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not been proved. Furthermore, there exist examples of one

dimensional eigenvalue problems where analogous uniqueness 
principles do not hold [lJ. 

Most studies of inverse eigenvalue problems have been 
motivated by questions that arise in physics and have 

focused primarily on the as~mptotic properties of the eigen
values. It is known, for example, that the area, length of 

the boundary, and connectivity of a region can be found 
from the asymptotic representation of the spectrum of the 

Helmholtz equation. Results such as these are contained in 

Ref. [2J-[12]. A very readable account of this work has 
been given by KAC [12J. 

tn mechanics and especially in engineering applications 
of mechanics, it is generally true that the low end of the 

spectrum of eigenvalues is more relevant than the asymptotic 
range. In the present context, one expects that the gross 

features of the shape of a vibrating membrane will be tied 
to the values of the first few natural frequencies. It is 
this aspect of the inverse eigenvalue problem on which we 

hope to shed a little light by way of a few examples. Our 
study is similar in spirit to previous work by Niordson on 
onedimensional eigenvalue problems [131 and'the inverse 

problem for Vibrating plates 1141. 
In the following section an equation is derived for 

the rates of change of the eigenvalues of the Helmholtz 
equation with respect to variations in the shape of the 
region. This leads to an algorithm for determining shapes 

for which the first N eigenvalues (counted in proportion 
to the multiplicity of their eigenfunctions) coincide with 
N prescribed values. Of course, there is no guarantee that 

any shape exists for which the first N frequencies take on 
arbitrarily selected values. For example, we conjecture 
that for any rp.gion the ratio of the second eigenvalue to 
the first does not exceed the corresponding ratio associated 
with the circular region, which is approxunately 2.5307. 

While we have not been able to prove this, we will show
 

that for all 'near-circular shapes this ratio is less than
 
the value associated with the circle.
 

The third and fourth sections contain a description 
of the numerical methOd, which'makes use of a polynomial 

function of a complex variable to map a given region, assumed 
to be simply connected, intq the unit circle. Eigenvalues 
are obtained from a modal,artalysis of the transformed 

Helmholtz equation. Examples'which illustrat~ how the first 

few eigenvalues determine detail of shape are presented in 
the final section. Included there is a shape of anharmonic" 

drum which is designed for consonance with its second and 

third distinct frequencies, having the ratios 3:2 and 4:2, 

respectively, to the first. 

EIGEWALUE VARIATION WITH SHAPE CHANGE AND AN
 

ALGORITHM FOR SOLVING THE INVERSE PROBLEM
 

Let W be one of the orthonormal eigenfunctions on the 
region D bounded by the curve C and let A be the 

associated eigenvalue. Thus, 

(2) ~W + AW .. 0 in D 

(3) W o on C 

and 

2dA(4) 1I W 
D
 

2 a2

where ~:_a_+--:2 denotes the Laplacian operator. 

- ax2 ay 

Suppose the boundary C undergoes a slight change 

such that the new boundary becomes C + 6C enclosing D + 6D 

as shown in Figure 1. We wish to calculate the associated 
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Figure 1. 

changes in the eigenvalues and, in particular, in A as a 

representative value. To this end we consider the following 
auxiliary problem. 

Let U satisfy 

(5) flU + 1\U = 0 in D 

with the boundary condition 

(6) U :; -e:b(s} au on C an 

and the normalization condition 

(7) J U2dA :; 1 
o 

Here, £ is a small number and b(s)' is a given continuous 

function of the arc length s along the boundary curve C • 

Let us assume that if b(s) and C are -sufficiently 

smooth, A and U will depend analytically on € so 

that we may write 

1\ = 1\0 + e:1\1 + ••. 

(8) 
U == U + £Ul +o 

for small £. For £: == 0 , the problem for, U coincides 
with that for Wand we take 1\0 = ), . The eigenfunction 
U for £ ==	 0 will be some linear combination of theo 
p eigenfunctions associated with ), • If P == 1 , th~n 

U = W witho~t ambiguity. If P > 1 , the linear combination o 
of eigenfunctions will depend on b(s) , but without loss 

of generality this combination can again be identified 

as W. 
Now, 

(9)	 1\ -fUAUdA = J ('Y'U)2dA + ..Jb(S) (~~)2dS
 
DOC
 

where the second	 equality follows from an application of 

Green's formula and the boundary condition (6). If the 
expansion for A and U are introduced into (9), the 

first order change in 1\ is obtained as 

(10)	 £1\1 == 2..Jvwo'Y'U
ldA + .. Jb(S) (~:)2dS
 

D C
 

Application of Green's formula to the first term on the 
right hand side of (10), together with (2), yields 

aw J(11) 'Y'UidA == tids + A W l CiA 

D 

As both U and	 W == U are normalized has to beo Ul 
orthogonal to U and hence the last term in (11) vanishes. o 
This can be seen	 directly from the following equality: 
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fU2dA1 -= .. J<UO + cUl + ..• )2dA ~ 1 + 2CJUOUldA +
 

