®

Math. Proc. Carnb. Phil. Soc. (1980), 87, 339 339
Prinded in Greot Britain

Bifurcations at a spherical hole in an infinite
elastoplastic medium

By J. L. BASSANI, D. DURBAN axp J. W, HUTCHINSON
M.IT., Cambridge ; Technion, Haifa, and Harvard University

{Recetved 28 August 1979)

Absiract. The bifurcation problem of an infinite elastoplastic medium surrounding
a spherical cavity and subjected to uniform radial tension or compression at infinity
is studied. The material is assumed to be incompressible, and it behaviouris modelled
by both hypoelastic {flow theory) and hyperelastic {(deformation theory) constitutive
relations. No bifurcation was found with the flow theory. Surface bifurcation modes
were discovered with the deformation theory in both tension and compression. An
independent study is also presented of surface bifurcations of a semi-infinite elasto-
plastic material under equi-biaxial stress. The critical strain for the half-space co-
incides with the strain at the spherical cavity at the lowest bifurcation.

1. Introduction. In this paper we study a basic bifurcation problem of an infinite
elastoplastic medium surrounding a spherical cavity subject to uniform radial tension
or compression at infinity.

We begin, in Section 2, by considering the primary path of equilibrium which is
simply the spherically symmetric mode of expansion or contraction. That path has
already been investigated by Durban and Baruchq) for a particular hypoelastic
material whose constitutive law is a finite strain generalization of the J, flow theory
of plasticity. Here we adopt the incompressible version of that law and recollect the
main results for the primary path. We also point out that the same primary path is
obtained for an incompressible hyperelastic material whose constitutive relation is a
finite strain generalization of the J, deformation theory of plasticity.

Next, in Section 3, we specify Hill’s(2) eriterion for axisymmetric modes of bifur-
cation from the primary path. A separation of variables is introduced and the whole
problem is reduced to & variational equation involving only one unknown function
of the radial coordinate.

Numerical solutions of the governing variational equation, obtained by means of
a finite element method, are presented in Section 4 for a few representative cases.
No points of bifurcation were found with the flow theory over the range of deformation
searched. With the deformation theory, on the other hand, bifurcation modes were
discovered in both tension and compression. These modes resenble surface bifurcation
modes in the sense that they rapidly decay in’ the radial direction and are highly
oscillatory in the circumferential direetion. Furthermore, there are many nearly
simultaneous modes at almost the same primary state (eigenvalue).
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Finally, in Section 5, we give an independent analysis of surface bifurcations of a
semi-infinite half-space of elastoplastic material under a uniform state of equi-biaxial
tension or cornpression. The bifurcation condition is expressed in a simple formula
that has the same structure as the equivalent formula derived by Hill and Hutchin-
son(3) and Young(4) for the analogous problem in plane strain. For deformation
theory, the critical strain at bifurcation is very close to that obtained in the cavity
problem. Results with the flow theory indicate that surface bifurcations take place
at enormously high strains.

2. The primary path. Consider a spherical cavity embedded in an infinite isotropic,
homogeneous elastoplastic medium. Locate the origin at the centre of the cavity,
and assume that the medium is subjected to monotonically applied uniform radial
tension or compression at infinity. The surface of the cavity is free of traction.

The primary equilibrium path is then simply the spherically symmetric mode of
expansion or contraction. This problem has been solved exactly by Durban and
Baruch (1) with the particular constitutive relation

§=%..D, (2:1)
where & is the Jaumann rate of the Cauchy stress g, D is the Eulerian strain-rateand &
the tensor of imstantaneous moduli. The hypoelastic relation (2-1) used in (1) is a
finite strain generalization of the J, flow theory of plasticity. Here we proceed with
the incompressible version of {2-1), namely

o=%..D, (2-2)
where 8 is the stress deviator and % is now given by (only plastic loading isinvolved)

f.—_gE{I—-(l—%)NN}. (2:3)

Here I is the fourth-order unit tensor whose Cartesian components are
Lipa = 3(0: 050+ 030 33) — §64505,

N=s/(s- -8)t is the unit normal tensor to the yield surface, £ is Young’s modulus
of elasticity and E, is the tangent modulus. The latter is a known function of the
effective stress o, = (§s-.8)%,

