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ABSTRACT

The effect of material strain-rate dependence on necking retardation
is examined for biaxially-streiched sheets. Rate-dependent versions of
both flow theory and deformation theory are employed in an analysis of
the growth of long-wavelength nonuniformities. Material strain-rate sen-
sitivity is seen to substantially increase the predicted limit strains beyond
their cortesponding values for time-independent material response. We
also djscuss the influence of strain-rate dependence on imperfection-
sensitivity and forming limit curves.

INTRODUCTION

In this third and final Part of our investigation of shezt necking, we concentrate
on the influence of material strain-rate dependence on necking retardation. A
relatively small amount of strain-rate dependence is known to lead to substantialty
increased straining prior to necking [1-3]. This phenomenon was discussed in [1]
for an axisymmetric¢ bar under uniaxial tension. Ghosh [2, 3] has also studied the
effects of strain-rate sensitivity on necking. In particular, he has collected ex-
perimental data for flat strips under uniaxial tension which shows that the max-
imum amount of overall axial strain attained 1s strongly dependent on the material
strain-rate sensitivity characteristics. In addition. he has developed an approxi-
mate analysis for this strip problem which agrees very well with the trend of
experiments,

As emphasized in [1], necking in strain-rate sensitive materials is inherently a
nonlinear process. While ¢lassical lineanized analyses, such as those discussed
in Part I, can provide useful information regarding the early development of

* The material in this three-part paper was presented orally in Session I ander the title **Constitutive
Relations far Sheet Metal’ and Session I'V under the title " Sheet Necking: Influence of Constitutive
Theory and Strain-Rate Dependence’”.
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nonuniformities, thev do not give meaningful estimates for limit strains. Alter-
natively, an approximate nonlinear analysis based on the long-wavelength sim-
plification discussed in [1] for axisymmetric bars under uniaxial tension does
reproduce the essential details of the phenomenon, and will be applied herein.

As in Part II, we shall examine in detail here the basic differences between the
results obtained using J, flow theory of plasticity and those determined with a
rate-dependent J, deformation-type theory. Marciniak er al [4] have considered
the effects of strain-rate sensitivity on localized necking in sheets; their analysis
employs J, flow theory only and is restricted to the biaxial tension range. The
present analysis is valid for a wider range of strain states. We shall examine
imperfection-sensitivity and. in particular, how material strain-rate dependence
alters forming limit curves.

LONG-WAVELENGTHM-K} ANALYSIS

As mentioned previously, it is essential that nonlineanties be properly ac-
counted for in an analysis of the necking process when the material response is
time-dependent. Here, our apalysis is based on long-wavelength (M-K) simplifi-
cation. This approximation was applied in Part [T to examine the influence of
nonhomogeneities on sheet necking. An examination of some of its limitations
was given in Part [.

Throughout this study we shall employ the same notation as that used in Part
[I. The derivation of the basic relations here closely parallels the detailed devel-
opment given in the Section ¢on Long-wavelength Analysis of II. To aveid un-
necessary repetition, we shalil simply discuss those steps of that analysis which
must be modified to account for strain-rate dependent material behavior. The
assumptions of material incompressibility and initial isotropy also apply here.

As in Part II, we consider a thin sheet which is initially uniform except for the
presence of a nonhomogeneity concentrated in a narrow band across the sheet
(Fig. 1), and examine the growth of this initial nonuniformity as the uniform
section of the sheet is loaded.

To describe time-dependent material response, the following true stress-natural
strain relation replaces (II: 11)*

o, = Ke, Ve ™ {deformation theory) ()
o, = Kevé™ (flow theory) 2)

Here, o, and €, (or € are the effective stress and effective strain, equal to the
true stress and true (logarithmic) strain, respectively, in uniaxial tension, and €,
(or €) is the effective strain-rate. N and m denote the strain hardeping and strain-
rate hardening exponents. As in II, we shall employ two distinct symbols and
definitions for effective strain. In the deformation theory analysis ¢, is used and
is defined in total form as e, = (2¢;¢€,/3)Y%, where ¢, are the principal values of
logarithmic strain. The effective strain-rate €, 1s the time rate of change of «,.