DOD
 

aw
On the boundary C , Ul - -b an and thus 

J 
aw 2 

(12) cAl" -c b(a) (an) ds 
C 

At this point, the solution to the auxiliary problem 
for U is applied to the problem for the Slight change in 

the bounda~y from C to C + oC • In general, U will not 
vanish on Csince U is zero on C and U satisfieso 
(5) • If at a typical point on C , b(a) < 0 , then U will 

vanish. at a distance cb (to first order in £) inward 
along the normal to C. If b > 0 , then an analytical 

continuation, of U across C will vanish at a distance 
cb outward along the normal to C. In other words, U is 

a solution to 

5U + lU • 0 

in 0 + 00 with U .. 0 on C + oC • The boundary C is 
displayed by S(s),= cb(s) (to first order in c) along 

the outward normal to C , as shown in Figure 1. Therefore, 

if li is any eigenvalue and Wi is a corresponding 
normalized eigenfunction, then a displacement of the 
boundary B(s) .. cb(s) to C + oC will lead to the fol

lowing first order change in this eigenvalue 

aw. 2 
(13) oli = -JB(S)(dn~)r ds 

C 
It does not hurt to emphasize again that if there is a 

multiplicity of eigenfunctions associated with li then the 
combination of these represented by Wi in (13) must be 
the limit for C" 0 for a given choice of b(s) • 

Suppose it is desired to determine a shape change 
that will bring about prescribed changes fol i} in the 

set of the first N eigenvalues. It is understood that 

eigenvalues are coUnted in proportion to the multiplicity 

of the associated eigenfunctions. J~o restriction is placed 
on changes ih the eigenvalues not in this set. For each 

eigenfunction Wi ' an influence function f is defined
i

according to' 

.. a,wi 2' 
(14) f i (s) = (d" ) Ie: 
If the N influence functions associated with this set 

are linearly independent then it is easily verified that a 
shape change that will give the desired increments in the 
eigenvalues is 

N N -1 
(15) B(s) -= -	 r r c ... cHif 

j 
(s)

i=l j=l J.) 

-1The symmetric matrix Ci j , whose inverse is Ci j , is 
given by 

(16 )	 C~j = Jf i (s) f j {s ) ds
 
C
 

It is not possible to prescribe arbitrary increments 
in the eigenvalues when the influence functions under 
consideration are linearly dependent. An example of such an 

exceptional shape is the circle. To see this we need consider 
only the three eigenfunctions associated with the lowest two 
eigenvalues of the region enclosed by unit circle, i.e., 

I2J0 (IY1r) 
W ,

l I1TJ
O

(lY
l 

) 

r;; ('r:) Icos (6-6 0)W21 .. 2 J l "Y2r 

'r:
I1T J l (t'Y 2) Isin(6-6w3 1	 0) 

where the first two eigenvalues for the unit circle are 
i •. 

Y = 5.78319 and Y	 = 14.68197 . The angle 60, will.l 2 
depend on the particular shape change bee) • Here, J is 

'.	 n 
the Bessel function of,.the first' kind of degree n and the 
prime denotes differentiation with respect to its argument. 
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cy l i ndr i c a l coo r d i na tes , r an d 0 , a r c empl oye~ in th e 

us ual manner . Th ~ t hr ee infl ue nce fu net l ona art! <I i ....e n 

yYl. 
1 11 

f 
7. 