We now recapitulate the main results from (1) for the primary path of the incom-
pressible material (2-2)—(2-3). At each point there is radial straining where the stress
state is the sum of uniaxial radial plus hydrostatic stressing. In a polar-spherical
system of Eulerian (spatial) coordinates (R, 6, ¢) with the corresponding unit base
vectors (B, Ny, 0y), the stress components are given by

Ia Ia
S, =sz J(S)dS, T,=3, = m2+f2 FS)ds, (2-4)

where with an obvious notation £ = o3 /E, etc., are the non-dimensional components
of @, m = 1 when the applied load at infinity is radial tension and m = —1 when
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compression, £ = o,/E = m(Z;— Zy) is the non-dimensional effective stress and T,
its value on the surface of the cavity. With €{X) as the logarithmic strain in uniaxial
tension at non-dimensional stress X, the function f(Z) is given hy

i de

Fie) = exp (3me)— 1dL’ (2:5)

A common uniaxial relation, which will be used here to generate some numerical
examples, is the Ramberg—Osgood expression

efey = /oo tal(a/og)",

“where = is the hardening index and « i8 & numerical constant of order unity. The

guantity o, can be regarded as an effective yield stress; ¢, = o,/ can be thought of
as an effective yield strain but note that {o,¢,) does not fall on the stress-strain
curve. In terms of the non-dimensional stress the above is

¢ = T+ ael"En, (2-6)

In incompressible uniaxial straining ¢ can be referred to as the effective logarithmic
strain and dX/de = E,/E.

The load itself - the radial stress at infinity non-dimensionalized with respect to E
— is denoted by mP where P is always positive. The effective stress vanishes at infinity
and we find from the first of (2-4) that

B
P=mf f(Z)dz. (2-7)
E
The principal stretches may be written in the form

dR R
fp == = eXp(—me), ap=a,;= S =exp {3me), (2-8)

where r is the Lagrangian (material) radial coordinate.
Another useful connection is the differential relation

aR [E)

which after integrating and using the second equation of (2-8) gives

R m m [ Taf(Z)
o exp[+—2-eﬂ—-EJ‘£ TdZ]

—exp[—3m€a/2])§, (2-10)

1
= exp [ma/z}( 1—exp[— 3me/2]

where a is the Lagrangian (undeformed) radius of the cavity and ¢, is the value of ¢
at the surface of the cavity.

Relation (2-10) completes the description of the primary path. Regarding T, as a
monotonically increasing time-like parameter, we can evaluate with the expressions
given here the stress and deformation fields along the primary path. An interesting
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feature about that path — at least for the representation (2-6) — is the existence of an
asymptotic velue for P in tension, F,, which is given by (2:7) withm = 1 and £, —» co.
By contrast, a thick-walled sphere reaches a limit point in P at finite X, (5).

With R, denoting the radius of the deformed cavity in the primary solution, the
relation between mP/F, and (R, —a)/a is shown in Fig. 1 for two values of » and for
values of « and ¢, = o,/ F which are representative of common polycrystalline metals.

The primary path just described is a proportional path in the sense that the unit
normal tensor to the yield surface N is kept constant along that path. An identical
path is obtained if the hypoelastic relation (2-2)-(2-3) is replaced by the isotropie,
incompressible hyperelastic relation

s = 1E,E,, (2:11)
where E, is the secant modulus defined by
E =c,/e=EZ/e (2-12)

and the uniaxial relation between ¢, and ¢ is the same as before. The tensor E in
{2-11} is the Eulerian logarithmic strain tensor whose principal components, when
decomposed on the Eulerian triad, are lna; (i = 1,2,3) where a, are the principal
stretches. Tt ig easily verified that (2.11) is derived from the strain energy function

W=%J'E3(n)dn=f2de, (2-13)

where
NM=E, -E; =In?a,+In%a,+In%a, = . (2:14)

Note that the secant modulus in (2-13) is regarded as a known function of I or equi-
valently of Z. The hyperelastic constitutive relation (2-11) is a finite strain generali-
zation of the J; deformation theory of plasticity which was introdnced in (6).