* This dencles equation (1) of Part 1.
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Conversely, in the flow theory analysis we define the effective strain-rate in
differential form as & = (2€,€;/3)'2, and the effective strain & is then the integral
of € with respect to time. In any monotonic proporticnal loading history €, = €.
Equation (1) or (2) brings in the effect of the strain-rate on the effective stress-
strain relation in the simplest possible way. The constants K, N and m are those
commonly determined from uniaxial test data. For multiaxial states for the rate-
dependent ‘‘deformation theory', (1) is still supplemented by (II: 8), i.e.,

€ = M 3)

where now u depends on €, through (1). The flow theory relation (II. 43), 1.e.,
3 de

dey = = Sy (4)
2 a,

still goes with (2). For m = 0 both versions reduce to their counterpart relations
used in Part II. Neither relation can be expected to adequately represent rate-
dependent material behavior for arbitrary histories of stress or strain. But they
can be expected to be reasonable generalizations of their respective time-inde-
pendent himits for histeries likely to be experienced in sheet-metal forming when
stresses and strains increase monotonically with relatively slowly varying strain-
rates. The rate-dependent flow theory, (2) and (4}, is the same as that used by
Marciniak et al [4]. We will refer to (1) and (3) as a rate-dependent *‘deformation
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theory' in order to keep in mind its connection with the true deformation theory
of Part I1. In general, the rate-dependent version does not yield path-independent
stress-strain behavior unless the effective strain-rate €, is held constant.

The analysis producing equations (II: 33) to (II; 39) involves only equilibrium
and the definition of strains so that these equations remain valid for the present
investigation. However, in view of (1), (I1: 40) is modified as follows, for defor-
mation theory,

T /" (éf,O) - f)( e,.o)' exples — €,°) {5

a, n /Jé 6(’ €€

with €., €.° and their rates replaced by &, €° and their rates for flow theory.
Equation (II: 4f) for the ratio v}, /o, and (Il: 42) for €;? are unchanged.

J 2 Flow Theory Analysis—The flow theory relations (I11: 43) to {II: 48) and (II: 50)
to (1I: 52) apply for the present analysis. However, since (5) replaces (11: 40), the
expression analogous to (II: 49) becomes

S\ 212 o T
(-B-acrn|-p% de
de de

=0 -¢) (g) exp(CE& + ¢;) (6)

de, A deo\ M dée
der H[l B(de” Pa @)

The parameters A, B, C, D, G and H here depend only on the imposed strain
ratio p and current band orientation . For = (, the above equations reduce
to those given by Marciniak et al [4].

From a straightforward incremental solution of (6) and (7}, we can numerically
determine the groove deformation & as a function of the prescrbed uniform
deformation €°. This numerical procedure is described more fully in [1. Of par-
ticular interest here is the limit strain €°*, i.e., the maximum attainable strain in
the uniform region of the sheet. As will be seen in the results which follow, the
corresponding strain in the groove becomes unbounded, i.e., e— =, as €? reaches
its maximum value when the material response is strain-rate dependent.

where (I1I: 51)

J; Deformation Theory Analysis—The deformation-theory expressions (I1: 53} to
(l: 67) and {11 69) are also valid for the present analysis. From {5), the modified
form of (11: 68) becomes

(p +2)cos’ + (2p + D sin®y] (de\" _ (1= &) /e \" (c 0)1 @)
\/j(l + p o+ p) (dep) XA, (E D) explle,

L4 EE‘
A step-wise numerical solution of this equation immediately gives the incre-
ments of e, 1 terms of the prescribed increments of €,°. At each step the current
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values of principal stretches A;. groove angle ¥ and principal axes orientation
must be updated. The quantities A; and @, however, depend on the parameters
8, v, mand & in (II: 53). From the matching conditions (fl: 56), the current values
of ¢ and v are readily calculated. We compute 8 and 7 in an incremental fashion
by expressing (1I: 65) and (I1I: 69) in rate form.

