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SUMMARY

Prastic deformation of b.e.c. polverystals is investigated on the basis of a single-crystal
deformation model. Many of the calculatians previously only presented for f.c.c. polyerystals
are given here for the b.c.c. structure, In particular, stress—strain curves in tension and simple
shear are prescnted along with the b.c.e. limit yield surface and the polyervstalline Bauschingex
effect. The model employed is one suggested by Bupravsky and YWu (1862) and KrO~er (1861).
Many of the results correspond to those which would be obtained from Taylor’s model, or Lin's
extension to the Taylor model

1. INTRODUCTION

Previous theoretical investigations of plastic pelyerystalline deformation on the
basis of single-crystal deformation models have been limited almost exclusively
to the face-centred cubic (fic.c.) crystalline structure. Here calculations are
presented which are relevant to body-centred cubic (b.c.c.) polyerystals and are
examined in the light of the numerous results which have been obtained for f.c.c.
polycrystals since TavLor’s (1938) rigid-plastic model. Biszor and Hion (1951)
simplified the calculation procedure associated with Tavior’s model and extended
this analysis to polyaxial stress states and calculated the limit yield surface for f.c.c.
polycrystals comprised of perfectly plastic single crystals, Lin (1957) further
extended Taylor’s model by including the elastic strain, and thus the extended
model was capable of predicting polverystalline stress—strain behaviour for both
large and small plastic strains. Later, Kréxer (1961) and Buptansky and Wu
(1962) suggested another polycrvstalline deformation model which was also
constructed to be valid for the entire stress—strain range. The caleulations presented
here are based on the latter model, but the stress-—strain relations as predicted
by the two theories, Lin's and that used here, are simply related.

Some uncertainty exists with respect to the crystaliographic slip planes of
b.c.c. single crystals; but, as TavLor (1935) suggests, a precise knowledge of the
slip system is not necessary for determining macroscopic polyerystalline deformation,
Accordingly, Taylor's suggestion, now widely accepted, is that slip can occur on
any plane associated with any of the four (111) type slip directors. Pelyerystalline
strain hardening is investigated by assuming, somewhat arbitrarily, that the
single crystals harden according to Taylor’s rule, 7y = F (Zly|). In the following
sections the equations of the deformation model suggested by Budiansky—Wu
and Krdner are first briefly reviewed, and then the calculations for the b.c.c.
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structure—stress—strain curves in tension and simple shear, the polyerystalline
Bauschinger effect, the limit yield surface, and the Lode diagram—are contrasted
with the previous f.c.c. predictions.

2, PoLycRYSTALLINE DerorMaTION MODEL

The equations of the present model have been developed at length by
Bupransky and Wu (1962) or HuTcHixsoN (1964). Here the equations are listed
for easy reference. The stress in anv crystal is obtained by assuming the erystal
is spherical, elastically isotropic, and surrounded by an elastic-plastic matrix
which has the same elastic moduli as the single crystal. A stress, §9;, applied to
the matrix at infinity is the macroscopic aggrepate stress and a plastic strain,
IPy. the aggregate plastic strain, is imposed throughout the matrix. If Py, the
plastic strain in the spherical crystal is uniform, the stress in the crystal, sy, is
also uniform and is

2 {7 — 5v)

=8 = )

G (ePyy — EPy) (1)
where v and G are the Poisson ratio and the elastic shear modulus. All the tensors
in the above equation are deviators: the hydrostatic comporent of the stress
tensor does not contribute to the piastic strain. The polyerystalline stress and
plastic strain are the average of these quantities over all the grains; or equivalently,
the average of these quantities over all the possible orientations of the grain
axes with respect to the specimen axes. Since ($)ave = 5%;, equation (1) is
consistent with the identification of S¢; as the polycrystalline stress.

