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ABSTRACT: Exact methods, based on dimensional analysis of the dependence of
the load on crack length and displacement using deformation theory of plasticity,
are used Lo obtain J from a single load-displacement record for different configura-
tions. The methods alse permit the evaluation of the crack length increment Aa,
and hence, complete J-R curves can be constructed. Formulae for Ty and T, are
presented as well.
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This analysis is based on recent work of Hutchinson and Paris et
al [1,2],° which suggested that load-displacement records for pure bending
could be analyzed to determine J-R curve and instability related material
properties. However, here the analysis will be generalized and shown to
be applicable to all configurations (2-D) and especiaily useful for typical
test configurations such as compact, three-point bend, center-cracked,
etc., configurations.

Indeed, the analysis to be presented is “‘exact,”” from an analytical
viewpoint, and is based on dimensional considerations in the spirit of
Rice-Paris-Merkle analysis [3] based on Rice’s J-integral concepts [4]
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The strict deformation theory of plasticity interpretation of J which will be
used here has been shown to be “‘exact’” under the size restrictions
described by Hutchinson and Paris [/,5] for determining J-R curves and
related material properties.

Finally, the analysis will lead to the following useful results:

1. Correct (exact) methods for computing J from load-displacement
records with crack growth present will be developed.

2. Methods for determining crack length change, Aa, from load-
displacement records (without further instrumentation} will be developed.

3. From the results of (1) and (2}, it is possible to construct J-R curves
from load-displacement records alone.

4. Moreover, a materiul’s tearing instability properties, that is, the
tearing modulus, Tng,, may be determined from load-displacement rec-
ords (without further instrumentation).

5. Similarly, a system’s tendency for tearing instability, T,,,, may be
found from further analysis and load-displacement information from the
system.

Therefore, the methods to be developed here are anticipated to have
extensive applicability to J-R curve methods of determining material
properties controlling crack extension and stability. Moreover, since only
load-displacement records are required to determine desired properties,
the methods are ideally suited to certain special testing problems, such as
hot cell testing of irradiated mnaterials or dynamic testing, or both (both of
which present especially difficult problems if additional instrumentation is
required).

Development of a Convenient Form of the Rice J-Integral

The original familiar form of the J-integral is [¢]

du;
J= 3§ wdy — T 2% 4 (1)
r ox

which, based on deformation theory, is path independent, when integrat-
ing around a crack tip, and can be represented equally well by the
alternate forms 4]

1= [ G- - [ (50, @

where, A is the work producing component of Ioad point displacement for
the load, P. It is noted that Eq 2 appropriately implies either A = A{a, P)
or P = P(a, A)as functional relationships between the variables including
the crack length, a, as the third vanable.
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In the analysis to follow here, it is convenient to.subdivide J into
elastic and plastic parts, J, and Jy.. This is done by noting thag fgr ac_tual
elastic-plastic situations the displacement, A, may always be divided into
its linear-elastic and plastic parts. That is

A=Ay + Ay 3

Then the first form in Eq 2 may be written
P P
J = j (——BA“) dP + j (aA“L) ar @)
1 da P 0 da P

Now the first term in Eq 4 is the linear-elastic component, Jo, of J, which
is also the Griffith, G. That is

da

Ju =LP (BAQL)‘D dP = G(P, a) ()

Moreover, the second term in Eq4, J,, , may be reinterpreted by referring
to Fig. 1. This figure shows schematically Ioad, P, versus plastic displace-
ment, A, curves for crack sizes a and g + da. The area between curves
is noted to be J,.da by integrating over elements of the area by

Jutde) = | (252), draa) ®)

but using the alternate element it is observed that two forms are equally
appropriate, that is,

= [7(%e) gp - - fﬂu (—aﬂ) da 7)
JDL_L (aa )PdP_ 0 3a fog - (

Now substituting Eqs 5 and 7 into Eq 4, the result is

J=Jo + Jp
or
Bou (P
= - ) dA (8)
r=aw - [T ()

This form, Eq 8, gives a convenient method for computing J without any
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FIG. \—Load-plastic displacement records Jor two neighboring crack lengths.

loss in analytical precision compared to the original forms, Eqs 1 or 2.
Without ambiguity G is always to be computed using linear-elastic
fracture mechanics formulas using the actual load, P, and crack length, a
(without plastic zone correction). It remains to be shown here that the
second term of Eq 8 may be evaluated appropriately.