For the case ¢ = ¢ = 0, the present analysis reduces to

o 2102 o A
w-m [ ()] () -0 () et v o

where ¢; is given by (I1: 72). The above relation (9) is analogous to (11: 71).

An interesting feature of the present analysis, both for {low theory and defor-
mation theory, is that the relationship between ¢.° and €, (or between €* and &
is independent of the load history experienced by the sheet and, in particular, is
independent of the rate é,%=¢") at which the sheet is being deformed. Thus the
limit strain for prescribed p and & is determined sclely by the parameters m, N
and &

PLANE STRAIN CASE (p = 0)

For the plane strain case {(p = 0). & = = 0 and, as in [1, flow theory and
deformation theory give identical predictions. In the long-wavelength analysis of
the previous Section, B=D =G =0, H=land A = C = V¥2. Equations (7)
or {Il: 72) give €3 = —V/3¢,/2 = —¢, and the relations (&) and (9 can be written
as

(.Y exp(—¢€,°/m)de,® = (I — £}, " exp(—¢, /m)de, (10)

This relation is identical to the expression obtained in [1] for the axisymmetric
bar under uniaxial tension, with ¢, identified as the axial strain. The results and
conclusions of that study are therefore directly applicable to the present problem.
For m = 0, (10) reduces to (I11: 74).

Typical results using (10) taken from (1] are shown in Fig. 2, where curves of
€,/€,° are plotted against ¢,/ N for an initial geometric nonuniformity & = 005,
For the case m = 0, the curves are 1dentical to those given in Fig. 4 of Part II.
Of particular interest here is the limit strain, i.e., the maximum value of ¢,%(=¢,""
attained in the uniform region of the sheet. From (10) and this figure it can be
seen that, when the material response is strain-rate dependent, the uniform strain
€,” reaches a maximum as the strain in the groove, ¢,, becomes unbounded. In
contrast, for m = 0 the limiting value, which will be denoted by &,*, is attained
when ¢, = N (see Part II).

The curves of Fig. 2 indicate that material strain-rate dependence greatly
influences the maximum uniform strain that can be achieved. Fig. 3 illustrates
this phenomenon for small values of strain-rate exponent {m = .05). Here,

56, =€, — &, (1)

is the increase, due to strain-rate dependence, of the limit strain in uniform region
above the corresponding limit strain for a time-independent material (rm = 0).
References p. 283.
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Fig. 2. Effect of strain-rate sensitivity index s on development of the strain in neck
€, as indicated by growth of ratio €,/¢,", where ¢,%is the strain outside the neck.

As discussed in [1-3], very small values of m can Jead to relatively large increases
in €, . It is also evident that Se¢,° decreases with increasing imitial nonuniformity
£, and increases with increasing strain-hardening exponent N. In fact, the nu-
merical results depicted in Fig. 3 indicate that 8¢,* is nearly proportional
to VN for small m, as suggested by the asymptotic formula (12) given below.

In Fig. 4 the increase in limit strains for m = .03 are plotted against the initial
imperfection £ {Curves of Iimit strain &, (m = 0) vs. £ for these cases can be
found in Fig. 5 of Part II.) As mentioned above, the delay in necking &¢,
decreases as the imperfection £ increases. A basic difference between necking in
time-dependent and time-independent materials can also be seen in Fig. 4. As £
— 0, the limit strain €,* appreaches a finite value (= N) when m = 0. In contrast,
when the material response is time-dependent (m # 0), €, — =as ¢ — 0. Itis
for this reason that &¢;° becomes infinite at £ = Q.