= ~(l 
rr C09 Z ( El - 8

0
) 

3 rr ~ 

, 
l l - cos2{ e- O

O
) } 

The s e a r e c:1El il. r lv I1noarl epe nde 

All Ini.eres ti no:r co ns e que hce th nea r de pendence 

is t hat: a ny sma I s hupe ch a ngo away f rom the ~~rcle ~i l l 

d im i nish (or- a l eas t no t increasQ) the r a t i o of t.besecond: 

lcM es t e J.g .mva l up. I .Q t he l o....O!s t. To snow tJ116 , we no es t .ha 

a p h ilpe ch ange ca e expressed as 

'" 
(9) ~ £1:1 (0 .... ~ L b + L on 1'1>;1 1'1 

n=O n 1'1"' 1 

Only !:!\e FOliri e r L/Jms 0 0 ' ~2 C'l 5 2 6 a nd d s i n 20 wi l l 
2 

inf luence thl3 th ree l Q'il/e 5 t e igenvalues t o f i rs t o rde r , il1'ld 

the .!3e terms ca n be combined i n the fo rm 

b + b COB 2 (e-6)
O 2 

he r e from symmotry eons i dera t i QflS e may be ide n ti f i ed 

with 9 Ln the expre5~io n f o r W2 und W . Ratlos o ~ 
0 3 

t h e nev se cond 31Hl LlJi r J C L ClEi!1vdluc 1l t.h i! new lo....e:; ., 

value ~ re fo un d to b e 

~~+6 A2 _ :2( 1 _ CD, ) + o ( ~ -} )
( 17 ; 

1'1 +6 '\ 1 '/ 1 

and 

H A

W3 ) 

3 ~ tl + ;: b 1 " o l e " )
 ) ~ ~. ,)~ '11 2 

Dep£nding o n thQ s ign cf b 2 ' ~llher (17) o r (18 ) yields a 

f thelowe r r at i o th ~n Y2/ Yl and he nce no va r i ~t 10 

circular shape can i nc r e a se Lhe r a tio be t ween he sec o nd a nd 

he f irs t ei9~nvd1u~ . 

We conj e c t ur e t h a t t ho ratio of t he second e i qe nval u 

t o t he f i r st t o r any ~hape lij less or ~qua l to t he c o rres ~ 

pond ~ nq r a t io 12.53a7} 4ltain ad by t he c~rc le . 

~r conjectur e i s r ei n f o r ced b y act l:h a t ',,'e 

we re no c a b le to f i no any coun t.e r e xa rnp Le nmoriq 3. [ ,J.u l y ...·iJe 

ang e o f shapes , some o f wh.1c:h a c e 9 i ve rt bo I ow , We may r" . 

be tOO f~ r O \~ t Ob a l ~mb since qUite a t e~ i s o r er i rnc t r i c 

properties a r Q pos s e ss e d b y t h e c~r cu l~ ! s h d pe I l s i . 
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t 0 be a s i mply connected r eg i o n i n t he co~ple~ ~-p ~ano 
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s nd n~t1 new i Hd e' E-'~nd (lont ... .ar Lub Le s , t he He lnila 'l 2 

uua t.Lon (1 ) i :; t r oans formn d to 

(1 9) r;i .,... '. p \"l = n 

I'o'l\cre 

p 
, 2 

! d 2 1 
Id'; l 

:l ~ " 

'.."ith w L) o n ! ~I 1 . ~ nd nO W, ~ - ---~ 
} (. 2 ;1'1 

+ { 

Thus he prob l e m for f i nd i nq the na t ur ul, tn::.q\Jt'n r: ~ 1;5 ' n et 

vibr i on modes o ~ ~ un i fo rm membrana with 
s h a na 1 8 L ~ rm~ l ly equ~val~ nt La a pr ob lcn E0 r t he f r~4ucn -

c i e s a nd 111 (;> (18 5 o f a c r r cu la r mf'.mbr ,",r,,~ '", i .1\ " fie r - '.In ; C ( ' 

~~s distribucion P 

I r he nultle r l c il l o1 !1:... 1,,· ,,1~ he. b e ,?n r ~:..Jt .t:.t , · : L ; .· :'l 

' -:- 1(:' , ... <' 
~ r c q Lo ns Iolbi ch lCu Jl 0 12 Dl appcd ~Jl l . ,~ t: h ~ un i t, 

l v nomi al m~P?jnq f u n ~tio~ Df t ho fO l~ 

" 1,)' z '"
Hr,"I -, 

~ 

n".. n 
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where an an + B • The origin of the z-plane is n
 
contained in 0 and is mapped onto the origin of the
 

,-plane • Pure rotations are suppressed by setting B " 0 •
l 

With this representation p is given by 

l.f-l ik6 
(21)	 p "'-

dz .. i: P (r)edr;	 kI<:=-M+l 1 
i6 1where I; = re and Pk(r) is a polynimial in r defined 

by 

M+l-k _ 2j+k

PI<: (r) = L (k+j+l) (j+l)ak+j+laj+lr k > 0
 

j=O(22) 

Pk(r) '" p_k(r)	 k < 0 

In the standard notation, (--) denotes the complex conjugate. 
Eigenvalues and eigenfunctions associated with a 

region 0 are obta1ned by a Rayleigh-Ritz analysis of the 
transformed Helmholtz equation (19). Any eigenfunction can 
be expressed quite generally as 

(23) W i: 
~ 

L c J (;v-- in6 
n=-~ m=l nm n Vnm r)e 

where c cnm -nm 
Now, {Vnm} 1s used to denote the set of eigenvalues 

associated with a uniform circular membrane with unit radius, 

that is, !V is the m th zero of the Bessel function of nm	 )
the first kin~ of degree n. 

