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Introduction

A division of elast ic stabi l i ty theory and i ts appl icat ions
into separate categories of buckl ing and postbuckl ing is
not entirely rat ional, but the creation of such an art i f i -
cial dist inct ion is almost essential to bring either into
manageable proport ions. This point is brought home by
more than 1600 references on cyl indrical shel l  buckl ing
alone in the surveyby Grigol 'uk and Kabanov IRef. 1] .

Postbuckl ing aspects of stabi l i ty theory for f lat plates
received prominence in the early 1930's, after Wagner

IRef. 2] had establ ished a sound theoretical foundation
for the load-carrying capacity of deeply wrinkled flat
shear panels. The approximate discussion by Cox for
plates in uniaxial compression IRef. 3] was fol lowed by
a r igorous analysis by Marguerre and Trefftz [Ref. 4] .
This work was continued f irst in Gernrany IRefs. 5, 6],
and somewhat later in the United States [Refs. 7-15],
Bri tain [Refs. 16-18] and The Netherlands IRefs.
1.9-281 . Reviews of this work and subsequent dcvelop-
ments are to be found in [Ref. 29] .  The entirely
dif ferent postbuckl ing behavior of thin shel l  struc-
tures came to l ight in the early 1940's when Karman
and Tsien IRefs. 30-331 showed that the large dis-
crepancies bctween test and theory for the buckl ing
of certain typcs of thin shel l  structures was due to

the highly unstable postbuckl ing behavior of these

structures. At roughly the same t ime in war-t ime
Holland, Koiter IRef. 34] developed a general theory of
stabi l i ty for elast ic systems subject to conservative load-
ing which was published as his doctoral thesis in 1945.

Karman's and Tsien's papers spawned many more in
the fol lowing 30 years, and most of them have been
directed to obtaining more accurate results for the
cyl indrical shel l  under axial compression or to studying
this structure under other loadings. Koiter 's work, on the
other hand, attracted relatively little attention until the
early 1960's when interest in the general theory sprang
up almost simultaneously in England and in the United
States.

Our review will be centered mainly on the theory and
applications that have emerged from these two ap-
proaches to postbucki ing theory. A major st imulus to
development in this subject continues to be generated
by the quest for predictive methods for the buckling of
shell structures, and a sizable portion of this review will
concern applications of the theory to this area, A
state-of-the-art discussion of shel l  buckl ing as of 1958
is given in the excel lent survey by Fung and Sechler

[Ref. 35], and that art icle provides a background for
assessing the progress which has taken place in this sub-
ject in just over a decade. Our lack of command of the
Russian language prevents us from doing just ice to the
contr ibutions of Soviet scientists in this f ield. Reference
may be made, however, to Volmir 's outstanding treatise
on the stabi l i ty of deformable systems [Ref. 36], and
to the survey on cyl indrical shel l  buckl ing [Ref. 1].

Our discussion wil l  not touch on research into stabi l-
i ty of elast ic systems subject to nonconservative loadings,
but fortunately we can cite a recent survey in Applied
Mechanics Reuiews by Herrmann [Ref. 37] on this
aspect of stability theory, as well as a similar survey by
Nemat-Nasser IRef. 38] on thermoelastic stabi l i ty under
general loads. We also would cal l  attention to another
recent review art icle by Thompson [Ref. 39] which
does cover some of the same ground as the present
survey, but the emphasis there is on elast ic systems
characterized by a f ini te number of degrees of freedom,
whereas most of the applications we will discuss will be
within the realm of continuum theory, We also omit a
detai led discussion of secondary branching IRefs. 29,
40, 4ll of the initially stable postbuckling behavior of
f lat plates, even i f  this phenomenon is of some im-
portance for these and similar "completely symmetric"
structures IRef. 42] .

Theory and Appl ications

The energy criterion of stability for elastic systems
subject to conservative loading is almost universally
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adopted by workers in the field of structural stability

[Refs. 43-45] .  A posit ive definite second variat ion of
the potential energy about a stat ic equi l ibr ium state is
accepted as a sufficient condition for the stability of
that state. Numerous attempts to undermine these two
pillars of structural stability theory have been made, but
confidence in them remains undiminished. With a proper
shoring-up of certain aspects of these criteria, they will
undoubtedly continue to serve as the foundation of
elastic stability theory. An account of the present status
of the fundamentals of stability theory is given in

IRef. 46] .
In this review, we are concerned mainly with the

class of problems most frequently encountered in the
field of structural stability in which the loss of stability
of one set of equi l ibr ium states of an ideal ized, or
"perfect," elast ic structure is associated with bifurcation
into another set of equi l ibr ium states. The f irst set is
referred to as the prebuckl ing state and the bifurcated
state as the buckled configuration. The bifurcation load
of the perfect structure is commonly called the classical
buckl ing load and is denoted here by P-. This is by no
means the only circumstance under which a structure
can become unstable. For example ) a very shal low
clamped spherical cap subject to a uniform pressure
loading reaches a maximum, or limit, load at which point
i t  becomes unstable under prescribed pressure with no
occurrence of bifurcation. However, due to the sym-
metry of both the idealized structure and its loading,
bifurcations frequently do occur at load levels below the
limit load.