The numerical results of Figs. 2-4 indicate that very small values of strain-rate
exponent » can substantially increase the limit strain €, beyond its time-inde-
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Fig. 3. Necking retardation due to small amounis of strain rate sensitivity as measured

by the in¢rease of the limit
=0.
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Fig. 4. Imperfection-sensitivity of additional limit strain in plane strain with m» = 0.5,
(Deformation theory and flow theory predictions coincide for p = 0.)
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pendent value €,%". An analysis was carried out in [1] to determine an exact
asymptotic relation for the influence of very small /7 on €,%. The result of that
analysis, also valid for the present problem, is

5¢,” m 47
= 1 = 12
V'N f ( m ) (12)

]
§‘
oy

goi
I 05— N=.22
Plane Strain (p=0)

[¢] .005 .010 015 020

3

N=.22
Uniaxial Tension {p=-1/2)
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N e Flow Theory

§ | | \
o 005 .010 015 020

3

Fig. 5. Imperfection-sensitivity for two plasticity theories for time-independent limit
(rn = () and for m = .05: (a) plane strain, (b) uniaxial tension, (¢} equibiaxial tension.
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Here it is assumed that £ < 1, m < 2¢ and that m/N is small. This asymptotic
relation has a rather restricted range of applicability. Nevertheless, it does reveal
that the slope of the 8¢,% — m relation is infinite at m = 0, thereby ilfustrating
a very strong dependence on m. It also indicates that 8¢,” is proportional to
/N for small m, as do the numerical results in Fig. 3. Furthermore, equation
(12) implies that the amount of increase §e;” is quite sensitive to small vanations

in imperfection values £. We expect this since, as seen in Fig. 4, 8¢,” becomes
infinite as ¢ — 0.

RESULTS AND DISCUSSION FOR FULL RANGE OF p

The long-wavelength relations (6), (7) for flow theory, and (8) for deformation
theory, together with the condition €. {or & — = at €.° = €., were used to
investigate the influence of strain-rate sensitivity on limit strains. The range of
strain ratios — /2 = p = 1 was considered. Computations were carried out with
various values of initial band orientation ¥ to find the critical angle ¥ giving the
minimum limit strain. In the biaxial tension range (p = 0) this angle is §* = 0.

In Figs. 5(a)-(c) the variation of limit strain €, with initial nonuniformity £ is
shown for p = 0, —1/2 and |1, respectively, and N = .22. Time-independent
results (s = 0) taken from Part 1l are included here for comparson. A strain-
rate hardening exponent m = .05 is typical of most common sheet metals at room
temperature.

For the plane strain case (p = 0, Fig. 5(a)) there is no distinction between the
predictions of flow theory and deformation theory, as mentioned in the previous
Section. The curve for m = ( exhibits the imperfection-sensitivity characteristics

References p. 283,
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discussed in II. A much stronger imperfection-sensitivity is observed for the
strain-rate dependent results (m = .05) since. as stated earlier, €, becomes
infinite as £ — 0. We also see that the limit strains for m = .05 are considerably
higher than their corresponding values for m = 0.

The curves of €, vs. £ for uniaxial tension (p = —1/2. Fig. 5(b)} also exhibit
5
06
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Fig. 6. Dependence of limit strain outside neck on strain-rate index for two plasticity
theories: (a) planc strain. (b) uniaxial tension. {¢) equibiaxial tension.
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imperfection-sensitivity characteristics. Here, the solid and dashed curves refer
to the deformation theory and flow theory predictions, respectively. For m =
0, the flow theory limit strains are somewhat higher and slightly more imperfec-
tion-sensitive than the corresponding deformation theory results as discussed in
II. Both theories predict approximately the same relarive increase in €,% due to
strain-rate dependence (m = .05).

For the equibtaxial tension case (p = 1, Fig. 5(c)), a much targer discrepancy
between the flow theory and deformation theory predictions is observed. As
discussed in II, the flow theory Limit strains for m = 0 are substantially higher
than those based on deformation theory, and there 1s also considerably more
imperfection-sensitivity associated with flow theory. With material strain-rate
dependence (m = .035) the increase in limit strain for a given imperfection £ is
greater for deformation theoryv than for flow theory. Nevertheless, strain-rate
effects do not raise the deformation theory predictions to the level of the time-
independent flow theory results.

