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ABSTRACT

Two special solutions are used to illustrale the errors involved in the
analysis of sheet necking from invoking plane stress assumptions. The
first is an exact solution for the growth-rate of a small amplitude, sinu-
soidal thickness variation in a sheet of material characierized by ¢ =
o™ in simple tension. The plane stress assumpuions become accurate
when the ratio of variation wavelength to average thickness exceeds
four and otherwise lead 1o overestimates of the actual growth-rate. When
this same ratio is approximately unity the relalive size of the thickness
variation decays with increasing deformation—an effect not predicted
by a plane stress analysis. The second special solutton 1s obtained using
a perturbation expansion with the nonlinear long-wavelength solution
(i.e., the plane stress solution) as the lowest order contribution. In this
way explicit corrections 10 the plane stress solution are obtained. Se-
lected comparisons with fully nonlinear finite element calculations are
made.

INTRODUCTION

The list of variables and issues thought to be important in the anatysis of
necking failures in thin sheet metals has almost reached perplexing proportiens.

* The material in this three-purt paper was presented orally in Session H under the title " Constitutive
Relations for Sheet Metal” and Session IV under the title *"Sheet Neching.: Influence of Constitutive
Theory and Sirain-Rate Dependence.”
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Included are not only strain hardening and plastic anisotropy characteristics but
also strain-rate sensitivity, choice of plastic constitutive law, bifurcation analysis
vs. imperfection growth analysis, and microscopic fracturing and void growth. In
the three parts of this paper an attempt will be made to give a unified examination
of the role of a number of these in the analysis of sheet metal necking.

Part | deals with the adequacy of the plane stress assumptions often invoked
in the analysis of sheet necking. We will refer to a solution based on these
assumptions as the long-wavelength approximation, and we obtain some indica-
tion of the range of validity of this approximation by way of two special solutions
and some fully nonlinear finite element calculations.

Choice of constitutive law will be central to Parts 11 and III with time-inde-
pendent material behavior discussed in 11 and rate-dependent behavior featured
in I11. In II a bifurcation analysis of localized necking will be given side by side
with a long-wavelength analysis of the growth of initial nonuniformities of the
type introduced by Marcinak and Kuczynski [1]. Differences in forming limit
diagrams computed using a standard flow (incremental) theory of plasticity on
the one hand and a deformation theory on the other will be noted. These differ-
ences are large when both principal in-plane strains are positive. There is reason
to doubt whether a standard flow theory can be used to analyze localized necking
in sheet metals. This is ¢learly an important issue since large scale numerical
programs are currently being developed to cope with complications associated
with particular sheet forming operations. It is essential that limitations of com-
peting constitutive laws be well understood.

The effect of strain-rate dependence on constitutive behavior is incorporated
in Il in a simple and straightforward manner. The influence of small amounts of
rate-sensitivity on the forming limit diagrams is emphasized.

PLANE STRESS ASSUMPTIONS OF THE LONG-WAVELENGTH
APPROXIMATION

In Part 1 attention will be restricted to in-plane plane strain deformations of a
sheet subject to a tensile load per unit length P acting in the x,-direction as
shown in Fig. 1. The surface of the sheet at any instant of time ¢ and position x,
is symmetrically disposed about its midplane at x; = 0 according to x; = =h(x,,
£1/2. Under in-plane plane strain all quantities are independent of x; and no
straining in the x.-direction is permitted. In the plane stress approximation only
the stress components o,, and ¢4 are assumed to be nonzero and these are
taken to be uniform over each section x, = const. For each value of x, equilibrium
requires

P=o,h (1)

Nonzero strain-rates are €, and €,5 and these are also uniform over each section.
These, together with (1), the constitutive law and €,; = 0, can be used to eliminate
o9 and to formulate equations governing the evolution of the thickness vanation.



SHEET NECKING 1 113

h()(],f) —_—
X P

pe
|

!

|

i

L

|

|

Fig. 1. Sheel geometry.

In what follows, we give a detailed assessment of the consequences of the
plane stress assumptions using two special solutions: (1) a linearized solution for
the growth-rate of thickness variations of arbitrary wavelength, and {2) a pertur-
bation solution valid for moderately-long-wavelength variations. For this purpose
we consider an incompressible, strain-rate dependent material characterized in
simple tension by the pure power law

€ = o™ (2)

where o is the true stress and € is the natural strain-rate. Revealing results can
be obtained using analytic methoeds for this relatively simple class of materials
since the prior deformation histery in any problem appears only through the
current geometry. Such results are applcable to super plastic behavior and to
matenals undergoing power law creep. While these results can not be expected
to apply directly to problems involving more complex material behavior, they
should serve to illustrate some of the most important points at issue in the validity
of the plane stress assumptions.