The classical analysis of the stability of the prebuck-
ling state of the perfect structure takes the form of an
eigenvalue problem for the lowest load level for which
the second variat ion of the potential energy is semi-
definite. The Euler equations associated with this vari-
at ional principle are l inear and the eigenmode (or modes)
associated with the critical eigenvalue P. is termed the
buckl ing mode (or modes). While the classical analysis
yields the load at which a perfect realization of a struc-
ture wil l  at least start to undergo buckl ing deflect ions, i t
gives no indication of the character of the postbuckl ing
behavior, nor does it give any insight into the way a non-
perfect real izat ion wil l  behave.

Typical load-deflection curves characterizinq static
equilibrium configurations are shown in Fig. 1 for the
case of structures which have a unique buckling mode
associated with the classical buckling load. In each of
the three cases shown the prebuckl ing state ofthe perfect
structure is stable for P I P, and is unstable fot P) P,
where it is shown as a dotted curve. Case I illusrrares a
structure with a stable postbuckling behavior which can
support loads in excess of P, in the buckled state. The
behavior of a slightly imperfect version of the same
structure (or perhaps for a slightly misaligned application
of the load) is depicted by the dashed curve. Case II is
an example of a structure which goes into a stable or
unstable postbuckl ing behavior depending on whether
the load increases or decreases fol lowine bifurcation. An

initial imperfection is all that is needed to prejudice the
deflection one way or the other. If an imperfection in-
duces a positive buckling deflection, the load-deflection
curve of Case II has a limit load P., the buckling load of
the imperfect structure, which is- less than the bifurca-
t ion load of the perfect structure P.. Case II  is an ex-
ample of asymmetric branching behavior, while Case III

illustrates a structure whose buckling behavior is sym-
metric with respect to the buckl ing deflect ion and whose
initial postbrrckling behavior is always unstable under
prescribed loading condit ions.

The classical buckling load is a reasonably good
measure of the load level at which an imoerfect realiza-
tion of the structure begins to undergo significant buck-
ling deflections if the structure has a fully stable initial
postbuckl ing behavior. In the early days, rel iance on the
classical buckling load stemmed from the fact that all
confrontat ions between test and theory were for either
columns or plates, and both of these are stable in the
postbuckl ing regime. When tests were carr ied out on thin
shell  structures in the early 1900's, the classical theory
became suspect because then actuai buckl ing loads were
frequently found to be as little as one-quarter of the
classical load.

Except for a very few structures, such as the column
under axial compression [Ref. 47] and the circular r ing
subject to inward pressure [Ref. 43] ,  i r  is not possible
to obtain closedform solut ions governingthe entire post-
buckl ing behavior. Start ing with Karman's and Tsien's
work on spherical and cyl indrical shel ls, a large number
of numerical calculations in the large-deflection range
have been made. Each of these calculat ions reDresenrs
an attempt to obtain the load-deflection behavio-r of the
perfect structure, and in part icular the minimum load
the structure can support in the buckled state ( i .e.,  P*
in Fig. 1). This load was held to be significant as a pos-
sible design load on the grounds that the strucrure could
always support at least this much load and that even
imperfections would not reduce the buckl ing load below
this value. This concept could not be useful in any uni-
versal sense since there are well-known examples of struc-
tures with negative minimum postbuckl ing loads. An-
other difficulty with this proposal is that the buckling
process of such a structure is a dynamic one and the
buckled structure may end up deformed quite differ-
ently from what is predicted on the basis of stat ic
equil ibr ium considerations alone. In any case, efforts to
validate the minimum load for design purposes for cylin-
drical shell structures have not paid off, as we will dis-
cuss in the next major section of this art icle; and this
idea perhaps should be abandoned.

Emphasis in the analysis of imperfection-sensitive
structures has shifted to the maximum load P, which
can be supported before buckling is triggered and to re-
lating P, to the magnitude and forms imperfections
actually take. This was the point of view adopted in the
general nonlinear theory of stability [Ref. 34] and in
subsequent investigations based on the general theory

IRefs.  49-55] .