By taking the Jaumann rate of (2-11) we obtain its rate form

g B E, v
s.-gEs[I—(l—E)NN]--EL, (2-15)

A%
where E; is the Jaumann rate of E; and N is again s/(s-.s)}. The above can be
reduced to the form (2-2) involving the Eulerian strain-rate D, i.e.

§=%..D, (2:16}.
where
&= gE,[I_ (1~%)NN]+Q. (2-17)

In principal stress axes the components of Q can be determined from Hill’s (7) formulas
for the instantaneous shearing moduli of isotropic elastic solids. In principal axes all
components of Q vanish except the shearing components @55, @1a15 80d Qo395 and
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Q1210 = $E[(B, — Ey) coth (B, — E,) - 1] (2-18)

and analogous expressions hold for Q5,3 and Qyg,,.
In passing we mention a third elastoplastic constitutive relation suggested by
Stéren and Rice(s). That relation is again a hypoelastic relation like (2-2) but the

v
tensor of instantaneous moduli is obtained from (2-15) with E; replaced by D, namely

%= %ES[I—(l—g—*)NN}. (219)

g

 The primary path of this material is identical with that of materials (2-3) and (2-186).

Similarly, it is possible to construct more constitutive relations that will deform along
the same primary path. In the present study however we restrict ourselves mainly to
materials {2-3) and (2-17)-(2-18). The third material (2-19) will be considered only in
the last part of the paper wherein the half-space problem is discussed.

3. Bifurcationanalysis. Hill's (2) criterion for bifurcation of an elastoplastic material
under increasing load states, for the present problem, that
8 J' Udv =0 (3-1)
v

where for an incompressible material

U=%(;—0-D—w-u)--L; (3-2)

here L is the left velocity gradient and w the spin tensor. The integration in (3-1) is
carried throughout the whole volume V. It is understood that all rate quantities in
(3-2) represent eigen-quantities which are the difference between the two possible
solution-rates, Substituting the constitutive relation {2-2) or (2-16) into (3:2) gives
the more convenient form

2U=D--&. -D~(s-D+w-q)--L. (3-3)

Considering only axisymmetric modes of bifurcation from the primary path, we
can write the eigenvelocity as

V = vpNg+ Ny, {3-4)
where vy, vy are functions of &, ¢ only. The left gradient of v is then

where ¢p, €, €4, ¥, are the components of the Eulerian strain rate, w, is the only non-
vanishing component of the spin tensor and

Ng=ngng Ny=mnsn, Ny= n¢n¢'1 {3-6)
S,;, = NpNg+ NNy, R¢ = ang—nanR.J
Thus,

D = ¢ Np+6;Ng+e,Ny+7,8,, w=w,;R,, (3-7)
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Fig. 1. Relation between normalized radial tension or compression at infinity and growth
of hole in primary solution (x = &, ¢ = 0-003). Crosses denote points of first bifurcation.

. ) 1 . 1
with €r=Vr € =% (vp+v), €= J—R;('UR+UB cot 8),
1 z 1 - ’ 1 « ’
Y= 2 UB"‘—R‘(”R—U&) s Wy = vﬂ"ﬁ(vﬁ_vﬂ)
and

o) L _é0)

( ) = —EEJ ( ) = _a_ﬁ- .
The condition of incompressibility ez + €, + €4 = 0 can be stated as
1
R

This equation is satisfied with any pair of the form

(RZ‘UR)'+’£'13+U9 cot 6 =0,

vp = a, BP, (cos ), ]
%=%mwymmmm, J

o, =klk+1) (k=1,23.),

(38)

(39)

(310)

(3-11)

where @ is an unknown function of R and P, (cos8) are the Legendre polynomials.
It can be shown that for each & (3-11) results in an exact separation of the differential
equations and boundary conditions associated with the variational statement (3-1).
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Fig. 2. Effective strain at surface of cavity at oceurrence of first bifurcetion mode
of degree k. Radial tension at infinity with @ = 2 and ¢, = 0-003.