Dimensional Analysis of Relationships Between Load, Crack Length,
and Plastic Displacement

Normally the plasticity in a cracked member or specimen is confined to
the remaining ligament at the cracked section. In order to avoid certain
ambiguities requiring some modifications in the analysis, plasticity
confined to the ligament region is assumed here. Under this condition,
dimensional analysis leads to the following form for the relationship
between load, P, crack length, a, and plastic displacement

Bor _ (f. a L B )
W i W W W we e )

where P is taken as load per unit thickness, W is a typical characteristic
{nonvarying) dimension such as width, and L, B, etc., are other charac-
teristic dimensions. In this form a basic argument proposed by Rice [3]is
that load can only appear as P/W with units, force per length squared,
since f depends only on stress-strain properties having like units or
nondimensional units. Furthermore, this form is correct for arbitrary
monotonic stress-strain properties so that the analysis to follow will be
“exact” for all stress-strain curves.
Inverting this function then

o ADL a L B )
KT S wr e Gt 10
w ( W wow w Ct (10)
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Now more appropriate forms for analysis can be modified by d-eﬁnin_g the
width of the remaining uncracked ligament, & (from other dimensions,

such as W-az). Then either b/W or (b/W)? may be factored out of F ( )to
give the special forms of Eq 10

etc.) (11a)

or

(i1b)

Indeed, an additional form which is equally appropriate dimensionally and
similar to Eq (116) is

A a L B :
P = bF; ( ;L Y —“7, W, _“7, etc.) (UC)

Now it will be shown that these forms, in coml?ination with Eq 83 will lead
to significant results. Indeed, all of the results in Ref 3 as well as important

new results will follow.

Analysis to Determine J Using First Special Functional Form, F,

The first functional form, Eq 11a may be substituted into Eq 8, noting
that db = — da, to give

2b [ o
7=G+ 2 T Y
2 fon
_ 5 oF, Ay (12)
W2 4y

(%)

w
Resubstituting for Fi( ) from Eq 11a into the first integral of Eq 12 leads
to

dF

ADL b2 Api.
J=G+%f P dA,, _Wf ' dA, (13)
D Q

()
L_V—/ 0 w

— Y
Merkle-Corten term

Rice’s term
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It is noted that Eq 13 is an exact form for computing J from any load
displacement record but prior to the initiation of crack growth (but it
could be used to compute J after crack growth provided that the final
value of the crack length is used, and the load displacement record for that
crack length with no crack extension is known.) Indeed, it is observed
that the first integral in Eq 13 is the usual Rice [3] area under the
load-displacement curve (work) with the normal 2/6 coefficient and the
second integral is a correction of the Merkle-Corten [6] type, which is
“exact” in Eq 13, however.

Now Eq 13 may be used to evaluate J for any configuration, as will be
discussed later. It is best applied when the correction term, the final
integral, is small compared to the others, which in this case will be the
situation where the uncracked ligament is subject principally to bending.

In developing J-R curves it is appropriate to extend this analysis to the
situation where crack growth has commenced. This is most clearly
accomplished by taking the differential of Eq 12, noting that the integrai
terms are functions of the independent variables, the crack size, a or b,
and the plastic displacement, A,.. The differential of Eq 12 is thus

2b » aF,
df = dG + _WFI - W ] (il) dApL
w
2 [%e 4b (2 JF
+ Wl Fi( )YdA, + Wl —aTil—)—a‘A,,L
w
b [ 3tF,
WJ; a(i) S dAy | da  (14)
w

Now it is convenient for integration of Eq 14 to first define J,, as the last
two terms in Eq 12, that is, it is J,. computed as if no crack growth
occurred, or

o 2p(em B [ 3F
Tu= 2 j FldApL—Ffo : (1) dA, (15)
%%

The reintegration of Eq 14 with crack growth from the initial crack size,
a,, to a size, a, and plastic displacement @ to A, is appropriate over any
path, which gives
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- a1 - 352 (4w JF
J=G+J. +L,_b - Ju + WL —;(il)dApL
b= by W
B [ QF
- il —a‘—szpL da  (16)
(%)

This resuilt, Eq 16 in combination with Eq 15, defines an exact method of
computing J in any configuration. Applied in a general way, it could be
very complicated to compute in terms involving F, in Egs 15 and 16.
However, in applications to be cited here, the cases will be restricted to
situations where the second term in Eq 15 is small compared to the first
and in such cases it will be possible to ignore the terms in Eq 16 explicitly
containing F,.