1 354



The initial postbuckling analysis in its simplest form

yields an asymptotically exact relation between the load

parameter P and the buckling deflection 6, valid in the
neighborhood of the bifurcation point of the perfect
structure. This expansion is in the form

P=P,( l+a6+b62+.. . )  (1)

where the coefficients d, b, ... determine the initial post-
buckl ing behavior. A number of important problems

are characterized by multiple buckling modes associated
with the classical buckling load. Two of these problems
wil l  be discussed in the next section. For such problems,
the initial postbuckling analysis may be considerably
more complicated,

Asymptotically exact estimates of the buckling load
of the imperfect structure are obtained by including the
first-order effects of small initial deflections. Only the
component of the initial deflection in the shape of the
classical buckling mode enters into the resultant formula.
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t.
I f  the ampli tude of this imperfection component is de-
noted by 6-, then for Case II  with 5 ) O, the general
theory yields

ment for the effect of an imperfection - a slightly offset
load - on the buckling load is remarkably good.

The first application of initial postbuckling theory
was to the monocoque cylindrical shell under axial com-
pression [Refs. 34, 50] which wil l  be discussed in the
next section. The second was a study of a narrow cylin-
drical panel under axial compression [Ref. 49] which
displays a transition, depending on its width, from a
stable postbuckling behavior typical of a flat plate to the
unstable behavior which characterizes the cylindrical
shel l .  Beaty [Ref. 94] and Thompson [Ref. 63] appl ied
the general theory to the axisymmetric buckling of a
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FIG. 2,  COMPARISON OF THEORY
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where a is a constant which depends on propert ies of  the

structure.  For the symmetr ic branching point  of  Case I I I

(a= o,b (  0) ,  the analogous formula is

1 -  
P'  

-  (a l6- l )  tu
Pc

In both instances, very small  values of q6 have a sizable
effect on PrlP- and it is this feature which accounts for

the extreme imperfection-sensit ivi ty of many structures
which have an unstable postbuckling behavior.

Interest in the init ial  postbuckl ing approach mush-
roomed in England in the early 1960's [Refs. 56-93] .

Some f ine experimentation is included in this work, and

an extensive series of theoretical investigations have

centered around conservative systems characterized by a
f inite number of degrees of freedom. A great deal of this

work has been carr ied out at University College, London,

by Chilver, Thompson, Walker and their students.
Sewell ,  at the University of Reading, also has concen-

trated on the postbuckl ing behavior of discrete systems.
He has part icularly emphasized the systematics of the

perturbation procedure and has used the terminology

"the stat ic perturbation method" in referr ing to this
method of analysis. Both Thompson and Sewell  have
explored a variety of bifurcation possibi l i t ies for such
systems. Recent studies have been made with an eye to

providing a framework for postbuckling calculations via
f inite element methods. Some of this work is summarized
in [Ref.  39] .

Perhaps the best direct experimental val idation of

the init ial  postbuckl ing approach was obtained in a

series of tests by Roorda [Refs. 67, 68]. The simple
two-bar frame shown in Fig. 2 was loaded in a testing
machine which, in effect, prescribed displacement rather

than dead load and in this way the postbuckling equili-
brium states were recorded. Experimental points and

theoretical predict ions IRefs. 53, 85] shown as a sol id
l ine for the load, P, versus buckl ing rotat ion,0, for the

"perfect" structure are displayed in the upper half  of

the f igure. The agreement between theoty and experi-

(3)
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complete spherical shel l .  Their analysis yielded the ex-
pected result that the sphere has an unstable postbuck-
l ing behavior. However, i t  has been shown recently

IRef. 55] that the init ial  postbuckl ing analysis in i ts
simplest form leads to results that are of little practical
consequence for the complete sphere problem. We defer
a discussion of this matter also to the next section.

The general theory IRef. 34] has been applied to a
variety of shel l  structures by Budiansky and Hutchinson
and their students at Harvard University IRefs. 95-110] .
Included among them are toroidal shel l  segments under
various loadings, cyl indrical shel ls subject to torsion and
spheroidal shel ls loaded by external pressure.

