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SUMMARY

THE BIFURCATION problem governing the onset of axisymmetric necking in a circular cylindrical
specimen in uniaxial tension is analysed. The specimen is made of an incompressible elastic/plastic
material. One end is subject to a prescribed uniform axial displacement relative to the other and both
ends are shear free. The true stress at bifurcation is greater than the stress at which the maximum
load is attained by an amount which depends on (i) the radius to length ratio of the specimen, (ii) the
ratio of the elastic shear modulus to the tangent modulus, and (iii) the derivative of the tangent modulus
with respect to the stress. Bifurcation takes place immediately following attainment of the maximum
load when the specimen is sufficiently slender.

1. INTRODUCTION

ConsIDER a solid circular cylinder whose elastic/plastic properties are initially
homogeneous and transversely anisotropic with respect to its axis. If the ends of the
cylinder are subject to a uniform relative axial displacement in such a way that the
ends remain free of tangential traction and the lateral surface traction-free, then one
equilibrium solution for all values of relative displacement is the simple state of uni-
axial tension. At some value of the elongation a loss of uniqueness of the uniaxial
state can be expected signaling the onset of necking. According to the conventional
engineering criterion, necking begins at the point at which the maximum support load
of the specimen is attained. Recently, it has been proved that the state of uniaxial
tension is unique prior to the attainment of the maximum load (MiLEs (1971)). In this
paper we make a detailed study of the relationship between the lowest bifurcation
point and the maximum load point for specimens of an incompressible elastic/plastic
material undergoing axisymmetric bifurcations. Our study is based on HiLL’s (1958,
1961) theory of bifurcation and uniqueness. We continue and enlarge on work on
this same problem by CHENG, ARIARATNAM and DuBeY (1971) and MiLes (1971).

2. CONSTITUTIVE RELATION FOR AN ELASTIC/PLASTIC SOLID
WITH A SMOOTH YIELD SURFACE

Introduce an embedded coordinate system and denote the metric associated with
the current base vectors in the deformed body by G; and its inverse by GV. Let 7"/ be
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the contravariant components of the Kirchhoff stress tensor referred to the base
vectors of the deformed body, and denote the convected rates of these components by
t. Covariant components of the strain rate are denoted by ¢, ;- If the yield condition
is satisfied at any stage of the deformation history, the rate-constitutive relation is
taken in the form

fij = .?ijklskl— g m”musu, (2'1)
where
0 if mMg, <O,
= 2.2
o {1 it mbe, > 0.} 22)

Here, & is the tensor of instantaneous elastic moduli (for this choice of stress-rate),
m is the unit tensor normal to the elastic domain in strain-rate space, and g is a positive
scalar which determines the instantaneous strain hardening characteristics of the
material.

For future reference, we note that CHENG et al. (1971) and MILEs (1971) used the
Jaumann derivative of the Kirchhoff stress in formulating their rate-constitutive
relation. Denote the contravariant components of the Jaumann derivative by 21"//9t.
They are related to ¥ by

7

9t

If the Jaumann stress-rate is used, (2.1) is transformed to
DT

9t

=t 4 Gmtg, + GmiM, . .3)

= giﬂds“_ S mijmkls,d, (2.4)

where the tensors of elastic moduli in (2.1) and (2.4) are connected by
| LR = QUG 4 Gt 4 G 4 G, 2.5)

This is an example of the transformation of a rate-constitutive relation expressed in
terms of one objective stress-rate to another as discussed by HiLL (1967).