Substituting (3-5)-(3-7) into (3-3) and observing that for the primary path
6 = 0 Np+0y(Ny+N,y) {3-12)
we find that
2U/E = (v, —Zp)ep+ (va—Zg) {5+ €3) + 2(v3— T — L) vE+ Ty + w,)?
+ Zgly,—wg)?,  (3:13)

where v, = u,/E (i = 1,2, 3) are the non-dimensional instantaneous moduli defined via
the quadratic form

D.--Z.-D = peh+poler+€5) + 20375 (3-14)
Thug, for the hypoelastic material (2-3),
V1=%_ , Ve=V3=% (3-15)

In deriving (3-15) we have used the obvious expression
NN = §(Nz—18) (Nz—3d), (3-16)
where § is the second order unit tensor with Cartesian components 4.
Similarly, for the hyperelastic material, from (2-16)-(2-18),
E, 1E, 2K

B
n=gp-zgs =3 v; = L ecoth () = T coth (3€), £3:17)

E

where in the last relation we have used the incompressibility condition aza} = 1 as
well as expressions (2-8) for the principal stretches.
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Fig. 3. Radial variation of bifurcation modes of degree ¥ = 10 and & = 140
for radial tension at infinity with @ = %, ¢, = 0-003 and n = 3.

As for the third material (2-19), it is observed at once that »,, v, are identical with
those of (3-17) while v, is equal to v,.

Substituting now relations (3-8) into (3-13), using the expression for the velocities
{3-11) and separating the result into the R and & directions, we find that the varia-
tional statement {3-1) is reduced to

a"‘m 0dR =0 (3-18)
Ra

where R, is the deformed radius of the cavity and U is given by
U = 3 (R2D")2 + Ly RO+ by D2 4 i RMD'D" + K RO'D + k REO"D  (3:19)

with

Ky =vVy+Lp—I,,

kg = 2ap(v1+vy—Lp—Lg) + 205 — vy + TLg),

K3 = (g — 2)* (Vg — Zp+ Tp) + 4(a.— 2) (v, — ),
2(vy+ 225~ Zy)
Ks = 2(a;—2) (va+ vy — Zp— 3Ly),
Kg = {a— 2) (v3— Zp — Zg).

(3-20)
Kq =

It is now possible to derive from (3-18) the fourth order differential equation for
the function @ along with the corresponding homogeneous boundary conditions.
Furthermore, with the aid of relations (2-9)—(2-10) we can eliminate the Eulerian
coordinate R and use only the effective stress X as the independent variable.
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Fig. 4. Effective strain at bifurcation into surface modes for half-space under equal
biaxial stressing (@ = %, € = 0-003). Essentially identical results are obtained for
pure power-law material € = Ko7,

Unfortunately, however, attempts to solve the resulting equation analytically were
not fruitful.

Exceptionally, for the hyperelastic material (2-16)—(2:18) a further analytical re-
duction is possible for the bifurcation modes associated with k = 1. This has been
observed by Haughton and Ogden (9) in their study of bifurcation of incompressible
hyperelastic spherieal shells under internal pressure.

With k = 1 the coefficients «,, x5, k¢ from (3-20) vanish and the criterion (3:18)
generates then the second-order equation

Ky RO 4 (k, RYY W + [{x, R%Y —x, R Y = 0, (3-21)
where ¥ = @', The corresponding boundary conditions are
BY' +x,¥=0 at RE=R, ‘L

(3-22)
¥ =0 at infinity |

Ingerting coefficients &y, «,, &, into (3-21), using expressions (3-17) for the instant-
aneous moduli, arranging and integrating gives the solution of {(3-21) in the form

%fRRMR ap

Y =c¢ —= g 4
1R4) n, adx, ? R

(3-23)
where ¢,, ¢, are integration constants. Turning now to the boundary conditions we
find that the second of (3-22) is satisfled only with ¢, = 0 since the first term of the
golution (3:23) is unbounded at infinity. {(As K — oo, (2-8) implies that a; — 1, while
frecm (3-20,) and (3-17,) it follows that x; — &. Thus, as R becomes large, the first
term of (3-28) behaves essentially like ¢, R and the value of ¢; must therefore be
taken as zero.) The condition on the surface of the cavity (3-22,) can be rewritten as
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R¥' 4 2% = 0 at R = R,. Substitution of ¥ = ¢,a,/R? into that condition and use
of (2:5) and {2-9) shows that no nontrivial solution is possible.