Determination of Crack Length Change and T Using the First Special
Functional Form

Equation 1la, the first form, expresses the load, P, as a functiop of
crack length a or b and plastic displacement, A,, and other fixed
quantities. Forming the differential of P, it is

2 : GF 2b

dP = %ﬂ ——a—il—dApL + % —- - da A7)
pL el
() ()

Solving this expression for the crack length change, da, it is

b* oF,

w2 A,,L)
(%

BBF _E____BF‘ (18)

dApL - dP

Assuming that F, can be found and the initial crack size, b, is known, then
the crack length change can be found during an increment along a
load-displacement record, dP and dAp,.

During such an increment, dJ can also be found using Eq 14. The results
from Eqs 14 and 18 are substituted into the definition of the tearing
modulus, that is



588 FRACTURE MECHANICS

al E
Taw == =
o (19

It is seen that the tearing modutus of the material, Ty, can also be found
for an increment of the load displacement record.

An Example—the Case of Pure Bending of a Small Remaining Ligament

For the case of a half plane with a semi-infinite ¢rack approaching
perpendicular to the free edge, leaving a remaining ligament of size, b, the
load, P, may be thought of as being removed from the ligament a large
distance, W, to form a pure moment, M, where

M= PW (20)
Now P is regarded as tending to zero while W tends to infinity, so that M

1s a finite moment. Moreover, the moment will then do work through the
plastic angle,

Ao
W 21

Gpl. =

These results, Eqs 20 and 21, may be substituted into Eq 11la leading to
the form

M = b*F\(0,.) (22)

where other variables disappear compared to W. Equation 13 then
becomes

B
J=G+ — Mdeo,, = f Mdb (23)

B
since G = %I Md6,,, (for the semi-infinite case where 8 = 6, +
a

0,1 = Becracy) which is the familiar Rice [3] pure bending result. Moreover,
Eq 14 becomes

2 3
dJ = dG + [2b F, + 0] d6,, + [ -~ FL F1d6pL+0] da
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or
J
dj = 2bFdf — Ea’a (24)
Reintegrating to give a result analogous to Eq 16 leads to

J=2b00—~ dO—J- —da @5)

The analogue of Eq 18 becomes

da = (26)

and hence Eqs 24 and 26 can be substituted into Eq 19 to give

E 4] _ E[ 4F J
I = 2 da "G4\ oF, dM b &
%0 do

Therefore, given F,, it is noted that Eq 26 can be used to compute crack
length changes increment by increment along a load-displacement (M
versus ) record. Then Eq 25 may be used to compute Jand Eq 27 may be
used to obtain T, at any point on the record. These results for pure
bending were obtained in Refs I and 2 and in both, a simple experimental
method of determining F, was discussed. Of course F, also could be
determined by analytical methods, such as finite element method, using
the stress-strain curve for the material to which the analysis here is
applied. It is emphasized that this analysis, Eq 24 through 27, is exact,
independent of material property assumptions for this example case of
pure bending.

This example, pure bending, has been given because it produces the
simplest results and is most likely to be familiar to the reader. However,
more important is the application of these procedures to configurations
which will be used for testing or the analysis of structural cracking
problems. In such applications for any configuration, any one of the
special forms, Egs 11a, 11b, or 11c may be used. However, careful
choice of the form, for most configurations, will lead to much more
practical results. Moreover, the proper procedures for applying the
results to load-displacement record analysis bears further comment here.
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Additional Example—the Compact Specimen

For a compact specimen which is deeply cracked, say a/W = (.8, the
remaining ligament, b(= W — q), is subjected to substantially pure bend-
ing with other planar dimensions, a, W, H, etc., being very large compared
to b. In this case the analysis of pure bending in the preceding section may
be applied with reasonable accuracy. However, in such applications J
must be computed using analysis such as Eq 25, where the second integral
is required to correct for the effects of ¢crack growth on J. This correction
has not been used throughout the previous literature except for Refs 1
and 2. Indeed, the reader is cautioned that J-R curves in the literature are
only approximately correct and that their slopes, dJ/da, for the crack
growth portion may be in error by 20 to 30 percent due to neglect of this
correction term in previous work. Thus, it is clear that more careful analy-
sis Is warranted in even the simplest cases, especially those used in testing
where material properties so evaluated will reside permanently in the
published literature. It is relevant then to proceed with a general analysis
of the compact specimen for all a/W values and neglect terms only where
they are justifiably small compared to others.