3. BIFURCATION CRITERION

In this section we state a specialized form of HiLL’s (1958, 1961) bifurcation
criterion. We consider bodies subject to combinations of dead load surface tractions
on Sy and displacements on S, prescribed proportional to a single parameter A.
Quantities associated with the fundamental solution whose uniqueness is in question
are labeled by a superscript or subscript 0. At any stage of the deformation history
corresponding to A a quadratic functional for testing for bifurcation is

1 : "
F(l, V) = i ‘_‘; {%UE,'J'+T:,JI~J"' iﬁk, J}dVv, (3.1)
where for all &

; . 1 .
= [.Sf""‘— p m”m"'] Bu- (3.2)
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In this paper, application of (3.1) will be made with the reference configuration chosen
to be that of the deformed body as characterized by the fundamental solution at the
value of 4 in question. The comma denotes covariant differentiation with respect to
the base vectors of the reference configuration and the velocity field ¥ is related to the
strain rate & by

&; =¥, ;+7;,). 3.3)
For the linear comparison solid with instantaneous moduli (3.2), Fis the second varia-
tion of the potential energy with respect to the velocity field ¥. As is well known, this
functional plays the central role in the bifurcation analysis of elastic solids.

For an elastic/plastic body characterized by (2.1), suppose that F(4, ¥) > 0 for
all admissible, nonzero velocity fields ¥ (which vanish on §,) in the range 0 < 1 < 4.
Then it follows from Hill’s general theory that the fundamental solution is unique in
this range.

Now suppose that 4. is the smallest value of A such that there exists an admissible
field ¥ (which vanishes on S,) that satisfies F(4,, ¥) =0. This field is termed the
eigenmode; it also satisfies the associated variational equation 6F = 0 for all admissible
variations dv. The eigenmode is taken to be normalized in some suitable fashion.

Suppose further that at i, the increment of the fundamental solution satisfies the
condition that plastic loading takes place throughout the region where the yield
condition is satisfied. More precisely, with &° denoting the strain-rate of the funda-
mental solution with respect to A, suppose that

mieg > A>0 (34)

throughout the currently yielded region. Under these circumstances, loss of unique-
ness is possible at A, with a bifurcation mode of the form

U v B;
N e

8” = Gij + H 81]- N

)\ #

where £ is the amplitude of the eigenmode and the rates of the fundamental solution
are again taken with respect to 4. Condition (3.4) ensures that a range of d¢/dA can
be found so that no elastic unloading takes place at bifurcation, i.e. m*¢;>0. In
other words, bifurcation is possible at A, under continued plastic loading in the sense
of SHANLEY (1947) as generalized by HiLL (1958, 1961).

4. EIGENVALUE EQUATION FOR AXISYMMETRIC BIFURCATION

The fundamental solution for the cylindrical solid discussed in the Introduction
is the state of uniaxial tension with a true stress denoted by a. The relative axial dis-
placement of the ends is prescribed to be uniform and is identified with the parameter
A. The fundamental solution satisfies (3.4), and thus bifurcation is possible at the
lowest eigenvalue A, associated with F(A, ¥) =0. Let E, be the tangent modulus
relating the true stress-rate and natural strain-rate for a uniaxial increment of stress
according to ¢ = E,e. In the current state, characterized by the fundamental solu-
tion, introduce a cylindrical coordinate system (, 8, z) and let R and L be the current
radius and length of the specimen so that 0 <r<Rand 0 <z <L.
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The rate-constitutive equations (2.1) for an incompressible solid with transverse
anisotropy with respect to the z axis and subject to an axial stress ¢ can be written
quite generally as

1, =2u,6,—g ‘e, +p,

1, = 2u26,+2(1t; — p2)eg +39 e, + B,
ty = 289+ 2(p; — po)e,+ 39 e, + P,
t,, = 2U3¢,,,

4.1)

with p = §(t,+1,+%,) and ¢,+¢+¢, = 0. Here, and in the remainder of the paper,
we have used physical components of the stress-rate and strain-rate components
introduced in Sections 2 and 3 with the standard notation. In (4.1) only the quantities
relevant to axisymmetric deformations are included. If

Uy = U2 = U3, 4.2)

then the relation between the stress-rate Y and the strain-rate is isotropic for
elastic responses.