With s as the deviator of the true stress oy and o, as the effective stress, the
Eulerian strain-rate under a general stress state 1s taken to be

€y =laoy sy, o, = (Bsy55/2)" (3)

which generalizes (2).
In the plane stress approximation the strain-rates at each position x, can readily
be found in terms of the current thickness variation h(x, t} as

€ = — €3 = (VI 2a[VIPI(2R)" ()

The corresponding {convected) rate of change of the thickness of the materal
element currently at x; is given by

h=—+uv ——=éph=—é,h (5)
dx

where v, (x, ) 1s the velocity in the x,-direction.
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LINEARIZED ANALYSIS FOR SMALL NONUNIFORMITIES OF
ARBITRARY WAVELENGTH

Consider a sheet of material (3) under in-plane plane strain conditions and
subject to a load per unit length £. Let /1,(¢} denote the evolving thickness of a
perfect sheet with no vanation in thickness. Equations (4) and (5) involve no
approximation for the perfect sheet so that

—holhyg = €, = — &35 = & = (VI 2 VIPI(2h))" (6)

where €, is the strain-rate in the perfect sheet. We also consider a nonuniform
sheet characterized at the current instant by a symmetric thickness variation

h=hy[l = £cosQmx,il)] (7

For |£| < 1, an exact linearized solution for the strain-rate and rate of change
of the nonuniformity can be obtained along lines similar to those given for the
analogous problem for a circular bar in [2, 3]. Velocity fields (v,, vy) can be
expressed in terms of a velocity potential ®(x,. x3) by

U]:(P!_r;! DS=—CD:I1 (8)

The solution for ¢ is simpler than that for the circular bar given in detail in [2],
and therefore we will proceed directly to give the end result. Let { be the first
quadrant root of

gz=(hz)+,-\/1_(]_z)" (=D ©)
n R

and let
g = why/l! (10)
With terms of order £* neglected, the solution for @ is
Eall Z 2
D= gox x; + £ MRe ¢ sin $gxs sin ah (11)
T ho /

where Re denotes the real part and ¢ is a complex constant satisfying
Rele(l = ¢sin(fg)] = t |
’ (12)
Re[c&(l — 2 — 4in)cos{ig)] = 0/\
Let Al{x,, 1} = h(x,, 1) — he(r) be the nonuniformity in thickness and let
a=Ah(x,, 1Vh,(r) (13)

measure the size of the nonuniformity relative to the evolving thickness of the
perfect sheet. At the current tnstant, therefore,

a=—§£cos(2mx, /1) (14)
From the above linearized solution the convected rate of @ can be found to be

a = —£néyGn, g)cos(Qmx,/f) (13)
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Fig. 2. Values of G(n, ¢} in Equation (16).

or, from (14),
a= néyalGin, q) (16)
where
Gin, g) = (4n)Re(csin({{qg)] (17)

Curves of G vs. g for fixed values of » have been calculated numerically from
(17) and (12) and are shown in Fig. 2. In the long-wavelength limit (i.e., ¢ — 0)
it is seen that G = [ so that

a = néya (18)

This simple result can be obtained directly from an analysis using the plane stress
assumptions of the previous section. Henceforth we will refer to the solution
based on the plane stress assumptions as the long-wavelength approximation.
From Fig. 2 it can be noted that (18) is reasonably accurate for values of {/#,
greater than about 4. For nonuniformities shorter than this the long-wavelength
result (18) overestimates the rate of growth of the nonuniformity. More surprising
is the prediction that, for wavelength ratios in the approximate range 1 < [/h,
< 2, (G is negative and the relative size of the nonuniformity actually decays,
except for n = 1.*