Results shown in Fig. 3 due to Budiansky and
Amazigo IRef. 103] very nicely i l lustrate the outcome
of such an analysis and i ts interpretat ion. In the upper
half of the f igure the classical buckl ing pressure p. in
nondimensional form is olotted as a function of the
length param etet Z appropriate for either a simply-
supported cyl inder of length L or a segment of length L
of an inf inite cyl inder reinforced by r ings which permit
no lateral deflect ion but al low rotat ion. The init ial  post-

, .2.
t  = (+) Jt-vz

FIG. 3.  COMPARISON BETWEEN TEST AND CLASSICAL
THEORY WITH INITIAL POSTBUCKLING PREDICTIONS
FOR A CYLINDRICAL SHELL UNDER EXTERNAL PRES-
SU RE

buckl ing behavior is symmetric with respect to the
buckl ing ampli tude 6, and therefore the pressure-
deflect ion relat ion takes the form

where b is plotted in the lower half  of Fig. 3. In the
figure, D is the bending st i f fness, z is the Poisson rat io
and t is the shel l  thickness. In this case, the asymptotic
relat ionship between the buckl ing pressure and the im-
perfect ion is

12 l5
( -b) l ;

I t

n

p

where 6- is the ampli tude of the component of the im-
perfect ion in the shape of the classical buckl ing mode.
A wide range of  test  data,  col lected by Dow IRef.  111],
is also included in the figure. Measurements of initial de-
f lect ions were not made in any of these tests, so i t  is not
possible to make a direct comparison of test and theory.
On the other hand, the coincidence of the large dis-
crepancy between test and classical predict ions within
the Z-range in which b is most negative bears out the im-
perfect ion-sensit ivi ty pre dicted.

The complementary character of an init ial  postbuck-
ling analysis and a large deflection analysis is brought out
by studies of long oval cyl indrical shel ls under axial com-
pression. Kempner 's and Chen's IRefs.  112-114] numer-
ical results for the advanced postbuckling behavior of
shel ls with suff iciently eccentr ic oval cross section
showed that loads above the classical bucklins load
could be supported. Complete col lapse occurs onl l i  when
the buckling deflections engulf the high curvature ends
of the shel l .  According to an init ial  postbuckl ing analysis

IRef. 105] ,  ini t ial  buckl ing wil l  be just about as sensit ive
to imperfections as for the circular cylindrical shell as
would indeed be expected because of the shal low buck-
l ing behavior i .r  .ach case. The composite picture is that
initial buckiing will be imperfection-sensitive but not
catastrophic, and loads above the classical values should
be possible. Recent tests [Ref. 115] have confirmed
both these features.

One aspect of shell buckling which has attracted a
great deal of theoretical and experimental attention in
the last few years is the role which stiffening plays in
strengthening shel l  structures. Some rather unexpected
effects have turned up. One of the most interesting was
the observation by van der Neut [Ref. 1 16] over 20 years
ago that the axial buci<ling load of a longitudinally
stiffened cylindrical shell can be increased significantly
by attaching the stiffeners to the outer surface of the
shell rather than the inner surface. This advantage has
been clear ly demonstrated by tests IRef.  117].

Init ial  postbuckl ing results IRefs. 102, 109, 118] in-
dicate that stiffened cylindrical shells tend to be less

f,, = ,- r(+l .

f, -\f" - 3\/t
Lo,J2
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imperfection-sensitive than their unstiffened counter-
parts, but the level of sensitivity can vary widely. For
example, while the classical buckling load of an outside-
stiffened cylinder may be much higher (a factor of two
is not untypical) than an inside-stiffened one, rhe im-
perfection-sensitivity of the outside-stiffened shell may
be much higher as well. Only a few experiments are
avai lable to put these predict ions to a test but those
which have been reported [Refs. 119, I20l show pre-
cisely this trend.

An extensive series of buckl ins tests on st i f fened
shell  structures has been underwiy fot a number of
years under the direct ion of Singer at the Technion in
Israel [Refs. 1.21., L22l. This program has produced
ample evidence that the classical buckling load is a more
reliable measure of actual buckline loads for stiffened
shells than i t  is for unsti f fened ,h"l l . .  N"u"rtheless, the
experimental scatter and the discrepancies from the
classical predictions in these tests are indicative of the
fact thai st i f fening does not el iminate the problem of
imperfection-sensit ivi ty. An up-to,date discussion of this
matter is given in IRef. 123] .

Other recent work in the area of postbuckl ing theory
includes an investigation of the interaction of local
buckl ing and column fai lure for thin-walled compression
members [Refs.  124, 125].  This work may help to
eradicate the naive approach to optimal design of struc-
tures l iable to buckl ing by an attempt to equalize the
local and overal l  buckl ing stresses.