The true stress-rate for the incompressible material in uniaxial tension is given by
¢ = t,+20¢,. From the definition of E; and (4.1) it follows that

g—i =2[u, +4(20—E))]. 4.3)

If the Jaumann stress-rates are used as in (2.4) then (4.1) transforms to

D, -+ 9p A

2t 20,6,—g e+ 2t

D1, - 2Dp

7t =206+ 2(fi;—f)eo+1g ‘e, + 0

2 2 4.4
T, - 14

¢ = 2ot A=) +3g et

9
rz - 2

gt ﬂ38rzy

where

Dt

The connections between the moduli in (4.1) and (4.4) can be determined directly with
(2.3) and are found to be

% _L[2%, 94, o
3lat 2t D]

wy=pf - 3“7, By = Ay — ‘l“’, K3 = fi; — 0. 4.5)

An isotropic relation between the Jaumann rate of the KirchhofT stress and the strain-
rate requires, for elastic responses,

L= 22 = ps. (4.6)

For the class of materials considered here MiLEs (1971) has shown that the inte-
grand of (3.1) is greater than zero for all non-uniform velocity fields ¥ if the true stress
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is below the true stress associated with the maximum support load, o,. Therefore,
bifurcation cannot take place prior to maximum load as has already been mentioned.
This result holds for homogeneous cylindrical or prismatic bodies of arbitrary cross-
section, whichever of the rate-constitutive equations (2.1) or (2.4) the material is
assumed to satisfy. Denote the value of the tangent modulus at the maximum load
point by E*. At maximum load the nominal (or engineering) stress-rate vanishes, i.e.
§,=t,+0,e,=0. Using (4.1) and (4.3) this condition can be expressed as
(E"—0,)e, = 0 which yields the maximum load condition

o, = E}. 4.7
Equilibrium equations and boundary conditions associated with the variational

equation 6F = 0 for the bifurcation stress o, and the axisymmetric eigenmode are
(these are determined with no restriction on compressibility)

Vo) S 1, P
r or oz r P92 7

4.8
af,+ 1.0(r%,.) . %, 0 “48)
oz r or €oz2
”=O} for r=R, and '* =°} for z=0,L. 4.9)
.= 0 frz =

Eigenmodal strain-rates and stress-rates are related by (4.1), and the strain-rates
are given by

. _ 0, . . Op, . 1705, o,

sr—a_r’ 80—;1’1-, 8:‘5’ 8"_5( )

oz  or)

Incompressibility requires &, +8&,+¢, = 0, which enables us to introduce a function
®(r, z) such that with

(4.10)

a(rd)
or

~

Uy

@.11)

z

oD » 1
=—— and ¥ =~

0z r
incompressibility is ensured.

Solutions to the equations governing the eigenvalue problem can be written in the
separated form

@ = ¢(r) sin (knz/L),

. krm

b= = ¢coslknzlL)l g 5 5 4.12)
i, = 1,(r) cos (knz/L),
P = p(r) cos (knz/L), etc.,

such that the boundary conditions on z = 0, L are satisfied and ordinary differential

equations governing the r dependence of the quantities are obtained. Further manipu-
lation reduces the eigenvalue problem to a single equation for ¢:

LX) +2by L) +cy*dp =0, 4.13)

1 It is therefore not possible that, as suggested by DUBEY and ARIARATNAM (1972), bifurcation
in a rectangular elastic/plastic plate under uniaxial tension may occur before the maximume-load point.
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where
y=kaR/L,  2u3b=p -2, +2u3+06.—Ef, pyc=ps3+o, (414)

and Ej is the value of E, at bifurcation. The operator in (4.13) is defined by

L) =5 [ 2]

where { = r/R. Traction-free boundary conditions (4.9) on the lateral surface can
be expressed as

