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Summary

Thin sheets with transversely isotropic material properties are
studied, and we examine the effects of anisotropy on necking as
predicted by various constitutive laws [ 1-3] which have been pro-
posed for such metals.” Both flow theory and deformation theory
versions of the respective constitutive laws are considered. The
results for both plasticity theories indicate that the necking
strains and forming limit curves are strongly dependent on the
shape of the anisotropic yield surface.

Introduction

A major difficulty which arises in the analysis of necking failures
in thin sheets concerns the choice of an appropriate constitutive
law to be incorporated in the analysis, since the predicted criti-
cal strains are often strongly dependent on the form of constitu-
tive equation employed. For example, the use of the simplest
finite-strain flow theory of plasticity leads to some questionable
results for isotropic sheet materials [4]. In particular, for
sheets subjected to in-plane biaxial stretching (where both prin-
cipal strains are positive) this simple flow theory produces un-
realistic "forming limit curves" and predicts that the critical
strain for necking is exceptionally sensitive to small geometric

imperfections. Furthermore, it indicates that a local necking



mode of bifurcation cannot occur in a perfect sheet. On the other
hand, the predicted trends obtained using a finite-strain defor-
mation theory appear to be in much better agreement with reported
experimental data. Even when the respective plasticity theories
are extended to include the influence of material strain-rate-de-
pendence, deformation theory seems to give a better qualitative

agreement with the trends of experiments than does simple flow

theory [5].

A realistic analysis of necking in sheet metals must eventually
account for the effects of anisotropy. In this study we restrict
attention to sheets with thansversely isotropic material proper-
ties. Constitutive laws based on the yield criteria proposed by
Hill [1,2] and Bassani [3] for such metals are used to determine
the influence of anisotropy on necking. Since the detailed shapes
of the yield surfaces depend on the parameters in the yield func-
tions, it becomes possible to examine whether slight changes in
the Ahape of the assumed anisotropic yield surface are important.
We shall see that this is the case, and that the predicted necking
or "limit" strains are very sensitive to the shape of the yield

surface.

Yield Functions for Transversely Isotropic Sheets

To date, the most widely known constitutive law for transversely
isotropic materials is based on a yield criterion due to Hill [1],
who proposed the following yield function for plane stress

(cl+02)2 + (1+2R) (01—02)2 = 2(1+R)0i (1)

Here, oy and 02 are the principal stresses in the plane of the
sheet (03=0), the 3-axis is the axis of transverse isotropy, ou is
the yield stress in uniaxial tension and R is the corresponding
ratio of in-plane transverse plastic strain-increment to the
thickness plastic strain-increment. As a consequence of (1), the

ratio of yield stress in equi-biaxial tension (01=02=0b) to yield

stress in uniaxial tension becomes
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implying that the ob/ou ratio lies on the same side of unity as
does R. This trend is not always confirmed experimentally and
leads to what has been termed as "anomalous behaviour" by

Woodthorpe and Pearce [6].

Hill [2] has since modified his original criterion (1) and sug~

gested the following three-parameter yield function
n n n
[ol+02| + (1+2R)|01—02] = 2(14R)o (3)

for which the ob/ou ratio now becomes

1/n

% _ 1
s = 3 [2(14R) ] (4)

[~

The "anomalous behaviour" can clearly be incorporated here, and
this theory obviously reduces to Hill's original function (1) for
0=2. Parmar and Mellor [7) have recently employed Hill's new yield
criterion (3) together with the flow theory of plasticity to pre-
dict the limit strains occurring in in-plane stretching. They
report that, for the test results given in [8] for aluminum, an
improved correlation between theory and experiment is obtained

when Hill's original criterion (1) is replaced by (3).

In a recent study [3], Bassani has compared several families of
yield functions for polycrystals, including (3), with those cal-
culated from a Bishop-Hill procedure. Ideal textures giving rise
to transversely isotropic properties that could be expected for
typical sheet metals were considered., Hill's new criterion (3)
did not prove to be entirely adequate for predicting details of
the yield loci obtained from the Bishop-Hill calculations. The

following four-parameter family of yield functions
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was then introduced by Bassani in [3], and it was found to be suf-
ficiently flexible to accurately approximate yielding for a wide
range of tramsversely isotropic materials. Convexity of the yield
function requires that n,m » 1, and for n=m (5) reduces to (3).
Bassani's criterion (5) gives the following relationship for the

equi-biaxial to uni-axial yield stress ratio
b1 n 1/n
= = [1+ = (1+2R)] (6)
Ou 2 m

which again can account for the anomalous behaviour. A typical
comparison between a yield locus calculated by the Bishop-Hill
procedure (solid curve) and the phenomenclogical yield 1oci ob-
tained from (3) and (5) (broken lines) is shown in Fig. 1. For
this case R=2.7 and the ratiO(ﬁJou=l.02.
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In the subsequent analysis the material is assumed to be rigid-
plastic. Bassani's yield function is employed, with cl> Oys so
the expression for effective stress o, is given by the implicit