There have been important advances in both theo-
ret ical and calculat ional aspects of shel l  buckl ing in the
last decade. Buckl ing equations have been proposed

[Refs. 52, 126] which are exact within the context of
f irst-order shel l  theory. Computer programs are now
available for accurate computation of classical buckling
loads for a wide class of shel ls of revolut ion subiect to
axial ly symmetric loads [Refs. 1,27, 1281. These pro-
grams incorporate effects of nonl inear prebuckl ing be-
havior and discrete r ings. When the prebuckl ing deforma-
t ion of the perfect shel l  is a purely membrane one with
no bending, the init ial  postbuckl ing analysis is general ly
simpler than when bending, and nonlinear prebuckl ing
effects must be taken into account. Most appl icat ions of
postbuckl ing theory to date have been in cases in which
the prebucki ing response is exactly a purely membrane
state or could be reasonably approximated by one.
Within the last three years there have been several ap-
pl icat ions of the general theory to problems in which i t
is essential to include nonlinear prebuckl ing effects

IRefs. 104, 109, 110, 1291, and a general purpose com-
puter program for shel ls of revolut ion subject to axisym-
metric loads has been put together IRef. 130] .

Status of the Postbuckl ing Theory of the Cyl indrical
Shell  under Axial Compression and the Spherical Shell

under Uniform Pressure

The cyl indrical shel l  under axial compression has
served as the prototype in studies of shell buckling

IRefs. 131-161], but i ts geometric simplici ty is decep-
t ive, and in many respects this structure, together with
the sphere subject to pressure, has the most compli-
cated postbuckling behavior of all. In large part, this
stems from the fact that a large number of buckling
modes are associated with the classical buckl ing load in
each of these problems, and consequently these shel ls
are susceptible to a wide spectrum of imperfection
shaoes.

i t  is quite possible that a paper by Hoff,  Madsen and
Mayers [Ref. 152] has put an end to the quest for the
minimum load which the buckled shel l  can support.  A
sequence of large deflect ion calculat ions of the minimum
postbucki ing load have been reported, each calculat ion
more accurate than those which preceded i t .  Hoff,  et al. ,
give a convincing argument that a completely accurate
calculat ion, based on the procedure which had been em-
ployed in al l  the previous investigations, would lead to a
value for the minimum postbuckl ing load which would
tend to zero for a vanishing thickness to radius rat io. Of
course, a shel l  with a f ini te thickness to radius rat io
would actual ly have a nonzero minimum load, but there
now appears to be general agreement that this minimum
is not nearly as relevant as had been thought.

The roie of boundary condit ions was extensively ex-
plored in the 1960's and is now fair ly well  sett led. Ac-
curate numerical calculat ions of classical buckl ins loads
which account for nonl incar prebuckl ing effects 

", ' rd 
uo.-

ious boundary condi t ions have been made IRcf.  162].
The classical load for cyl indrical shel l  of moderate
length which is clamped at both ends is about 93 per
cent of the load predicted by the well-known "classical"
formula based on a calculat ion which isnores end con,
dit ions altogether. So-cal led *e^k bo,r, ldrry condit ions
for which no tangential shear stress is exertcd on the ends
of the shel l  reduce the buckl ing load by a factor of about
two IRefs.  163,164].  More reccnt ly i t  has been shown
that relaxed tangential restraint along a small  fract ion of
the edge has an almost equally detr imental effect

IRef.  165].
Near perfect cyl indrical shel l  specimens have been

produced by Tennyson IRef.  166] and Babcock and
Sechler IRef.  144],  and these shel ls buckle very c lose ro
the classical buckl ing load. High-speed photography has
resolved the apparent discrepancy betwecn observed
buckl ing patterns and the classical mode shapes IRefs.
167-1711. Buckle wavelengths associated with the col-
iapsed shel l  are much longer than the classical buckl ing
mode wavelengths, but the wavelengths associated with
deformation patterns photographed just after buckl ing
has been tr iggered are in good agreement with the pre-
dict ions of ini t ial  postbuckl ing theory.

The long cyl indrical shel l  subject to axial compres-
sion is one of the examples used in IRef. 34] to i l iustratc

the general theory of elast ic stabi l i ty. Boundary condi-
t ions are neglected, and consideration is restr icted to
mode shapes which are periodic in both the axial and
circumferential coordinates. Due to the iarse number of
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simultaneous buckl ing modes, there are many possible

stat ic equi l ibr ium branches which emanate from the bi-

furcation point of a perfect cyl inder, and al l  of them are

unstable. Remarkably, the initial curvature of the curve

of load versus end shortening (Pversus e) is the same for

all of them and just after bifurcation

Effects of certain imperfections were also studied.