L)+ =0,
on {=1, (4.15)
Yoy = a (C¢) 23 [CL(¢)]+72063¢ =0,
where
peoy =2p— g — U3+ Ef -0, W0y = U, 1%y =2uy—21,).  (4.16)
Equation (4.13) can be rewritten as
(L+y*0*)L+y*p")¢ = 0, (4.17)
where p? = b+i(c—b?)* and the bar implies complex conjugation. Here we have
anticipated that c—b* > 0.+ The general solution to (4.17) which satisfies bounded-
ness conditions at { =0 is
¢ = CJ1(vp0) +CJ1(¥p0), 4.18)
where J,, is the Bessel function of order » of the first kind, here with complex argument
yp{. Substitution of (4.18) into the boundary conditions (4.15) provides the eigen-
value equation for o,
Im{(1= ) 1(9P) (s + pt2)ypdo(yp) + a3 J 1 (y0)]} = O. (4.19)
The manipulations carried out in arriving at (4.17) are similar to those reported
by CHENG et al. (1971). These workers assumed an isotropic tensor of elastic moduli
at bifurcation in the sense .of (4.6), and (4.17) reduces to their equivalent expression
for this case.

5. ASYMPTOTIC AND NUMERICAL SOLUTIONS OF THE EIGENVALUE EQUATION

To obtain a relation between o, and y = kxR/L for small values of y, we expand
the eigenvalue equation in powers of yp using the series representation

_ & (=DrEzyn
WA= X
Putting B = (c—b?)?, so that p? = b+iB, and using the fact that |p|* = ¢, we find

that to order y, (4.19) becomes

2
§y2B|p|2 {[ozl +oy+3o,]— y_ [, (142b)+a,(4b—c)+ bos ] +

4

192 L T2u,(c+2b+2b%) +2a(c —2cb +6b2) + daz(c+4b%)] = 0. (5.1)

+ For example, it is readily verified that for isotropic elastic moduli in the sense of either (4.2) or
(4.6), c—b*=3+O0(ac/u, Eip).
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By (4.16) the coefficient of the lowest order term in (5.1) is found to be
oy +oy +3oy = (Ef —o.)/p;.

We now consider two specializations of (5.1). First, take u; = pu, = 3 = p at
bifurcation as in (4.2). Then with the aid of (4.14) and (4.16), (5.1) reduces to

2

E—6+-[d—wﬁwJHE—aWM+T®Dw0@wwn=a (5.2)

This equation can be rewritten as

,},2 74
o,—Ef = g ot Ez,u+0(“y a. yYou). (5.3)
Secondly, take the elastic moduli relating the Jaumann rates to the strain rates to be
isotropic at bifurcation in the sense of (4.6) following CHENG er al. (1971) and MiLEs
(1971). Using the connections (4.5) between the two sets of moduli one again obtains
(5 3). The difference between these two assumptions shows up only in terms of order
7*0, and also terms of order y2¢2/u which can be neglected compared to y%e..
Now o, can be related to o,, by expanding E, about the maximum load point so
that

dE
EE=Er+—| (6.—0,)+ .... (5.4)
do |m
Then by (4.7), (5.3) becomes ‘
dE, -t TR
o.=0,+ (1— o m) (8 mt 192) (5.5)

where terms of order y*s,, have again been neglected. The natural tensile strain at
bifurcation, e,, can be related to the natural strain at maximum load, e, in a similar

way with the result
2 4
Y 7 u
,..) (8 - 1920,,,)' (.8)

_ { dE,
e.=e, + ( dcr

Recall that y = knR/L where k is the number of half-wavelengths in the eigenmode
introduced in (4.12) and R and L are the radius and length of the specimen at bifurca-
tion. Equations (5.5) and (5.6) can be rendered explicit by replacing y by its value
evaluated at the maximum load point (i.e. y,, = kzR,/L,). This substitution involves
errors of the order of terms already omitted. The lowest bifurcation stress for a given
ratio of radius to length is clearly given with k = 1. From (4.12) it is seen that the
associated eigenmode has a positive radial deflection at one end and an equal inward
deflection at the other so that necking will start at one of the ends rather than at the
center. This possibility is due to the assumed end conditions. If the bifurcation mode
is restricted to be symmetric with respect to the mid-point of the specimen, then the
lowest bifurcation stress is obtained with k = 2.