A set of coupled algebraic equations for the eigen t 
value problem is obtained 1f (23) 1s substituted in (19) and 
if use is made of the orthogonality properties of the 
Bessel functions. Alternatively, a similar procedure based 

on the variational principle associated with (19) may be 
used. The following equations result: 

11 

~ M-l 
(24) Vi j [J i ( / vi j )J

2 
c i j - 2A 

~ 

i: r i: c F o 
m=l k=-M+l	 nm nmijkn"-~ 

where 

"1 

(25) F i .1. = fiJ ( ,ty- r) J. (/Y:'j' r) P (r) dr 
nm J'" " n : nm 1." 1. k 

o " 

if i + k + n = 0 or -i + k + n = 0 

'" 0 otherwise. 

Since Pk(r) is a polynomial in r the integrals 
(25)	 can be expressed as sums of integrals of the form
 

1
 

(26)	 IrPJn (~ r) J i ( r) dr 
o

• ". 'fII' 

A real matrlxequation of the form 

(27)	 (H-AA) c '" 0 

can be obtained by splitting (24) into real and imaginary 

parts. In (27), ~ is a diagonal matrix with positive 
elements, ~ is a positive definite symmetric matrix and 
~ is a column matrix made up of the ordered real and 
imaginary parts of the coefficients c . A further simplenm 
transformation brings (27) to a similar form but with ~ 

as the identity matrix. In this form, the power method is 
ideally suited for numerical evaluation of the N lowest 

eigenvalues and eigenvectors as long as the eigenvalues are 
distinct. Otherwise, one of the standard methods can be 
used to find the eigenvalues and eigenvectors. Equation (27) 

is truncated in such a way that sufficiently many equation~ 

are taken into account to provide the accuracy desired for 
the first N eigenvalues. 
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NUMERICAL METHODS FOR SOLVING THE INVERSE PROBLEM 

Two procedures were tried out to arrive at shapes whose 
first N frequencies coincide with N prescribed values. 
The first was a .tra~9htforward implementat~on of the 
algorithm described in the second section -for expressing a 
small deflection of the boundary curve, measured by B(s) , 
in terms of the influence functions and desired increments 
in the eigenvalues. A starting shape is chosen. A sequence 
of iterations is performed which deforms the initial shape 
in small increments according to (15) until either a shape 
with 'the desired first N frequencies i8 obtained or it 
becomes clear that such a shape will not be found, at 
least not starting from that particUlar initial shape. 

At each iteration step the first N eigenvalues with 
the associated eigenfunctions and influence functions of 
the current shape are calculated in the manner described 
in the previous section. Components of the matrix C

i i 
defined in (16) are obtained by numerical integration. As 
long as this matrix is non-singular, the set of influence 
functions are linearly independent. The incremental shape 
change, B(s) , is determined from (15), and finally, 

increments in the mapping coefficients, 6a , in (20)
n 

are solved for in terms of B(S) • Numerical integrations 
are conveniently carried out on the unit circle in the 
e-plane . Small numerical errors will be present at each 
step, stemming from, for example, numerical integration or 
the fact that (15) takes into account only first order 
terms. Nevertheless, if the method does converge on a shape, 
the only error involved in the numerical values of the 
eigenvalues of that shape arises from the truncation of 
(27). This is ~lso true for the method described next. 

The second method bypasses the variational formula 
(15) and makes use instead of derivatives of the eigen
values with respect to the mapping coefficients. Shape 

cbanges are obtained by directly..incrementing these coef
ficient••·. Her'e again, an initial shape is used to start a 
sequence ()fpiterations. At each step derivatives of the 
first N eigenvalues are taken with respect to both the 
real and imaginary parts of the mapping coefficients, i.e~, 

dA 3>.ii i = l,N J n· 1,M; m = 2,M • 'aa;- 38n m 

This is done numerically. Desired increments in the eigen

values are taken to the proportional to the difference
 
between the pregcribed eigenvalues, A~, and the eigen

values associated with the current shape, Ai'
 
That is,
 

(28) OA i = t().~ - Ai) i = 1,N 

where the mUltipl~er t is unity if the current eigenvalues 
are sufficiently close to the prescribed set but less than 
unity othetwise to insure that the shape change in each 
iteration is small. 