In general the remaining ligament of a compact specimen is subjected
mostly to bending but also to a moderate axial force which cannot be
neglected entirely. For such cases where bending is a dominant factor, the
use of the first special functional form, F,, as defined by Eq 11a is most
appropriate. This is because in applying the analysis using that form, Eqs
12 through 19, the terms involving derivatives with respect to a/W of F,
will be weak, that is, considerably smaller than the main terms. It will be
noted here that some of these terms may then be neglected justifiably to
simplify the analysis.

In reviewing the analysis, Eqs 12 through 19 will be repeated with
appropriate modifications for the compact specimen. First for the deter-
mination of J prior to crack growth, Eqs 13 and 15 may be used, hence

J=G+J,
where
- 2 Apu bz dpy aF
J'pL = EL PdApL - #L ! dADL (28)

(%)
(for Ag = 0)

Now the second term in Eq 28 involving 6F,; /8(@/W)is as noted previously
a Merkle-Corten type correction [6] which is known to be smaller than
other terms but which disappears only at very high @/W values. Now this
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term cannot be neglected in Eq 28. However, if the computation of J with
growing cracks is considered using Eq 16, then note that the integral term
in Eq 16 is small compared to other terms. Within this integral, the terms
in the integrand explicitly involving the derivations of F, are small
compared to J,., thus their effect on the overall J can be negleclqd. That
is, with small amounts of crack growth present compared to the ligament
size, b, Eq 16 may be simplified for compact specimens to give

.7

J=G+J, - f L da
o, b

0

where (as before)

=2 [ - be [ I s 29)
JDL = W . FldApL WL A ; (iw) pL

(for all small Aa, 0 = Aa < < b)

Now the limitation of Eq 29 to small Aa is no loss in generality, since
J-controlled crack growth is restricted to small crack length changes 1.
That is, for large amounts of crack growth, J-controlled cracfk-tlp fields
disappear so that J analysis itself tends to become inappropriate.

Therefore, Eq 29 is a general form which may be used to compute J
accurately in compact specimens. It is noted that two types of “*correction
terms” exist, that is, the last terms of both parts of Eq 29. The term
involving 3F,/a(a/W) is similar to the Merkle-Corte_:n correcti(_)n now in
use [7], but since F; obviously depends on material properties and is
thought to be influenced strongly by hardening, etc., the terms are
definitely not identical. The conclusion here is that until demonstrated
otherwise, Eq 29 is the only sure way to obtain accurate J values from
compact specimen results. _

In order to evaluate increments of crack length change, da, in compact
specimens, Eq 18 may be used without modification. It is, again

PR
")
W
= - (30)
"%, ok
VG
w

It is likely that the term in the denominator with aF,/d(a/W) will be
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negligible, but it is carried here for further evaluation. At this point it is
seen that Eqs 29 and 30 are sufficient to evaluate crack length changes,
da, and J, so that J-R curves may be constructed, given F, and a
load-displacement record. Subsequently, the means of evaluating F, shall
be discussed. However, first it is relevant to develop the procedure to
directly evaluate T, .

Adopting the usual definition of 7., (see Eq 19), the remaining
component required is 4J. This is obtained most directly by differentiating
Eq 29 and referring to carlier expressions such as Eq 14. The simplest
format neglecting terms appropriately is

2b b*  8F,
dJ = dG + WFI—W' -a—- dADL
al —
W)

2 [
_[WJ; FldApL] da (31)

Then using Eq 19, and substituting Eqs 30 and 31, Ty, becomes

[ . B R ]
il
_ E dG W 2 BpL
T Zof | da T op _dp wie 4| OD
wE s (Qp_:,) dig;
L W .

Therefore, for a compact specimen Eqs 29 through 32 are sufficient not
only to construct a J-R curve, but also to evaluate T, directly at any
point of a load-displacement record, if F, and its derivatives,
OF /8(Ap /W) and 8F /3 (a/W), are known.

Determination of F, and Its Derivatives for Compact Specimens

As defined by Eq lla, F, is the relationship between load and plastic
displacement, for a given set of specimen proportions, including a/W, and
for a given material’s stress-strain curve. Then it is evident that one way
to obtain the function, F,, is analytically through finite element method or
other such methods. For example, it would be relevant to tabulate this
function and its derivatives for common test configurations, such as the
standard compact specimen, for Ramberg-Osgood stress-strain curves of
various hardening coefficients, n.
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However, it is also possible to determine F, and its derivatives
experimentally for the actual material to be considered in a reasonably
practical way. The procedure shall be described here.