The fourfold-infinity slip model suggested by Taylor for b.c.c. single crystals
is modified, for calculation purposes, by permitting slip to occur on only a finite
number of planes associated with each direction. For a sufficiently large number
of systems, the polycrystalline predictions are essentially independent of the
number of systems and thus identicsl with the fourfold-infinity model. With »i; as
any one of the four slip directions and n; as the normal to one of the slip planes
assoclated with this direction, the plastic strain in the erystal resulting from a slip,
v, on this system is

Py = L v (nyomy + nymy) = yau

The total slip in any crystal is the sum of the slips on all the systems,
epg; — 2 },(n) O'vij(m (2)
n

Slip occurs on the »™ system when the resolved shear stress on that system,
835 a3, equals the yield stress 7, of that system. We will specifically be interested
in solutions obtained under the assumptions of either ideally plastic single crystals
or crystals hardening according to a linear version of Taylor’s hardening rule.
Thus, the yield stresses on all systems are assumed equal and given by

Ty = 10 + bZ |,},<n)|. (3)
1A
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Equations {1), (2), and (3) are now combined fo give the equations for obtaining
the slips, »®)'s, for the deforming erystals. An active system, sy 0™ = £+ 74,
either remains active, in which case (dots indicate incremental quantities)

S o' ™ = 4y (4)

with ¢#) = 0, if the resolved shear stress is positive and ¢ < 0, if it is negative,
or it unloads and
{45 a¢;| <y and pind = 0.

An inactive system, ‘Sr,{j a@j‘mi < 74, coniributes no slip until it is activated.
Equation (4) written in terms of the unknown incremental y™s is

2 (7 — 5v)
Reyy ayn) — 15((1 — E PmY gutm) g in) — b E |.},{ml| (5)

where R%;, the independent variable in the calculation, is defined by

9 (7 —
Boy; = Sog; + ;»——5(?1 _5:; G Ery. {6)
In general, this tensor cannot be specified so as to obtain, say, a prescribed
stress history; but for both tension and simple shear the tensors §9%; and E¢; are
proportional and Rey; can be specified to give either of these two histories.

We now consider some of the details of the deformation of the single crystal
which are peculiar to the b.c.c. structure; in particular, let us look at the perfect
plasticity solution, As R9; increases from zero, the stress in the crystal increases
with no slip taking place until the resolved shear stress on some slip system reaches
the yield stress. This system slips and continue to remain active until a second slip
system, associated with one of the three inactive directions, is activated; both
these systems slip simultaneously, These two systems remain active until either (i)
another system associated with the remaining two inactive directions i1s activated
or (i1} as often occurred, a system associated with one of the active directions
and adjacent to one of the active planes is activated. With an infinite number of
planes per slip direction only one slip plane per direction could be active at any
stage. The active system rotates about the slip direction with a continuous distri-
bution of slip over the “fan’ of slip planes which have been active, It is possible
for two adjacent slip systems associated with a given slip direction to be active
in a crystal with only a finite number of systems, and possibility (ii) would be
expected. Unloading, as one might suspect, takes place frequently :  in most
cases an active system unloads as an adjacent system associated with the same
directions becomes active. Thus, as the crystal deforms, three, four, and five slip
systems become active. When five independent slip systems are active, the stress
in the crystal has reached a fixed value and no further slip system is activated.

The plastic strain is an average of Py over all the orientations of the grain
axes relative to the specimen axes. As the symmetry of the b.c.c. single crystal
is similar to that of the f.c.c. crystal, the same reduced regions employed in the
f.c.c. caleulation are wvalid for the b.c.c. investigations. Two identical tensile
calculations, each a numerical integration over ninety-one oriemtations of the
grain axes relative to the tensile axis but one with twenty slip planes per slip



28 J. W. HutcHivsoN

direction and the ether with only ten, differed nowhere by more than 0-7 per cent.
In addition, two calculations, both with ten slip systems per direction but with
ninety-one and twenty-eight orientation slations respectively, showed less than
0-5 per cent divergenee. In the culeulation for the polyerystalline simple shear
relation the third Kuler angle variation, from 0 to }#, was divided inte ten equal
divisions; 280 orientation stalions were used for this calculation. It was necessary
to include a variation of the third Euler angle from 0 to = for the calculation of
the limit yield surface. This variation was divided inlo twelve equal divisions
with 336 orientations in all. The error of the tensile calculation, compared to an
exact caleulation using the Taylor fourfold-infinity slip medel, with twenty slip
planes per dircction should be less than 1 per cent, while that of the other calcula-
tions, performed with ten slip plane per direction should be less than 2 per cent.
All the caleulations were performed by a 7090 IBM computer with v = 4.