In Figs. &a)-(c) the dependence of limit strain €, on strain-rate exponent
is illustrated for &£ = .01, .00l and p = 0, —1/2, and I. Fig. &a) for plane strain
shows the same trend as Fig. 3, namely, that strain-rate effects substantially
increase limit strains beyond their time-independent vajues and that the amount
of increase diminishes with increasing ¢. Figures 6(b) and 6(c) bring out the
discrepancies between flow theory and deformation theory discussed previously,
The uniaxial tension results of Fig. &(b) indicate that the difference between both
theories is greater for the lower values of € and higher values of m. The enormous
discrepancy for the equibiaxial tension case is illustrated in Fig. &(c).

Figs. 7(a) and 7(b) depict the manner in which the limit strain ¢, % under
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uniaxial tension varies with initial band orientation , as well as current groove
orentation $* at necking. Again, solid curves represent deformation theory
predictions and dashed lines refer to flow theory. In these figures the values
given in parentheses adjacent to each curve refer to m and £, respectively. The
time-independent curves (m = 0) here are taken from Il and, as mentioned there,
they indicate that the flow theory limit strains are much more sensitive to vari-
ations in ¢ and ¢* than the predicted deformation theory results. With strain-
rate dependence (m = .05) this sensitivity is accentuated for flow theory, partic-
ularly for smaller £, while the limit strains according to deformation theory are
still rather unaffected by small changes in & or y*.

In Fig. 7(a) it can be seen that the critical value of W which minimizes ¢, with
flow theory is greatly decreased by material strain-rate dependence, especially
as the imperfection ¢ is lowered. This effect, counteracted by the tendency of
limit strain to increase as m 1s varied from m = 0to .05, gives current minimizing
values of * that do not vary substantially (see Fig. 7(b)). The corresponding
variations in critical ¢* for different m and ¢ according to deformation theory
are somewhat larger.

2.0

— =
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& |
i I
1.8, |
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\ { (m= z )
ek | | m=.§
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N
AN
10 (05,001)

(05,01

0.8 (05,01
0.6

\\\\ (0.001) (0,001)
0.4 AT Xell
oz2r  (a)

| i ] | L | L
0 0.2 04 0.6 _
W (rod)

Fig. 7. Dependence on limit strain outside neck on orientation of necking band: (a}

plotted against initial orientation angle b, (b) plotted against final orientation angle ¢i¥.
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The effect of material strain-rate dependence on forming limit curves is depicted
in Figs. 8 and 9 for strain-hardening exponents N = .22 and .50, respectively,
and an imperfection level & = .01. Part II results for time-independent material
response {:m = 0) are also included here.

In the range —1/2 = p = 0, the shapes of the forming limit curves in Figs. 8
and 9 for /m = .05 closely resemble the time-independent curves. The effect of
increasing m In this range is essentially to just shift the forming limit curve
upwards. In the biaxial tension range (0 = p = 1), however, there is a flattening
of the curves due to strain-rate dependence. Nevertheless, the flow theory curves
still rise rather steeply for r1 = .05 and both N-values, whereas the corresponding
forming himit curves with deformation theory fall with increasing p.

A detailed discussion of the theoretical forming limit curves and their relation-
ship to published experimental data was presented in Part Il of this paper which
dealt with time-independent material behavior. The outcome of the discussion on
the issue of flow theory vs. deformation theory was the contention that defor-
mation theory seems to give better qualitative agreement with experiments than
does flow theory for the overall straining histories considered here. In particular
for p = 0, where the discrepancies between theories are greatest, only defor-
mation theory predicts the experimental trends of (i) a slightly rising forming limit
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Fig. 8. Forming limit curves for N = .22 for two plasticily theories showing influence
of strain-rate dependence,
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Fig. 9. Forming limit curves for N = .30 for two plasticity theories showing influence
of strain-rate dependence.
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curve for the lower N-values {=.25), or (ii) a curve which falls somewhat for the
higher N-values (=.50). The results of the present study indicate that, even when
strain-rate effects are incorporated n the analysis, simple flow theory does not
predict this tendency.
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DISCUSSION

A. K. Ghosh (Rockwell International)

Why did you choose Roger Pearce’s data on brass for the negative side—why
not our data? The way Roger Pearce conducted these tests, he takes a wide strip,
cuts a slot in the strip for the negative side (slots of various width to height ratios)
and the grid size is fixed. So as he moves closer to plane strain, because the grid
size is fixed, you get strain gradients. And this is why I feel the negative side is

not as steep as our results by punch stretching. He comes off to much higher
plane-strain values.