More specifically it is assumed that a single load-displacement record is
to be used to determine a material's crack growth properties. But in order
to calibrate the method, that is, to determine F, and its derivatives, then
assume that a few sub-size specimens of the same material are also
available, where the sub-size specimens are made in exactly the same
dimensional proportions as the full-size specimen, except their initial a/W
values vary slightly from that of the full-size specimen to iarger values.
Now let all of the load-displacement records from these specimens be
plotted on the basis of PW/b,* versus A/W as shown on Fig. 2a. The
elastic parts of the displacement on Fig. 2a may be noted, using initial
slopes for each of the specimens, to develop Fig. 2b a plot of PW/b,*
versus A/ W in which case PW/b? is F,. Now the sub-sized specimens
will go to larger deformations, A, /W, prior to having crack growth
occur. Therefore, each plot of data from a sub-sized specimen is F,
associated with its a/W value up to its own initiation of crack extension.
Furthermore, the slopes of the sub-sized specimen curves give
dF,/3(A,,/ W) and the spacing of curves will give 3F,/3(a/W). Therefore,
all of the information on F, required for analysis using Eqs 29 through 32
is available. Then the full-size specimen’s load displacement curve may

full-size specimen
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FIG. 2—Normalized load-displacement records for full and subsize specimens.
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be analyzed fully using Eqs 29 throngh 32, integrating along this curve
increment by increment as indicated by the equations to determine J, Aa,
and T, which can then be used to plot a J-R curve if desired.

All of the theory behind this procedure is exact. It is calibrated for the
actual material tested employing exactly the same degree of plane stress
versus plane strain in the sub-size specimens of the identical proportion
and material. (Indeed, after testing a full-size compact specimen, the
broken halves contain enough material to make four sub-size specimens
just slightly smaller than half size.) (Moreover, many reactor surveillance
programs contain scaled specimen sizes of identical proportions which
fortuitously turns out to be ideal for this purpose.) Finally, using this
method, the terms which were neglected in developing Eqs 29 through 32
from Eqs 12 through 19 can be evaluated from the information from the
sub-size specimens technique if any doubt exists.

It is noted here that other approaches, rather than direct application of
Egs 29 through 32 to the full-size specimen using sub-size specimens as
passive calibrations of F, and its derivatives can be devised to determine
J, Aa, and T, from this test information. However, each makes less
than maximum use of information from the full-size specimen and
therefore, is regarded as less precise. Finally, it is noted that a set of
fuil-size specimens when tested can be used to calibrate each other, (that
is, determine F, and derivatives without sub-size specimens), but this
would be less than precise if points of beginning of crack extension, etc.
were not clearly distinguishable. The practical aspects of such short cuts
are to be left to experimental programs.

In summary, for evaluation of a material’s cracking properties from
compact specimens, the calibration method described here along with Egs
29 through 32 forms a precise and practical basis for determining J, Aa,
T nat » €te. from nothing more than load-displacement records. Since other
methods require costly additional instrumentation, etc., this method
shows great promise.

Bending Test Specimens of the Three-Point and Four-Point Bending Type

For typical bend test specimens with a/W large enough so that plasticity
is confined to the remaining ligament region, the analysis in the preceding
sections on compact specimens also applies. However, all terms involving
dF,/a(a/W) become very weak and can be neglected within normal
accuracy requirements. Thus simply repeating Egs 29 through 32, deleting
these terms, the results are

— i ¢ ij
J—G’I'JDL_ ey da
s, b
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where

o 2 [om
JpL = 'EO‘J; PdApL (33)

and

i L‘F‘_dﬁ\m — dP

(34)

and

ZJA“
- L L FdA (35)
Toa = 0_—02 d—a + b aF, dP wlo 14=pL

W a(ApL) - dAyL

w

using Egs 33 through 35 and a single sub-size specimen to dfftermlne F,,
the evaluation procedures described in the previous section hold.to
determine T, etc., from a load-displlacement recort;l _of a full-s.nze
specimen. On the other hand, if doubt exists on thc? precision gf deleting
terms containing 9F;/d(a/W) here, then the previous anialysus, E_qs 29
through 32 can be employed in full 1(Wi‘th fl;lrthert subs-su.e specimens
ired) to evaluate the effect of neglecting these lerms.
recﬁn::ezns relevant to point out here that the ﬁn{ﬂ form of Eq 23 f(_)r
three-point bending has been used erroneously in the past‘. In this
connection it should be noted that the first form of Eq 23 cointams G and
that it must be modified for three-point bending of a finite specimen
whereas the plastic term remains reasonably accurate (base'd on Oerae )-
The errors were the result of the inappropriate use of lmear—elast_lc
components of the analyses. Moreover, it 18 also noted he.re that In
developing J-R curves from bending tests, the final term 1n Eq 33,
correcting for the effect of crack growth, has been neglected throughout

the literature.