3. TENSILE AND SIMPLE SHEAR STRESS-STRAIN RELATIONS

Cox and SopwiTh (1937) calculated the lower bound of the tensile yield stress
of a b.c.c. polyerystal of ideally plastic single crystals. They assumed each grain

o |-

£
&
Fic. 1. Tensile stress-plastic strain curves. %, and ¢y are the stress and strain at the initial
elastic limit. » = 1,3 for both b.c.c. and f.c.c.

was subject to a uniaxial stress, parallel to the specimen axis, sufficient to produce
slipping on the most highly stressed slip system. These uniaxial stresses were
averaged over all oricntations to give for the limit yield stress oy,f/o?% = 1-068,
where o9y is the initial elastic limit. A similar ealculation gives a lower bound of
Ol 7%y = 1.116 for t.c.c. polycrystals. Tavior (1938) obtzined what is a much
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more realistic approximation to the limit yield stress of f.c.c. pelycrystals under
simple “tension : oy, /0% = 1-53. 'Tavior (1955) described a procedure for
caleulating the limit yield stress of a polycrystal of ideally plastic single crystals
on the basis of the fourfold-infinity b.c.c. slip model. He made, however, no
calculations. The limit yield stress as predicted by the present model can be shown
to be identical with that predicted by the Taylor model, as well as Lin’s extension.
Thus, the value of the limit yield stress in simple tension for the b.c.e. structure,
Gim/0%y = 1-874 (from the calculation with twenty slip planes), and the limit
yield stress in simple shear, =,/0% = 0-771, and the ecorresponding wvalues
associated with the f.c.c. structure, oy,/c%y = 1-586 and y,/0% = 0-828, are
appropriate for each of these three deformation models. The significance of these
numbers is discussed in the following section. The stress—strain relations in tension
and simple shear are given in Table 1 for b = 0 and one non-zero value of b.
Fig. 1 is a plot of the tension stress—strain curves with the perfectly plastic f.c.c.
curve included for comparison. As was pointed out by HurcHINsON (1964), the
stress—strain curves as predicted by Lin’s extension to Taylor’s model and the
Budiansky and Wu model are simply related. For example, in simple tension
for ideal plasticity with v = } the plastic strain predicted by the Lin model is
8/15 of that predicted by the present model.

TaBLE 1
b/G =0 b/G = 0-10
olady, EP[eo), ooy E7|e0),
1-087 0-188 1-109 0-151
1-189 0-435 1-189 0-352
1-200 0-884 1-367 0-881
1-279 1-702 1-465 1-223
1-350 891 1-591 1-674
1-867 7-88 1-814 2-476
1-872 16-21 2958 6-91
1-874 0 4-480 1278

The strain hardening relations listed in Table 1 are the results of exact ealcu-
lations. For reasonably small values of the strain hardening parameter, say
b{G < 0-05, the following formulae give very close approximations to the exact
caleulations (HurcrinsoN 1964). With bars denoting the ideally plastic poly-
crystalline quantities, the polyerystalline strain hardening quantities are given by

o = ——bi——- o, E?r — —b—l—— EP,
1-—- ‘T—o; Mave Ep' 1 — ‘771; Maye Ep

where mgye 1s 8-06 for the f.c.c. structure and 275 for the b.c.c. structure. TavLor’s
(1938) formulae relating the tensile stress and plastic strain, valid for large plastic
strains is

o = F (mave EP) Mave o £7)
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where F is the hardening function of the single erystal and, as above, mgy, is either
306 or 2.75 depending on the crystalline structure. Note that from (7) the limit
yield stress of a polyerystal perfectly plastic single crystal is exactly 4migye; the
number mgys appropriate to b.c.c. polycrystals was obtained from the present
calculations. It is of interest to compare the final slope of the stress—strain curve
as predicted by a linear version of {7), o = b (myee)? EP, with the predictions of the
present model. These results are shown in Fig. 2. For small values strain hardening
the agreement is very good but Taylor formula gives larger estimates of the final
slope with increasing strain hardening. Noting that the slope of the stress-strain
curve for large plastic strains as predicted by the Taylor formula (7) for linear
hardening is dependent on (1445, it is seen that for equal single crystal hardening
the slope for the f.c.c. polyerystal is 1.24 times that for the b.c.c. polycrystal.
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4. LivitYIELD SURFACE