Among the shape possibi l i t ies represented by al l  the

classical buckl ing modes, a geometric imperfection in
the shape of the axisymmetric buckl ing mode results in
the largest relat ive reduction in the buckl ing load IRef.
51]. The rat io of the buckl ing load to the classical load
is related to the ampli tude of such an axisymmetric
imperfection 6 by

where c = l ,6\-n and z is Poisson rat io. When the
maximum load { is attained, the shel l  has undergone
lateral deflect ions which are only a fract ion of the shel l
thickness, and an imperfection ampli tude of only one-
f i f th a shel l  thickness causes almost a 50 oer cent reduc-
t ion in the buckl ing load.

fq. (7) is an asymptotic formula; and l ike al l  ini t ial
postbuckl ing predict ions of this type, i t  is accurate only
for suff iciently small  imperfection ampli tudes. In general,

it is difficult to assess the range of validity of asymptotic
results. For this part icular imperfection shape, i t  is
possible to obtain an independent and more accurate
estimate of the P, uemns 5 relat ion which is based on a
f inite deflect ion calculat ion IRef. 51]. The asymptoric
predict ions ("q. 7) are plotted with the more accurate
results in Fig. 4, and two predict ions compare well  over
a substantial part of the range of interest. The calcula-
t ion of  IRef.  51]  was repeated by Almroth [Ref.  172]
with the aim of gett ing better accuracy. He found that
the buckl ing load predict ion may be somewhat lower
than those shown in Fig. 4 i f  the parameter Z (Fig. 3)
is very large.

Some experimental veri f icat ion of these buckl ing
load calculat ions has been obtained by Tennyson and
Muggeridge IRef. 173] with tests of cyl indrical shel l
specimens with axisymmetric sinusoidal imperfections
which were careful ly machined into them. Points repre-
senting the experimental loads for f ive shel ls are plotted
with two theoretical curves in Fig, 5. The solid curve is
the result of the f ini te deflect ion predict ion of IRef. 51]
for the imperfection wavelength coincident with those
of the specimens. The dashed curve is a plot of the re-
sults of a numerical caiculat ion which takes into account
nonlinear prebuckl ing deformations associated with the
clamped end condit ions and the thickness variat ions
present in the test cyl inders IRef. 173] .  At extremely
small  imperfection levels, end condit ions dominate.
Once the imperfection ampli tude is just a few per cent
of the shel l  thickness, the end effect is negl igible and the
two predict ions are virtual ly identical.

There have been some efforts to translate and adaot
the init ial  postbuckl ing predict ions into a form direct iy
useful for engincering design IRefs. t29, 1"30, 1611 .

.#,-1]  ' (6)

f  1, .12 3c l6- l  p
l t - - l=r l ' l  ;  e)
L P,J 2lr l l ,

Gcn6rol fhcory
Eq. (7)
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FIG. 4.  EFFECT OF AXISYMMETRIC IMPERFECTIONS IN
THE SHAPE OF THE AXISYMMETRIC BUCKLING MODE
OF A PERFECT CYLINDRICAL SHELL UNDER AXIAL
COMPRESSION

o.o2 o.o4 oo6

FIG. 5.  COMPARISON BETWEEN TEST AND THEORY FOR
BUCKLING OF CYLINDRICAL SHELLS WITH AXISYM-
METRIC IMPEBFECTIONS LOADED IN AXIAL COMPRES-
SION
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Reinforcing this trend is recent work by Arbocz and
Babcock IRefs. 17 4, 17 5] in which imperfections

present in a number of test specimens were careful ly
measured and mapped. Special techniques have been
used to calculate buckl ing loads for certain imperfection
shapes which are quite dif ferent from the classical buck-
l ing modes or for imperfection shapes which are only
characterized statistically. Some of these will be touched
on in the next section.

Since Karman's and Tsien's [Ref. 301 f irst large de-
f lect ion calculat ion for the axisymmetric postbuckl ing
behavior of a complete sphericai shel l  under uniform
pressure, a fair ly large number of papers on the buckl ing
of caps and spheres haue been published. Many of these
are referenced in a recent papcr on the subject  IRef.55].
Here, we wil l  only mention some of the sal ient features

peculiar to the sphere problem which have recently
come to l ight.

Like the cyl indrical shel l  under axial comprcssion, a

complete sphcrical shel l  under external pressure has
many buckl ing modes associatcd with the classical buck-
l ing pressure, and onc of these is axisymmetric. Many
unstable equi l ibr ium branchcs emanate from the bifurca-
t ion point of the perfect shel l .  A shal low shel l  analysis of
mult imode buckl ing of  the sphere IRef.  101] indicates
that this shel l  is highly sensit ive to both axisymmetric
and nonaxisymmctric imperfections, again just as for the
cyl inder. While this shal low shel l  analysis is not r igor-

ously appl icable to thc complete sphere, i ts relat ive

simplici ty reveals the mechanics of the buckl ing phenom-
ena of the spherc vcry clearly. In part icular, the shal low
buckl ing modes are in str iking similari ty with expcri-
mental  modes .eported in IRef.  1761. An al tcrnat ive
approach to this problem by a straightforward pcrturba-
t ion teclrnique is detclopcd in IRefs.  177,1781 .