Some numerical calculations based on the exact eigenvalue expression (4.19) have
been carried out to assess the range of accuracy of expansions (5.5) and (5.6) and to
show graphically the extent to which the bifurcation stress and strain exceed the maxi-
mum load values. Numerical results for ¢,/c,, as a function of y for a hypothetical
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EXACT RESULTS:
201 ASYMPTOTIC RESULTS(EQ.5.7)——--

o1 2 3 4 5 &6 1 8 8 10

e

Fic. 1. Comparison of exact and asymptotic results for bifurcation in tension. Ratio of true stress at
bifurcation to true stress at maximum load for an incompressible material with constant E,.

material whose tangent modulus is independent of & are shown in Fig. 1 and in
Table 1. Here the elastic moduli at bifurcation were assumed to satisfy g, = i, = fi5
= u. The results given in Table 1 are accurate to the five significant figures shown.
The calculations were repeated for the other case mentioned above where the moduli
are related by (4.2); over the range of y considered, the numerical results for the two
cases agree to at least four significant figures. The solid line curves in Fig. 1 are the
numerical results and the dashed line curves are computed from the appropriate
specialization of (5.5), i.e.

2 4
v et

¢}
% _ 1 L 57
s T8 TE1%2 .7

Curves for three different values of E,/E have been shown where £ = 3u is Young’s
modulus for the incompressible material.

TABLE 1. Values of 6./c,, for constant E,|E

y EJE Asymptotic, equation (5.7) Numerical, equation (4.19)
02 h 1-0050 1-0051
04 1-0204 1-0211
0-6 > 0-1 1-0473 1-0510
0-8 1-0871 1-0998
1-0 J 1-1424 1-1766
02 1-0053 1-0053
04 1-0244 1-0253
0-6 > 0-01 1-0675 1-0727
0-8 1-1511 1-1724
1-0 J 1-:2986 1-3678
0-2 1-0078 1-0078
04 1-0644 1-0665
0-6 > 0-001 1-2700 1-2897
0-8 1-7911 1-8976
1-0 J 2-8611 3-2765
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The large effect of a variable tangent modulus is brought out by considering
a Ramberg-Osgood tensile relation (RAMBERG and OSGOOD, 1943) between true stress
and natural strain according to

ele, = a/a,+3(o/0,)", (5.8)
where e, and o, = Ee, are the effective yield strain and yield stress and n is the harden-
ing exponent. The derivative of the tangent modulus at maximum load is found to be

‘% = —(n—-1)(1-0,/E)x —(n—1).

Using the latter approximation, (5.5) and (5.6) can be written as

O/Om = 1+(1n)y3/8+Vap/1920,) and efe, = 1+(1/ne)(vn/8+Vnp/1920,,),
(5.9
where, as discussed, 7,, = AR,/Ly.

Numerical calculations were made using the exact eigenvalue expression (4.19) and
the instantaneous values of y, E,, etc. derived from (5.8). The elastic moduli were
taken to satisfy (4.6). Predictions of the asymptotic formulae (5.9) are compared
with full numerical calculations in Fig. 2 for the two values of the hardening exponent,
n=>5 and 15, with ¢, = 0-:001. Both the asymptotic results and the numerical results

EXACT RESULTS:
ASYMPTOTIC RESULTS (EQS. 5.9)i—~~~

1061 AL
O'C /7
_— V
o 1.05F

108} //’} n=s

103 I~
102~
1.01
1:00 1 1 1 L 1

2.8

N | n em m/p
— 5 [0.2027 |0.0102
m I.6i~ 15 |0.0679 |0.0042

ey = 0.00)

( TRo )2
Lo

Fic. 2. Bifurcation in tension of a specimen of incompressible material with a Ramberg—Osgood
tensile stress-strain relation.
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have been plotted as a function of the initial ratio of radius to length, #R,/L,; v, is
given by

R R
o (Lo/L)? = 22 exp (— 2e,),

Ym = L, L,

which is evaluated numerically using (5.8).