A similar phenomenon has been observed by Appleby and Richmond [4] in a

= The analogous equation for round bars in 3] for the growth of the relative size of the nonuniformity
of cross-sectional area also lakes the form (16). For the round bar, however. G is never negaiive
and thus decay of the nonuniforniiy as measured by its relative size does not occur for am
wavelengihs. M ihis case the long-wavelength analvsis is aceuraie for noneniformity wavelengihs
grearer than abour three diameters. For shorter wavelengths it also overestimates the grovth-rate
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numerical study of the growth of sinusoidal geometric imperfections of various
wavelengths in sheets of time-independent elastic-plastic materials under similar
in-plane plane strain conditions. Using the absolute size of the nonuniformity, A#,
as their measure, they find that Ak grows for [/, > 2 and that Ak diminishes
for {/hy < 2. Furthermore, they find that the “*most stability™, i.e., fastest rate
of decay in Ah, occurred for //h, around unity. This leads them to make the
intriguing suggestion that, if controlled favorable nonuniformities are deliberately
imposed on a sheet, its ductility might be enhanced. The present equation (16)
for a can readily be converted to an equation for Ak using @ = Ah/hy + aé,,
which follows from (13) and (6). Thus (16) transforms to

Ah = (n—1)F(n, g)é,Ah {19)

where F = (nG — 1)/(n — 1). In this equation F has been defined such that in
the long-wavelength Iimit, ¢ — 0, £ = 1. The calculations of Appleby and
Richmond were carried out for a material with a strain hardening exponent
between n = 4 and » = 5. Using the curve for » = 51n Fig. 2, we first note that
F = 0 at a value of ¢ = 1.5 which corresponds very closely to the transition
value //h, = 2 for the sign of Ak found by Appleby and Richmond. Secondly,
the most negative value of F occurs when dF/dg = dG/dg = 0 at about g =
2.5 for n = 5. This value, too, is not far from the value {/h, = 1 found by
Appleby and Richmond for wavelength giving the maximum rate of decay. Thus
we can note that some quantitative details as well as qualitative ones, for the
simple time-dependent material (3), apply to more complicated time-independent
materials.

LOWEST ORDER CORRECTIONS TO THE NONLINEAR LONG-
WAVELENGTH APPROXIMATION

In this section a perturbation method is used to show that the long-wavelength
solution obtained by invoking the plane stress assumptions is an exact solution
in an appropnate limiting sense. In addition, the lowest order corrections to this
solution are produced. In particular, deviations of the stresses and strain-rates
from the values of the long-wavelength solution will be given. We continue to
consider a sheet of power law matenal characterized by (3) under in-plane plane
strain conditions. Now, however, it is not assumed that the variation in thickness
is necessanly small and thus full nonlinear behavior is treated.

The starting point in the analysis ts the introduction of the perturbation param-
eter 8. Consider a family of similarly shaped, symmetric thickness vanations
h{Bx,; ) which differ from one another only in scaling in the x,-direction depending
on 3. One such variation is depicted in Fig. 3. As 8 — 0 the characteristic
wavelength of the variation becomes large compared to the average thickness of
the sheet, and it is in this limiting sense that the long-wavelength solution becomes
increasingly accurate, as will be shown. For convenience let z = x; and introduce
a scaled vanable

X =8x
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R
Fig. 3. Sheet geometry.

With
o{X) = PHh(X) (20)
and
€(X) = (V3 2a[V3Io(X)2" (21)

the nonzero stresses and strain-rates of the previous nonlinear long-wavelength
solution are given by

Ou =204 = 20,/V3 = o(X) 22)
€ = — €3 = €(X)

Field equations for the fully nonlinear plane strain problem are given below
using X and z as independent variables. Equilibrium requires

Bonxy t 0. =0

(23)
Boax t oy, =0
Velocities are related to the velocity potential by
v, = ®,; and v;=-8P, (24)
Strain-rates are given by
€ =By x, €3 = Uy, 2€63=0v,.1 Brzy (25)

Strain-rates and stresses are related through (3). Under the present in-plane plane
strain conditions oy, = (o, + o3 )/2 so that

S = —8m = (o — oy )2 (26)

and

q
m
|

=[3(oy, — g ¥4 + 3ol ' (27)
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Traction-free conditions along y = A{X)/2 are

— 1 + —
o SN @+ T;c08 w=70 I (28)
~ @3 SIN w + Ta3co8 w=0 J
where
tan w = Bh'(X)2
Here and throughout the remainder of Part [
,_dl )
(ry= X
For future use. expansions of the boundary conditions in powers of 8 are
—onBRI2 + (L = BHHE) + 0% =0 (29)
—aB3h2 + ol — B2HHE) + OB =0 (30)

These equations are supplemented by the condition that all fields must be sym-
metric about z = 0. Qverall equilibrium with the apphed force per unit length P
requires that for every X

firz
J oydz =P (31}
—hiz

We expand all quantities in a regular perturbation expansion in powers of S,
anticipating that the zeroth order terms in the expansion are given by the long-
wavelength solution (22). The expansion is of the form