Neale

In fact, I tred to qualify the discussion. There are a number of things which
you do in an experiment which don’t correspond to the very simple analysis that
I've given here: we assume, for example, proportional straining in all regions of
the sheet.

The other thing is that even though some experimental results, in the negative
prange, might agree very well with Hill’s calculations, I think it’s hard sometimes
to reconcile these results with the flow theory of plasticity because often when
we do a test we are restricting the angle at which the neck eventually forms.
Now as I showed on the slide {although I didn’t discuss it in relation to experi-
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ments) flow theory analysis results are highly sensitive to the angle at which
necking does occur. So, if, in a test, we were constraining the angle quite a bit,
to be zero for example, and if you work out the flow theory prediction it will
give a prediction of limit strain much higher than Hill's results. However, defor-
mation theory, as you saw, is fairly insensitive to this varation in angle.

S. P. Keeler (National Steel Company)

It bothers me that you use an fce for a high &N (in your notation) and a bec for
low N. What would happen if you had identical N values, let’s say 0.2, and
comparing a ferrons behavior versus a brass behavior? As Ghosh, Hecker, Azrin,
and others have shown, you get two different behaviors with the same /N value.
How do you handle that problem?

Neale

In this analysis, we are using the simple, classical constitutive laws of plasticity.
The only variable, at least in this analysis, is the strain hardening parameter N.
We can use refined constitutive laws (continuum plasticity laws) as Prof. Hutch-
inson discussed yesterday, which take into account anisotropy, or we can develop
models such as the ones that Prof. Rice discussed earlier, to model microscopic
fracture. [ think that’s probably the only way. This analysis is based on a certain
constitutive law, a certain continuum approach and if you want to medel other
types of material behavior, you will have to use a different constitutive law.

U. S. Lindholm ¢ Southwest Research Institite)

We're new to the forming area but we've done a lot of multiaxial testing on
tubular-type specimens and plotted many strain-to-failure diagrams which are
essentially equivalent to the forming limit diagram if you assume the instability
point and the failure strain are close approximations to ene another. For ductile
titanium, our data would seem to indicate in both quadrants {less than zero and
greater than zero) that forming is more closely approximated by the flow theory.
This is also true for beryllium but there the failure 1s more of a brittie failure than
ductile failure, particularly if a more biaxial (1 to 1) strain ratic is imposed.

P. B. Mellor ( University of Bradford, U.K.j

I think we are making great progress in learning how ignorant we are. [ must,
I'm afraid, complicate the situation even more. We've just completed some tests
on brass using the Marciniak technique and we get a rising curve from plane
strain to balanced biaxial tension which agrees fairly closely with the work which
has been done in brass in that quadrant on curved specimens. So, I don’t know
how we determine that. We have been subjected to considerable discussion of
strain rate during recent days, and I have just one guery about the use of the
expression for stress, strain and strain rate. Really it doesn’t affect the result of



SHEET NECKING III 285

this theoretical paper but when we're actually getting the N value to feed into
there, how can we get the N value? Because the NV vatue you get from your stress
strain curve itself for aluminum or steel does depend on the speed of testing, in
fact on the strain rate. So I'm not quite sure. . . .

Neale

Well, [ think it’s the other term in the expression (the s value for strain rate
sensitivity) which indicates the way your stress-strain curve does vary with speed
of testing.

Mellor

Yes, but on the experimental side, I’ve not really seen any great data from
which the N and m values have been calculated.

John Hutchinson (Harvard University)

I’m sure some of the experimentalists here could answer this much better than
I. My understanding is that there is a fairly standard series of tests and it's a
series of tests precisely. You take a tensile specimen say, and pull it at some
fixed strain rate. Then you repeat the test at slightly higher strain rates and do
a sequence of such tests. Then on two log-log plots, you pick the N and the M
which best fit the slopes of the corresponding log-log plots. 1 believe that's what
done.