relation

ce[l-i—:l (1+28) 1™ < [(ol+02)n+% (1+2R)csen'm(csl—csz)'“]1/n

This figure is taken from [3] (Fig. 7).
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The effective stress is homogeneous of degree ome in the stress
components. Using o, as the flow potential leads to the follow-
ing flow theory constitutive law

aoe
de, = dA —3-;: i=1,2 (8)

i
From the condition that the plastic work satisfies dW = cidsi =
oedee, where dee is the effective strain-increment, it follows that

dy = dse. The constitutive equation (8) then takes the form

de

1
n-1 m-1 n-m
(ol+02) +(l+2R)(ol 02) R

dsz -de

n-1 m-1
(ol+02) —(l+2R)(01-02) g,
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Since Ol and 02 are principal stresses, the corresponding finite~
strain deformation theory comstitutive law [4] is obtained by sim-
ply replacing dei, dse in (9) by their total (logarithmic) values

e, and ¢ .
i e

M-K Analysis for Imperfect Sheets

The present analysis, for determining limit strains in biaxially~
stretched sheets, is along the lines of that introduced by Marci-~
niak and Kuczynski ("M-K") [9]. We consider a sheet (Fig. 2)
subjected to proportional straining (el,ez) or stressing (01,02)
along its edges such that

13 o
= p = const , —~ = g = const (10)

™
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where the fixed values of strain ratio p will be taken from p=0
(plane strain) to p=l (equi-biaxial tension). The sheet initially

has a nonuniformity in the form of a narrow band perpendicular to



the major principal strain € The thickness at the minimum sec-

1
tion in the band is denoted by hB(t), with an initial value hB(O);
whereas the region outside the band, referred to as the "uniform"
section, has thickness h(t) with an initial value h(0). The ini-

tial geometric nonuniformity is defined as

_ h(0)-h%(0)

13 h(0) >0 (11)
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Throughout the analysis a superscript B will denote quantities

along the minimum band section, and the absence of this symbol
will refer to quantities in the uniform region. As discussed in
[10], it is tacitly assumed in this M-K type analysis that the
width-to-thickness ratio of the band is large.

According to the M-K simplification, the stress state over each
cross-section is considered to be uniform; that is, the stress and
strain components are quantities which are averaged through the
thickness. The equilibrium condition across the band is simply
B B
h = 12

91 alh (12)
We assume the relation between effective stress oe and the effective
strain €’ obtained from a uniaxial true stress-natural strain

curve, to be of the form

_ N
o = Kee (13)

This, together with (12) and the definitions

B
h B h
€, = 0 = €., = &n (14)
3 »
h(0) 3 hB(O)
leads to the following expression
a oB eB N
1_ B B _
5= (1-8) 3 () exple; - ey (15)
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The object of the subsequent analysis is to express all stress and
strain quantities in (15) in terms of €o and ez. From the rela-
tionship between € and ez we can calculate the development of

the band and, in particular, determine the limit (maximum) strains

attained in the uniform region of the sheet.

In the uniform section, where (10) holds, the expression (7)

becones
[ty " + 2 (42R) [(1-0)y]" = 1 + 2 (142R) (16)

in which ¢ = cl/ce = const. The constitutive law (9), or its de-
formation theory equivalent, then gives

€ n-1 m—1
2 2 _ [y ] "-(1+2R) [(1-o)y]

p=—7 =—= — - (]_7)
de 1 Qe PR (-0 T

So given p we can solve (16) and (17) for o and y. From (9), (10)

and the definition for y it follows that
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de, e Lp(L42R)] +(1- D) (1428) [(1-o) g "



Again, both flow theory and deformation theory lead to the above
results since proportional loading (b,c = const.) occurs in the

uniform region.

For straining within the band, we introduce the following variables

analogous to a and ¥

cB UB
B 2 B_ "1
a = _B > IP = UB (20)
%91 e
which, in general, do not remain constant during deformation.
Equation (7) becomes [p.f. (l6ﬂ . )
[ate® 1™ + B @42R) [a-a®)P1™ = 1+ 2(42R) (21)

and using (19), (20) and the relatioms ¢y = ol/oe, the equilibrium

condition (15) can be written as

B
N
v e B
B = (l-E)(e ) eXP(CEe + 53) (22)
U] e
For flow theory, the expressions analogous to (18) and (19) are
B
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The corresponding relations for deformation theory have eg/ee
and eB/eB in place of deg/deB and deB/deB on the left-sides of
3" e 2" " "e 3" e
(23) and (24). s

B .
When the compatibility requirement deg = de2 (or €, = ez) is used

together with (18) and (23), the following expression is obtained

de®  [14R42R) 1401 B 2R A-aD) B 1"
il e BBl (25)
e [Py eP 17 o (a2r) [ (1-0B) 4B

This relation is valid for the flow theory case and, as previously,
the corresponding deformation theory expression consists of substi-
tuting 52/5e for deg/dee in (25). For n=m, i.e., with Hill's new
criterion (3), equations (21) to (25) reduce to those derived by
Parmar and Mellor in [7]. They also reduce to the expressions gi-

ven in [8] when n=m=2.