Selected sets of N unknowns from among the Q'S and 
8's are used to form linear equations for the increments 
according to 

dAi 3>.i 
(29) oA i = ! aa;-0a + I ag-08 i '" 1,Nn n n n n n 

For each set the N increments {OQ , 08} are n n 
solved for from (29). A supplemental criterion must be 
applied to choose the set of increments which is actually 
used to give the next shape in the sequence of iterations 

that is specified by 

(30) . z= ![(a + ~Q) + i(8 + 68 )]en
, ; n ,n n n.n 

Of course, sets of increments that yield a nonconformal 
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mapping function are eliminated from consideration. 

One possible criterion is to select the new shape 

that has the greatest least value of Idz/dtl on its 
boundary. This criterion works well and'has the advantage 
that it tends to prevent the iteration sequence from 
leading to a nonconformal mapping representation (as 
opposed to the first method described, which has no such 
provision). 

Nearly all of the examples presented in the next 
section were calculated on the basis of the second procedure. 
Seven complex mapping coefficients were used in the 
calculations (i.e., M. 7) , and (27) was truncated to 
30 equations in the most accurate calculations by retaining 
only the 30 real and imaginary parts of the cnm'~ 

associated with the y 's taken in ascending order. We nm 
estimate that the lowest frequencies calculated for the 
examples in the next section are accurate to within 0.1% 
while the largest frequencies calculated do not exceed the 

actual values by more than about 0.5% • 

EXAMPLES 

For the first example the five lowest eigenvalues 
of the pear-shaped reference shape, shown as a dashed line 
curve in Figure 2, were calculated and used as prescribed 
values. The reference shape has one line of symmetry and 
is specified by equation (20) with ~l = 1 , a = 0.2 and2 
~3 = 0.2 and with all other a 's and B 's equal to zero. 

Eigenvalues for the reference shape are given in the 
Table. 

lS 

"''''''---- .... ,
~. , ,, 

\ 
\ 

\ 
\ 
\ 
I 
1 
I 

,1
I 

,I

,
,I 

I 

,.f....nc:.. shop. , ",'~ 
'... ",,'" 

.... _--, 

Figure 2. 

The shape denoted by N = 3 was derived from the 
starting shape, and its first three eigenvalues are identical 

to those of the reference. The next shape (N=4) has four 
eigenvalues in common with the reference and the last (N=5) 
has five. In each plot the reference curve is superimposed 

(with the aid of rigid body translation and rotation) to 
display the comparison. In this example the search was 
restricted to shapes with at least one line of symmetry by 
taking all the imaginary parts of the mapping coefficients 
to be identically zero. The N = 3 shape was used as the 
starting shape for the N = 4 case and similarly the 
N = 4 shape as the fi'rst guess for the N = 5 case. This 
procedure proved to be more certain to lead to a shape with, 

say, five desired frequencies than by starting from an 
arbitrary initial shape for the N = 5 case. 
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The second example, which is shown in Figure 3, em
ploys Pascal's limacon (with ° • 1 and 02 = 0.35) as1 
the reference shape and the results are presented in the 
same way as in the first ~xample. However, in this case 

Figure 3. 

nO symmetry was enforced and the starting shape is asym
metric. Eigenvalues for the reference are also given in 
the Table. 

Our final example is a shape whose second and third 
distinct frequencies make ratios to the lowest frequency of 
3/2 and 2, respectively. This shape is shown in Figure 4. 

Figure 4. 

If a drum with this shape was tuned such that the lowest 
frequency corresponded to C on the m scale thent1sical 

the next two notes would be G and C an octave higher. 
A circular shape has as its corresponding frequency ratios 

1.59 and 2.14, while a square region has 1.58 and 2 • 

In searching for this shape we were quite certain 
that if it did exist it would necessarily have equal second 
and third eigenvalues (Le., the second lowest eigenvalue 

would be associated with two eigenmodes). Thus, we started 
our search with N = 4 and prescribed the eigenvalues such 

tnat ~ = IrJ7Al • 3/2 and fr47Al = 2 • By starting 

from a rather asymmetric initial shape we found a shape very 
similar to that of Figure 4 with almost perfect 120 degree 
symmetry. To achieve a more attractive shape with the same 
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