect shape) is the 

most important consideration in analyzing buckling imperfection-sensitivity of unstiffened 

shells.  On the other hand, the results of this paper reveal that, for dimple-like imperfections 

created by denting, the residual stress can reduce the buckling load by an additional 15 to 30%  

below what is predicted based on an analysis only accounting for the imperfection geometry.  

For shells that are designed to buckle elastically, this is not due to plasticity occurring in the 

buckling process, rather it is the boost in local compression in the shell in the region of the dent 

that enhances the susceptibility to buckling.  The implication for shell designers who wish to 

bypass the most conservative shell buckling criteria by relying on measurement of shell 

imperfections and incorporating them into their buckling analyses is that residual stresses will 

also need to be taken into account, at least for the types of dent imperfections considered here.   

 It is also worth repeating our finding that, for the two highly imperfection-sensitive 

shell/loading combinations considered in this paper, the buckling process (as opposed to the 

denting process) is nominally elastic as long as the yield stress exceeds the elastic buckling stress 

of the perfect shell, / 1Y C   .  Plasticity will likely occur beyond the maximum load after 

buckling is initiated, but little or no plastic yield occurs before the maximum load is attained.  As 

remarked earlier, it is not clear that this rule will hold for shell structures that are less 

imperfection-sensitive than the sphere under external pressure and the cylinder under axial 

compression.  The dramatic drop of the maximum load with increasing imperfection amplitude 

for these two shell/loading combinations reduces the stresses that produce plastic yielding.   

When the drop is less precipitous stresses may reach yield before the maximum load is attained 

in an imperfect shell.  A systematic study of an example such as the cylindrical shell under 

external pressure which is inherently less imperfection-sensitive would be enlightening in this 

regard but, to our knowledge, no such study exists in the literature. 
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