Flow theory results were obtained from a straightforward incremen-
tal solution of (24) and (25). This determined the band deforma-
tion ez in terms of the prescribed uniform deformation € In

the numerical solution, the strain ratio p was initially specified,
and (16) and (17) were solved for o and y using a Newton-Raphson
technique. A similar iterative procedure was employed at each
increment to solve (21) and (22) for aB and wB. On the other
hand, the results of eg for given € according to deformation
theory were obtained from a direct numerical solution of (21),
(22) together with the deformation theory relations corresponding
to (24) and (25). 1In all solutions the maximum value of strain
attained in the uniform part of the sheet was determined for
prescribed values of p. We refer to this limiting value of uni-
form strain, where dee/dez=0, as the "limit" strain or critical
strain for localized necking as it represents the state where

the deformation becomes concentrated in the band while the re-

mainder of the sheet begins to unload.

Results and Discussion

The previous analysis was applied to generate numerical results .
for initial strain ratios varying from p=0 (plane strain) to p=1
(equi-biaxial tension). Theoretical limit strains are plotted in
Figs. 3-6 as "forming limit curves", i.e., curves which illustrate
the dependence of the limit strain % on imposed strain ratio. In
these figures, the solid and dashed curves refer to the deforma-

tion theory and flow theory predictions, respectively. Results
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are shown for a strain-hardening exponent N=0.20 and an initial
imperfection £=0.02. The numbers in parentheses next to each
curve in Figs. 3-5 denote the R-values and associated ob/ou ratios,

respectively.

The results in Fig. 3 are obtained with Hill's original yield func-
tion (1), i.e., n=m=2, and the flow theory curves here are repre—
sentative of previously given M-K analyses [7,8]. These curves
rise much more steeply with increasing p than the corresponding
deformation theory curves, especially as the R-value is decreased.
Experimentally observed forming limit curves (e.g. [8]) do not
appear to rise as rapidly as flow theory would predict, but seem
to be more in line with the trends of deformation theory. It was
apparently this discrepancy between the flow theory predictions
and test data that prompted Parmar and Mellor [71 to seek a better
correlation using Hill's new criterion (3) in their flow theory

analysis.

In Figs. 4 and 5, results determined using Hill's new criterion
(3) are shown with n=m=2.2 and 1.8, respectively. The shapes of
the forming limit curves here are seen to be extremely sensitive
to small changes in the n=m values. In particular, as we approach
the equi~biaxial stretching condition (p=l) the limit strain for
given R is reduced drastically as the oblou ratio is increased.
The flow theory curve for n=m=1.8 (Fig. 5) and R=0.5 is identical
to that given in [ 7] and, as mentioned previously, this trend is
in better agreement with experiments than the corresponding curve
in Fig. 3. Nevertheless, the experimental forming limit curve [8]
for aluminum still tends to be much flatter than the flow theory
prediction for n=m=1.8, and bears more resemblance to the theore-

tical deformation theory curve.

Bassani's yield function (5) was employed to compute the results
shown in Fig. 6. An R-value = 2.7 and a fixed ratio ob/ou=1.02

were assumed for these calculations; and m,n were chosen to produce
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the phenomenological yield surfaces of Fig. 1. 1In this way one
could examine the effect of the shape of the yield surface on

the predicted trends. It is clear from Fig. 6 that the forming
limit curves are strongly dependent on the parameters m and n,

that is on the details of the yield locus. This observation holds
for both plasticity theories, despite the fact that the flow theory
curves generally lie well above the deformation theory curves and

predict much higher limit strains as p -+ 1.

What seems to be particularly important is the shape of the yield
surface near the equi-biaxial stress state. In Fig. 1 the yield
locus for m=2, n=3.52 appears to best fit the results of the
Bishop-Hill calculation at the equi-biaxial state (01=02), and it
is for this case alone in Fig. 6 that we obtain "reasonable" form-
ing limit curves. Although the choice w=l, n=4.87 gives perhaps
the best overall approximation to the Bishop-Hill locus, it pro-
duces a poor fit near cl=02 and leads to unrealistic forming limit
curves. Furthermore, computational difficulties arise with m=1
because of the corner which exists in the yield surface at the
equi-biaxial state. The forming limit curves in Fig. 6 for

n=m=2.81 also seem somewhat unrealistic.

We finally note that the additional calculations were carried out
for other values of m, n, R and cb/cu considered by Bassani in [3].
These cases examined corresponded to Figs. 6 and 9 of [3], where
again m=2 gives a better approximation to the Bishop-Hill yield
curve near the equi-biaxial state than w=1 or w=n. The trends

and conclusions here are essentially the same as discussed above;
namely, (1) flow theory generally predicts much higher limit
strains than deformation theory as p - 1, and (ii) the theoretical
forming limit curves for both plasticity theories are strongly de-
pendent on the detailed shapes of the anisotropic yield surfaces,
especlally on their shapes in the vicinity of the equi-biaxial

stress state.
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