Il

on a(X) + B‘TH) + 1820-521) + o
o33 = Bofy + Braf + - (32)

- ) 2,020 4 .
o = Baoy + BPaF +

€ = — €y = €(X) + Befl + BRey + - \ (33)
e = ey Bely + Bl + o J
X ~ -
(I):B—lzf E(X)dXJF (I)(Dl+ﬁq)(1)+'82q)<2)+...
X
v, = B! é(j()dj(+ vlun + Bvl(n + 'sz]m) + . (34)
vy = —z€(X) + B, + B + -

The terms in the expansions are assumed to be functions of X and z. The

term é{%1s zero but the development which follows is clearer if it is carried along

for the moment.
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by (38,) and (42),
oy = o fi'/(ne)

But imposition of (36) implies f;' = 0and thus o{ = (. Without loss in generality
we may take f; = 0.

Repetition of the above procedure for the next higher order terms in each of
the equations leads to

e =0, o@ = ch[h" — 4(h=2h'Yz2]/8 } (44)
OO = fi(X)z, D=0, E =L+ (= )k b2
Furthermore, (44,) together with (38,) and (36) give

f3' = (néR2A)[(5 — n}h' — (1 + 4 n)hh" (45}

}

and
P = (/21 — 12{z/AY][(5 — YA + 2(1 = 2/n)hh"] (46}

This completes the solution for the stresses and strain-rates up to and including
terms of order 32

We now examine in some detail the distribution of stress and strain-rate across
the mintmum section of the neck. Take the minimum section to lie at X = x, =
0, as depicted in Fig. 3, so that A'(0) = 0. With A, #", o, etc., now denoting
values at the minimum section, the above results specialize to

oy = of{l + B¥(12n)(n — 2)hRTL — 12(z/ k)]

Uy = (BYRYAAL ~ 4(z/h)?) -
o, = (V3072X1 — (BY(24n))hhTn + 4 + 12(n ~ 4)(z/h)¥}

én = &1 — (BY¥20)hATn + 4+ 12(n — D (R}

to order 8% with o3 = €3 = 0. For » = 4, o, and €, are uniform across the
minimum section of the neck to this order. Furthermore, for n = 4,0orat z = 0
for any n, o, and €, are diminished below their respective long-wavelength
values by an amount proportional to 824#k"”. Let R be the radius of curvature of
the surface of the sheet at the neck minimum which is given by

2
i;l_gi_)zl_ﬁzhﬂ (48)

Noting that the combination B2hh” equals 2h/R, we can therefore write to order
h/R
V3 hln+d (n-4)/2\°
== - = + = 49
T U{l R[ 12n n (h) H “9)

o))

é =é{1 —E[”£4+ (n—4)(

| e

-
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The hydrostatic tension distribution across the neck minimum is given by

1 h 511—4_(3n—4) iz _
U”p_za[Hﬁ[ 12n . (h)” G1)

To draw comparison with Bridgman’s [5] formulas for the stress distribution
at a plane strain neck in a sheet of time-independent plastic material, we use (47)
and (48) to determine the ratios

)2]

Ll | —

i

Ty 14 1 h | — 4
20,/\/3) 4R
T aq _ l h l _ 4 z ?
(2a. A3 4R h
These rattos, which are independent of n, are identical to the analogous expres-
sions obtained from Bridgman's formulas when his expressions are expanded out
up to terms of order #/R. Bridgman’s starting point is the assumption €,, and o,
are uniform across the neck. For the present time-dependent power law material
this is precisely true only when n = 4, to order #/R. For n < 4 the effective
stress and the strain-rate are largest at the surface of the sheet, while for #n > 4

they are largest at the midplane. The hydrostatic tension is maximum at the
midplane if n > 4/3.

(52)

COMPARISONS WITH NUMERICAL SOLUTIONS

Let €, and €5 be the strain-rates as predicted by the long-wavelength analysis
at any two material cross-sections with A, and ki as the current thicknesses.
From (4) any two such strain-rates are related by

Eqhy" = éghg” (53)
Since
hy = —éshy, hy = —éuhg (34)

the respective true strains can be written in terms of the current thickness and
the initial thicknesses. f,° and #5° as

€4 = —Inlh /h "), eg = —In{figihy%) (35)
Equations (53) and (55) can be combined and integrated to give
l —_ E,—Jiq = (hbﬂ/hAO)u(] — €~nebs) (56)

which provides a relation between the strains at any two ¢ross-sections inde-
pendent of the loading history.