6. DISCUSSION

The Figures indicate that the simple formulae retain reasonable accuracy for
values of y = mR/L as large as unity, corresponding to a rather stubby specimen. The
true stress at bifurcation for a slender specimen (R/L < 1/10, say) is at most a few
per cent above the stress at the maximum load point even when the tangent modulus
is independent of stress, as long as E,/E is not much smaller than 0-001. It is clear
from Fig. 1 and the asymptotic formulae themselves that it is essential to retain the
term of order y*u. For all but slender specimens this term is the dominant one, and
for any nonzero value of y, ¢/0,, — o as p/E,— o as illustrated by Fig. 1. This
limiting behaviour is in keeping with the fact that a specimen of rigid/plastic material
with a smooth yield surface cannot undergo a tensile bifurcation, at least not of the
type found here (HILL, 1957). The analogous problem for a rectangular plane strain
specimen of rigid/plastic material does admit a tensile bifurcation mode as shown by
CowprER and ONAT (1962). They also found a delay in bifurcation beyond the max-
imum load point which depends on the ratio of width to length of the specimen.

The effect of a variable tangent modulus can be appreciable. Thus, for example,
the bifurcation stress of even a stubby specimen of material with a hardening exponent
of a typical metal will be at most a few per cent above the stress at maximum load.
The same is true for the bifurcation strain if the specimen is relatively slender as typified
by the dimensions of a standard tensile test specimen. Thus, the results of the bifurca-
tion analysis of the specimen with the idealized end conditions is in accord with the
accepted experimental observation that necking in a tensile specimen begins almost
simultaneously with attainment of the maximum load. On the other hand, the bifurca-
tion strain of a stubby specimen may exceed the strain at maximum load by as much
as a factor of two, say, as in Fig. 2. Finite element calculations by NEEDLEMAN (1972)
for specimens whose ends are taken to be cemented to rigid grips also indicate that
the rapid growth of the neck is delayed to larger overall strain values when the specimen
is stubby.}

The increasing separation between the bifurcation point and the maximum load
point with increasing p/E, is intimately connected with the assumption of a material
with a smooth yield surface. There are a number of well known examples in the
bifurcation analysis of compressive buckling where use of a flow theory of plasticity
with a smooth yield surface leads to theoretical predictions which consistently over-
estimate experimentally determined buckling loads. We mention in passing that the
eigenvalue equation (4.19) governing bifurcation was derived for general transverse
anisotropy. Thus the effect of reduced effective moduli (appropriate, for example,

t NEepLEMAN (1972, Fig. 4) reported results for a specimen with a length to diameter ratio of 4.
He subsequently repeated these calculations for a specimen which was identical in all respects except
that its length to diameter ratio was 2. He found the above mentioned delay in necking (private
communication).

-
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under total loading conditions in the sense of the slip theory of plasticity) can be
studied with only a slight reinterpretation of (4.19).

CHENG, ARIARATNAM and DUBEY (1971) arrived at the eigenvalue problem as
posed by (4.15) and (4.17) for elastic meduli satisfying (4.6). Instead of the eigenvalue
equation (4.19), they list six real eigenvalue equations distinguished from one another
by the assumed complex character of the quantity g in (4.17). They obtain an
asymptotic relation which ceincides with (5.3) to the lowest order term but they do
not obtain the essential term py*. Evidently as a consequence, they incorrectly con-
clude that a finite bifurcation stress is obtained in the limit of an infinite shear modulus.
A most confusing aspect of thelr analysis is their incorrect identification of the complex
character of the quantity p? and subsequent use of an erroneous eigenvalue equation.
The {owest order term in the asymptotic formula is not affected by this mistake.
However, the essential term, uy*, would not be obtained from the eigenvalue equation
used.
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