Applications to Predominately Tension Loading

Any of the three special functional forms, Egs lla, 116, and 11c may b_e
applied to any two-dimensional configuration. Therefore, for predomi-
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nately tension, the form F, and its associated analysis, Eqs 12 through
19, could be employed correctly. However, in that analysis the terms
involving 3F,/d(a/W) and its second derivative as well, would become
dominant and difficult to evaluate accurately either by experimental
methods or further numerical analysis. Thus for cases where the remain-
ing ligament is subjected principally to tension, it is equally correct but
significantly more practical to apply the alternate forms F; or F;, or both.
The latter form, F,, is only of substantial advantage whereas the remain-
ing ligament, b, is very small compared to other dimensions, W, L, a, etc.,
so that F, is a function only of Ap./b, and other variables disappear, as
discussed originally in Ref 3. Consequently, the continuing discussion
here will center on the functional form, F;, from Eq 115.
Substituting Eq 115 into Eq 8 gives

b j"“ﬂ- aF,
]

(g

Resubstituting from Eq 116 for F; in the first integral term leads to

SpLL
J=G+ f Fydhy - dhy, (36)

1 By, b An aF
J=G+E£ PdA,. - j 2

W o . (%) diy, (37

(for Aa = ()

These results, Eqs 36 and 37 are analogous to Eqs 12 and 13 and so upon
comparison we note that Rice’s term in Eq 13 appears in Eq 37 but with a
coefficient of one instead of two. Upon noting that the last two terms in
Eqgs 13 and 37 are weak (small) in bending and tension respectively, then
the principal term in Jp;, the plastic part of J is

~ [t
Jpo = E PdAy, (38)

0

where

7n — 2 (pure bending)
n — 1 (pure tension)

as noted by Sumpter [8], quite some time ago. Indeed, this analysis agrees
with Turner’s results but in addition offers Eqs 13 and 37 as exact
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analysis, both being applicable to all cases if correction terms (the final

terms in each) are evaluated properly.
The analysis is continued as with Eqs 14 through 19, hence

b 8F2
- dA

dl = dG + Fz W a(i) pL

W

aF. a*F,

e T 2" J;j-dapb da (39)

*(w) W

and

S L oL

lfl1,
j=G+f0° F, -

o a p
J iJ' e __aF_l_ dADL
a, W o 3 (LL)
w

2
_ _f FF. gy | da @0)

()

(0 < Aa << b)
and
b dF,
== A —_
W o dA,, — dP
"’(’u?)
-—— 41
da - _i _BF (41)
T
w
where
E dJ 47
That = _"07 E ( )
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As before, if Eqs 39 through 42 are applied to center crack or double
edge notch specimens where little or no bending is present, terms
containing 6°F,/d{a/W) in Eqs 39 and 40 can be neglected and the
influence of the 3F,/3(a/ W) term in the denominator will be small in some
circumstances for certain computations. Thus a simplification of these
equations for some practical cases is possible. Moreover, in such cases,
experimental procedures very much like those suggested in the preceding
section on determination of F, and its derivatives for compact specimens
are appropriate. However, that analysis and subsequent experimental
procedures are so similar to the preceding discussions that it is not
repeated here.

A Note on Determination of 7,,, for Analyzing the Tearing Instability

Following the analysis provided by Hutchinson [/], T app can be found
from

E aJ
Tapm = ol (gd)ar 43)

Now (aJ/éa)s. is the increase in J applied by a loading system per incre-

ment of crack extension with the overall system displacement, Ar held
constant. Therefore, following Hutchinson’s anaysis procedures [7], the
(8J/da)s, may be computed making use of the forms for analyzing J
herein, for example, Eqgs 16, 25, 29, 33, 40, etc. Once suggested, carrying
out such computations is straightforward and consequently omitted from
further discussion here.

Conclusions

1. Methods of properly (exactly) computing J for various test config-
urations have been developed herein.

2. The methods developed correctly account for the effects of crack
growth on J, which has often been in error in previous works.

3. Procedures for determining J-R curves, Tha, etc. are discussed
which require no more than load-displacement records from tests.
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