To make a direct comparison with the long-wavelength result (56) and some
full finite element calculations, we consider a sheet whose initial thickness vari-
ation ts given by (7). The finite element procedure has been specially tailored to

References p. 126.
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deal with the class of materials (3). Incompressible plane strain elements [6] have
been designed for the purpose and a Newton-Raphson procedure is used to solve
the nonlinear equations at each time step. Periodicity and symmelry in the x,-
direction permit the use of a finite element grid over just ane half-wavelength of
the current geometry, which is updated each time step. A zero shear stress o3
and a uniform velocity v, over each end of the half-wavelength sector can be
imposed as boundary conditions. From the homogeneity of the constitutive law
(3), i1t can be shown that the simple property noted in conjunction with (356)
generalizes such that the ratio of any strain component at one point, say €3 . to
any component at another point, say €% ,is independent of the load history P(/).
Thus the results in Figs. 4 and 5 for €,/€5 vs. €5, comparing the long-wavelength
result {(56) and the finite element results, do not depend on load history when
presented in this manner.

The initial amplitude in (7) for the calculated results in Fig. 415 £ = .0l and »
= 5. For the long-wavelength curve €, is the strain at the minimum section {(x
= {) and e is the strain at the thickest section (x = //2). Thus, from (7), the

{
e
e
| | | Iho
— et —
' a B
2.25
EA/E\B
Leng-wovelength
200 hmit Eg {56)

Sy

Fig. 4. Strains at the thinnest and thickest sections of the sheet for two initial wave-

length to thickness ratios compared with long-wavelength prediction. {Initial amplitude ¢
= .01, n = 5.
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Fig. 5. Strains at the thinnest and thickesr sections of the sheet for an initial wavelength
to thickness ratio chosen to give an initial decrease in the relative size of the nonuniformity.
(Initial amplitude € = .01: n = 5).

initial ratio of thicknesses at A and B is
hy%hg=(1— &Vl + &) = 980

The maximum strain attained at B according to the long-wavelength approxima-
tion is given by (36) with €, — = l.¢.,

eg® = = (Un)In[1 — (% hg)r = 470 (57)

Finite element results in Fig. 4 are shown for initial wavelength to thickness
ratios of

(n"/h{))‘i:() =3 and 10

For these curves €, and €5 are the effective strains at the minimum and maximum
sections defined in terms of the respective current and initial thicknesses accord-
ing to (55). {(The variation of the strain-rates across the thickness direction at
these sections is nearly constant for » = 5 as will be seen below.) From the exact
results of the linearized analysis in Fig. 2 it can be seen that G = .6 for I/k, =
3 which, from (16), corresponds to an initial growth-rate which is sixty percent
of the long-wavelength growth-rate. For [/f, = 10. G = .92 so that the initial
growth-rate is much closer to the long-wavelength prediction. For an initial ratio
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i/he = 3 the long-wavelength estimate for the limit strain e;* falls below the
actual value by more than 25 percent.

For the example in Fig. 5, € = .01, # = 5 with the tnitial ratio {/h, = 7/2.5
= 1.257. From Fig. 2, G = — .23 and thus we expect the relative size of the
nonuniformity to decrease initially. This is reflected in the finite element results
in Fig. 5 by the fact that the ratio €./¢g 15 less than unity until €4 reaches about
.35, Once the current wavelength to thickness ratio /4 reaches about 1.8 the
linearized analysts of Fig. 2 indicates that the relative size of the nonuniformity
will begin to grow. Note, however, that even at eg = .5 exceedingly little
nonuniformity has developed compared to responses in Fig. 4.

Distributions of €,,/€ across the minimum section of the neck are shown for
several values of n in Fig. 6, where € i1s the long-wavelength value (21). The
dashed line curves are computed from the long-wavelength approximation with
the lowest order hA/R correction (50), while the solid line curves are from the
finite element calculations. For each of the n-values in these figures the current
thickness was taken to be the sinusoidal variation (7) with {/h, = 3. In Fig. 6(a),

22 2z
“h h
2 4 6 .8 1 o] 2 4 .6 B 1
11 T T T T —) 1.1 T T T i
—— finite element resulis
1.05- . 105 A Ea. (50)
) _ —H-—JSZ
€ 10 En 0
E €
——— finite element results
L ——— Eq. (50
75
L
R
.?*‘ (G, J 7 —(b} N