Thus the problem for the hyperelastic material does not admit any bifurcation
mode with & = 1 either in tension or compression.

4, Numerical results. The variational equation (3-18) has been discretized for
numerical work using a finite element method. The effective stress Z was used as the
independent variable so that the infinite range of integration [R,, co] is transformed
to the finite range [Z,, 0]. That range was divided into K sub-intervals with @, and
(d®/dL); being the unknowns at the ith node. Cubic interpolation formulas were
used for piecewise integration across each element. Equation (3-18) is then replaced
by a system of linear homogeneous algebraic equations for the unknowns @, and
{dD/dZ); with ¢ ranging from 1 to (K + 1). The bifurcation criterion requires a non-
trivial solution of that system, i.e. the vanishing of the determinant of the coefficients
of the algebraic equations. The lowest load at which the determinant vanishes — for a
specific k labelling the mode in (3-11) — is the lowest bifurcation load (eigenvalue) of a
mode of that order. The range of k treated was from 1 to 1000. At each k the procedure
was repeated with a higher number of elements until convergence with sufficient
accuracy was reached. The highest number of elements used during the calculations
was 240 but in general no more than 120 elements were needed. The behaviour of
the eigenmodes on the boundaries — zero velocity at infinity and zero traction rate at
the cavity ~ was checked and verified a posteriori.

The main findings, which are elaborated on below, are the following. No bifurcation
occurs when the material is characterized by the flow theory (2-3), except possibly
after exceedingly large expansions or contractions of the cavity. Bifurcations oceur
in tension and compression when the material is characterized by the deformation
theory (2-16)—(2-18). Many surface-like modes are clustered just above the lowest
bifurcation load which is attained in the limit k& + co. We will discuss the deformation
theory solutions first and defer further discussion of the flow theory until the next
section.

A typical dependence of the lowest eigenvalue at each % is plotted against & in Fig.
2. It is most convenient for our discussion to represent the eigenvalues by the asso-
ciated critical values of the effective strain at the cavity surface ¢,. The resuits shown
are for the uniaxial relation (2-6) with « = £ and ¢, = 0-003 and with n = 3 and 10
corresponding to the same choices as in Fig. 1. The results in Fig. 2 are for the tensile
case (m = 1}, Of course, the curves in Fig. 2 have a meaning only for integral values
of k. No bifurcation was found for k = 1 as already noted. The lowest point of bifur-
cation corresponding to the limit k — oo (see the discussion below) is indicated on each
curve in Fig. 1. The value of P/F, at the lowest point of bifurcation is 0-86 for n = 3
and 0-90 for n = 10, while the expansion of the hole can be computed from

Ra/a’ = exp (%'m’ea)' (4-1)

The variation of ®(R) in the vicinity of the cavity is shown in Fig. 3 for the case
7 = 3 for k = 10 and k£ = 100. From (3-1) it is seen that vy is proportional to ®. For
k =100, ® has decayed to nearly zero at distances from the cavity which are only 5
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percent of its current radius; the decay length decreases with increasing k. For large
k the bifurcation mode is confined to a layer in the vicinity of the surface of the cavity
with k nodal lines associated with the & variation.

In the examples studied the lowest eigenvalue for a given k decreases monotonically
with increasing k. At k = 1000 the strain at the cavity at bifurcation for the examples
in Fig. 2 is less than 0-008 above the corresponding strain for surface bifureation of a
half-space of identical material subject to uniform equal biaxial stressing. Locally at
the surface of the cavity the stress state is one of equal hiaxial stressing. In addition,
when the wave length and radial decay length of the mode are exceedingly short, the
surface mode is not (locally) affected by either the curvature of the cavity or the
radial gradient of the primary solution. The result for the half-space is derived in the
next section. For the hyperelastic material (2-16)-(2-18) the effective strain at which
the half-space first admits surface bifurcations was found to satisfy (see Section 5)

1 B,
me[ 1 — exp { — $me)] =3*g, (42}
where, again, m = 1 for biaxial tension and m = —1 for biaxial compression. The

effective strain at bifurcation from (4-2) is plotted against 1 /% in Fig. 4 for the uniaxial
curve (2:6) with & = 2 and ¢, = 0-003. For small g, the bifurcation strain from (4-2)
is essentially independent of ¢, and «. Negleeting the linear elastic contribution to the
uniaxial curve, that is taking ¢ = Ko7, we replace (4:2) by
me[1 — exp (— me)] = 5+~ (4-3)
3

and the prediction from (4-3) is indistinguishable from {4-2) in the plots of Fig. 4.