The limit yield stress in tension is defined as the maximum tensile stress which
the polyerystal of perfectly plastic single crystals can sustain, and similarly for
the limit yield stress in simple shear. Knowledge of the yield surface in ¢4, o,
space for 0 <{ oy < $o, completely characterizes the yield surface for all stress
states. Brsmop and Hir (1951) calculated the limit yield surface for f.c.c. poly-
crystals. We have used the caleulation framework of the present model to determine
the yield surface for b.c.e. polyerystals. Although this procedure is somewhat
different from the scheme of Bishop and Till, it is equivalent. In caleulating a
typical point on the suxface, Ity was arbitrarily chosen, and a procedure similar
to that described in Section 3 was used to determine the final stress in each crystal,
and then these stresses were averaged to obtain the limit vield stress associated
with the particular choice of Roy. From (6) E7y a2 Re; once the stress has reached
the yield surface.

The results of these calculations are listed in Table 2. Both the yield surface
and the Lode (u, v) diagram have been plotted. To facilitate comparison with



Plastic deformation of b.c.e. polycrystals 31

TasrLe 2

EPgyiePy (1, A=}, —2—4,0,0,0)

C’:v!’“yo nyaoy | A
1-38 0 | 0
144 0-142 { 0125
1-49 0-308 0-250
158 0510 ‘ 0-875
154 0771 ‘ 0-500

Bishop and Hill's results for f.c.c. polycrystals, all points on the yield surface were
normalized by dividing their co-ordinates by the value of the tensile yield stress.
The normalized f.c.c. and b.c.c. yield surfaces are plotted in Fig, 8 along with the
predietions of the =, vs. 37 _ theory and the J, theory, both phenomenclogical.

Fic. 8. Normalized limit yield surface; f.c.e. curve from Bishop and Hill.

The plane of the trace of the yield surface is identical to that given by Bishop
and Hill. I this plane the J, (or von Mises) curve is a circle and the =, vs.
yho {or Tresca) curve is a straight hne. The two phenomenological curves
bracket the f.c.e. and b.c.c. yield surfaces; yet, while the f.c.e. surface lies more
or less midway between the two curves, the b.c.c. yield surface lies much closer
to the J, curve. This suggests that the J, theory is preferable to the = . vs.
yPax theory when applied to b.c.c. polyerystals. This is further borne out when
the entirve simple shear and tensile stress—strain curves of the present caleulations
are brought into comparison through the two phenomenological theories.

The theorctical (g, v} diagram (Fig. 4} agrees with the cxperimental findings
of b.c.c. metals reported by Lopr (1926) and Tavror (1931). The Lode parameters
for this plot are

H:QE‘Y— , and V=°EpyﬁEpz

2z - -1
Tz pr'*Epz

The line p = v corresponds to agreement with the J, flow theory.
There is by no means concurrence in the reportings of the experimental Lode



32 J. W. HuTcuINseN

diagrams. This is especially true for {.c.c. investigations for which experimental
curves have been found to lie to the right as well as the left of the line p = v,
Erumvgron (1958) found the experimental (p, v) curve to be considerably to the

0]

Fic. 4.

right of the line p = v for polycrystalline copper and along the line ¢ = v for «-brass.
While Taylor’s specimens displayed little strain hardening, Ellington’s had a high
rate of work bardening. The possibility that the difference in findings can be
accounted for by including strain hardening is currently heing considered.

-OOMPRESSIVE
ELASTIC LIMIT, BCC

Fic. 5.

5. B.C.C. PorycervystarrLine BauscHinceEr ErFrFrcr

Here a polycrystalline Bauschinger effect is demonstrated assuming the b.c.c.
single crystals display no hardening. As in the calculations we have discussed,
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1t 15 inleresting to draw comparison with previously obtained results for the fe.e.
structure. A Ltypical caleulation paralleled the following conceptual experiment :
the specimen was given an initial tensile elongation. the tensile load was reduced,
and the specimen was deformed in compression. Several such caleulations. corres-
ponding to different initial plastic strains, are shown in Fig. 5. No plastic strain
is predicted when the tensile load is diminished from its initinl value, as was
reported for f.e.c. polyerystals [see Cxyzax, Bow and Pavre (1957) or Llirecainsox
{1964)].  The nominal compressive clastic lumit of an {.c.c. specimen after o large
initial plastic extension is oje?,; = 0-17, while for b.c.c. specimen the compressive
elastic limit is actually positive : ofe®, = 0-08. The b.e.e. structure displays a
stronger polycrystalline Bauschinger effect.
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