Init ial  postbuckl ing analyses for axisymmetric buck-
l ing have been given by Beaty [Ref.  94] ,  Thompson

lRef.63l ,  Walker [Ref.  80 1,  and most reccnt ly by

Koiter IRcf.  55]  .  A mult imode analysis in which

the axisymmetr ic mode coLlples wi th nonaxisymmetr ic
modes, analogor.rs to cyl indrical shel l  behavior, also was
given in IRef.  55]  .  Impcrfcct ion-sensi t iv i ty was found to
be highe r for mult imode buckl ing than for axisymrnetr ic
buckl ing.

A most important discovery of  1nef.  55]  was that
the axisynlmetric rcsults just mentioned, which were
obtained by a perturbat ion expansion about the bi furca-
t ion point, havc an cxtremely small  range of val idi ty

which :LctLral ly vanishes as the thickncss to radius rat io

of thc shel l  goes to zero. The principal reason for this

unusual l imitat ion on the init ial  postbuckl ing results is

thc occurrence of  modes, associatcd wi th eigenvaiues
which are only vcry sl ightly largcr than the cri t ical
eigenvalr.res, whosc ampli tudes become comparable in

magnitude to the ampli tudes of the classical buckl ing
modes outside of a very small  neighborhood of the bi,
furcation point. For al l  practical purposes, the init iai
postbuckl ing analysis in i ts standard form breaks down
under such cr 'rcumstances. A more powerful form of

asymptotic expansion, also f irst detai led in [Ref. 34] ,
with an extended range of val idi ty was applied to the
axisymmetric problem IRef. 55]. The outcome of this
special analysis is that the spherical shel l  is highly im-
perfect ion-sensit ive, more or less to the same degree as
the cyl indrical shel l  under axial compression, even when
the deformations are constrained to be axisymmetric.
An approximate analysis IRef. 179] and several numer-
ical  calculat ions IRefs.  180-1831 back up this conclusion.

New Research Directions

It seems safe to predict that much of the impetus to
postbuckl ing theory as a developing subject wi l l  continue
to come from questions which arise in the analysis of
shei l  structures. Efforts are being directed to interpreting
postbuckl ing predict ions and rendering them useful for
engineering purposes. I f  this is to be accomplished,
further calculat ions wil l  be needed for more real ist ic
imperfections than those which are readi ly accommo-
dated by the init ial  postbuckl ing analysis. Approaches
which incorporate stat ist ical descript ions of imperfec-
t ions are also l ikely to receive growing attention in the
coming years.

Very reccntly, Sewell  IRef. 184] has explored various
ramif icat ions of the more powerful expansion method
of [Ref. 34] (which was employed to get around rhe
diff icult ies in the sphere problem referred to above) as
it  appl ies to conservative systems with a f ini te number of
degrees of  f reedom. Thompson IRcf.  185] has proposed
a somewhat dif ferent variat ion of the method, also for
discrete rather than continuous systems. The aim in
each case is to develop a uniformly val id asymptotic ex-
pansion which gives an extended range of val idity for
those rathcr exceptional problems in which the standard
expansion breaks down outside the immediate vicinity
of  the bi furcat iorr  poinc.

Effects of local ized dimple imperfections on the
buckl ing of a bcam on a nonl inear elast ic foundation
have been explored usir ig a variety of techniques, and
asymptotic formulas analogous to eqs. (2) and (3) have
been uncovered IRef.  186] .  Appl icat ion of  these special
techniques has been made to study the effcct of local
nonaxisymmetric imperfections on buckl ing of cyl indri-
cal shcl ls under external pressure IRef. 187] .  In addit ion,
both theoretical and exocrimentai studies have been
made of cyi indrical and conical shel is under axial com-
pression in the presence of axisymmetric dimple im-
pcrfect ions IRefs.  188, 1891. With a cont inuing rapid
growth of numerical methods of shel l  analysis, i t  should
soon be possible to make reasonably accurate calcula-
t ions of the buckl ing load of an arbitrary shel l  structure
in the presence of almost any form of imperfection. The
potential of such methods has already been demonstrated

IRefs.  190-1931 for problems in which i t  is  necessary to
convert the governirrg nonl inear part ial  dif ferential equa-
t ions to an algcbraic system by spreading a two-
dinensior.ral f ini te-dif fcrcnce srid over the shel l  middle
surface. No doubt calcul l t ionl of this sort wi l l  not be
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inexpensive in terms of computation t ime for many
years to come; but i f  thcy are careful ly selected, such
calculat ions should be most usefui for imperfection-
sensi  t iv i ty asscssmcnt.