Fig. 6. Strain-rate distribution across the minimum section of the sheet—a comparison
of the finite element results with the long-wavelength result including the lowest order
correclion given by equation (50). € is the long-wavelength resuvlt from equation (21). In
(a). I/h, = 3 and £ = .048 corresponding to A/R = .1 in (b), I/h, = 3 and £ = 0912
corresponding 10 A/R = .182.
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= .048 corresponding to
WR =2m2(1 — £)(hy/N? = .1 (58)

In Fig. 6(b), £ = .0912 corresponding to #/R = .182. The larger is n, the larger
is the order /R correction term in {50). For » = 8 this correction term appears
to be too large for the perturbation expansion, to order /#/R, to retain accuracy
in the present examples. For n = 4 the numerical results do show that €,, is
approximately uniform across the neck. Even for » = 8, the strain-rate at the
midsurface is reasonably approximated by (50).

DISCUSSION

The linearized analysis described in this paper reveals that, regardless of how
small the amplitude of the thickness vanation is, the growth-rate of the nonuni-
formity will be less than the prediction of the long-wavelength approximation if
its wavelength is less than about four times the thickness. The perturbation
analysis, on the other hand, complements the linearized analysis by showing that,
regardless of how /arge the amplitude is, the long-wavelength approximation is
valid if the wavelength of the variation is sufficiently large. At the neck minimum,
h/R measures the extent to which departure from the long-wavelength approxi-
mation can be expected. If it is assumed that the current wavelength of the
nonuniformity is sufficiently large so that the long-wavelength approximation is
currently valid, it is a simple matter to calculate (A/R) at the neck minimum for
the power law material (3). The result is

(WR) = (n—2)én/R (59)

in terms of the instantaneous quantities at the neck. Thus, if n < 2 and if the
nonuniformity inittally has a long-wavelength, then *‘localization’” will not occur,
since #/R decreases, and the long-wavelength analysis will actually become
increasingly accurate. {The sheet will nevertheless shrnink down to zero thickness
at the minimum section with a finite limit strain at any other section of the form
(57).) On the other hand, if n > 2. A/R increases and the stresses and strain-
rates will progressively depart from the predictions of the long-wavelength anal-
ySis.

It is interesting to note that a slightly different criterion for localization based
on steepening of the surface also leads to # = 2 as the transition point. Steepening
of the neck surface depends on the convected rate of its slope, {dh/dx,).
Another relatively simple calculation, assuming the long-wavelength approxi-
mation applies, gives

(dhidx, ) = (n — 2)e(dh/dx,) (60)

at an inflection point where d*h/dx;* = 0. Thus for » < 2 the magnitude of the
slope at an inflection point decreases, while for # > 2 it steepens.

Localization in the above sense invariably leads to a breakdown of the long-
wavelength approximation, as just discussed. Nevertheless, the major portion of
the lifetime, in terms of straining outside the neck, may still be adequately
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represented by the long-wavelength approximation if the initial wavelength of the
nonuniformity is sufficiently large, as is illustrated by the example of Fig. 4. This
is an important consideration in our use of this approximation in Parts IT and 11
where we will primarily be concerned with the amount of straining which can be
attained in portions of the sheet away from the neck.

ACKNOWLEDGMENT

The work of J.W.H. was supported in part by the Air Force Office of Scientific
Research under Grant AFOSR 77-3330, the National Science Foundation under
Grant ENG76-04019, and by the Division of Applied Sciences, Harvard Univer-
sity. The work was conducted while K. W.N. was on leave at Harvard Untversity.
The support of the Faculty of Applied Sciences at the University of Sherbrooke
is gratefully acknowledged. The work of A.N. was supported by the Matenals
Research Laboratory at Brown University funded by the National Science Foun-
dation.

REFERENCES

[1] Z. Marciniak, K. Kuczyask, [nt. §, Mech, Sci,, 9 (1967), 609.

[2] J. W. Hutchinson and H. Obrecht. Fracture 1977, ICF4 ted. D. M. R. Taplin), / (1977}, 1Q1.
[3] J. W. Hutchinson and K. W. Neale. Acla Mel.. 25 (1977). 839.

[4] E. J. Appleby and O. Richmond. to be published.

[5] P. W, Bndgman, Studies in Large Plasue Flow and Fracrure, Harvard University Press {1964).
[6] A. Needleman and C. F. Shih, 10 be published.

FRINTED

I+

Us A