The dcvelopment of  numerical  methods for carry ing
out the init ial  postbuckl ing analysis seems l ikely to pro-
grcss along the l ines of both the f ini te dif ference pro-
ccdure IRef.  1301 and the f in i te element method

IRefs.  80,  194].  An interest ing scheme has been put
forward for approximately accounting for nonl inear pre-
buckl ing behavior in an init ial  postbucki ing analysis in a
way which exploits the computational advantages of the
f in i te element procedure IRefs.  195, 196] .  The idea be-
hind the scheme is the treatment of the prebuckl ing
nonlincari ty as a general ized imperfection.

Prel iminary attempts have been made to come to
grips with somc of the stat ist ical aspects of imperfection-
sensi t iv i ty IRefs.  197-199].  A rather complete analysis

IRcf. 200] of an inf inite beam with random init ial  de-
f lect ions resting on a nonl inear elast ic foundation yields
a relat ionship between the buckl ing load of the beam and
the root mean square of the imperfection ampli tudes
with an implici t  dependence on the correlat jon func-
t ion for the imperfection. Calculat ions for the buckl ing
load of an inf inite cyl indrical shel l  under axiai compres-
sion with random axisymmetric imperfections have been
made IRefs. 20I, 202]. Here again, there emerge
asymptotic formulas similar to eqs. (2) and (3) which
now relate the buckl ing load to a value of the imperfec-
t ion power spectral density at a part icular frequency
which corresponds to the frequcncy of the classical
axisymme tr ic mode IRef. 201] .  Thcre is st i l l  a long way
to go before results such as thcsc wil l  be useful to the
structural cngineer, but an encouraging f irst stcp in this
direct ion has been taken IRef.  2031.

Important extensions of postbucki ing theory remain
to be made to include buckl ing under dynamicai ly ap-
pl ied loads and buckl ing in the plast ic range. Dynamic
buckl ing calculat ions are not new, but no unifying
theory is avai lable which is at al l  as comprehcnsive as
that for stat ic conservative loadings. The init ial  post,
buckl ing analysis has been broadened in an approximate
fashion to include dynamic ef fects IRefs.  95-97],  and
some simple results with general implications have
been found.

Buckl ing in the plast ic range is a phenomenon that is
not yet ful ly understood. Nonuniqueness of incremental
solut ions in plast ic branching problems starts at the
lowest bifurcation load, usually without loss of stabi l i ty,
and a further load increase is required init ial ly in the
postbuckl ing range [Rcfs. 204, 205). A detai led dis-
clrssion of the famous column controversy among
Considerc, Engesser, von Karman and Shanley IRefs.
206-2711 is given in [Ref.2121. ln the case ofplates
and shel ls the problem is evcn more complicated because
the physical iy unacceptable deformation theory of
plast ici ty yields results in better agreement with exper-
iments than thc simplest f low theory. Even i f  f low theory
is ccrtainly more acceptable from the physical point of

view, i t  is  somewhat doubtful ,  however,  that  the s implest

J 2 theory would be adequare in bucki ing problems. To
some extent th is discrepancy also has been explained by
Onat and Drucker IRef.  213] ,  by proper al lowance for
in i t ia l  imperfect ions in their  s imple example.  Even more
signi f icant,  perhaps, are Hutchinson's recent resul ts on
the postbuckl ing behavior in the plast ic range of  struc-
tures which are highly imperfect ion-sensi t ive in the
elast ic domain [Ref.  2141 .  l t  is  found in his examples
(a s imple structural  model and a spher ical  shel l  under
external  pressure) that  the sensi t iv i ty to imperfect ions
is equal ly marked in the plast ic range, in spire of  the
initial rise in the load at the lowest bifurcation point of
the perfect  structure.  A s imi lar  phenomenon has been
observed by Leckie IRef.  215] in the postcoi lapse be-
havior of  a r ig id-plast ic spher icai  shel l  cap. Hutchinson,s
analysis also conf i rms the ear l ier  f indings IRef.  213]
that the discrepancy betweer.r  the predict ions of  deforma-
t ion theory and f low theory largely disappears in the
presence of  imperfect ions.
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