Numerical results for the compressive case (m = — 1) also display the asymptotic
approach to the half-space result (4-2) as k£ — o0 and this limit is shown in Fig. 4.
(Here again, for small ¢, {43} with m = — 1 gives results which are virtually identical
to (4-2).) The separation between the critical value of ¢, at low values of k and the
limit for large k from (4-2) is similar to that shown for the tensile case in ¥ig. 2. For the
example of Fig. 2 with k = 2, ¢, = 192 for n = 3 and ¢, = 2:03 for = = 10 in com-
pression.

From our study of the deformation theory (hyperelastic) material characterized by
a monotonically increasing true stress—strain curve typical of common polycerystalline
metals (2-6), we conclude that bifurcation first oceurs when the strain at the surface
of the cavity reaches the level needed to give rise to surface bifurcation in the analo-
gous half-space problem. That conclusion can be supported by a simple asymptotic
surface expansion for large k. Essentially infinitely many short-wavelength modes
are available just above this lowest bifurcation point. We expect that such bifurcations
occur for a more general class of materials than we have studied in this paper, but we
have not obtained general conditions governing such occurrences.

We conclude the discussion of the deformation theory cavity problem by empha-
sizing that the surface-like bifurcations discussed above take place within the elliptic
regime of the governing partial differential equations. Since hydrostatic pressure or

1z
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tension does not affect the transition from ellipticity to hyperbolicity in the present
incompressible material, the state of stress in the primary solution is everywhere
equivalent to a uniaxial state of stress o, where & is negative for the tensile case (m = 1)
and positive for the compression case (m = - 1). Let the uniaxial axis coincide with
the 1-axis in a Cartesian system. It can be shown (details will be given elsewhere})
that an incompressible isotropic, hyperelastic solid subject to a uniaxial stress o lies
within the elliptic range if

0% < (Logpst+ By) (4L 1910 — Lases — B (4-4)

Here, the instantaneous moduli are those in the relation g =%:.D and E, is the
instantaneous tangent modulus governing a uniaxial increment in the 1-direction.
Shear bands first become possible and hyperbolicity sets in when the inequality
reverses in (4-4),
For the deformation theory material (2-16)—(2-18), the ellipticity condition (4-4)
specializes to
o < 3[E,+3E,] (49— 1) E, - 3E,), (4-5)
where
g = (3¢/2) coth (3¢/2). (4-6)
For a pure power relation € = Ko?, i.e. with the linear term in (2-6) neglected, the
effective strain at the transition from ellipticity is obtained from (4-5) as
1 3 3
The strain from (4:7) is shown in Fig. 4 as a function of 1/%. It is essentially identical
to the result from (4-5) for the full Ramberg—Osgood curve. Since the largest value of
¢ is attained at the surface of the cavity, both the lowest tensile and compressive
bifurcations occur within the elliptic range, although the strain at the cavity in the
tensile case is not far from transition.

5. Surface bifurcations on a half-space subject to equal biaxial siressing. In the
current primary state let «; (¢ = 1, 3) be a Cartesian set of axes with the half-space
occupying #,; € 0. These axes will be used in the subsequent analysis. The primary
state whose uniqueness is in question is a homogeneous state of equal biaxial stressing
parallel to the traction-free surface, z; = 0, so that ¢y, = 04, = o are the non-zero
stress components, The material is taken to be incompressible and its incremental
moduli at the current state are uniform and transversely isotropic with respect to the

z,-axis. The Jaumann rate of the Cauchy stress isrelated to the Eulerian strain-rate by.
v

0y = LyuDu+gdy; (Dy=0). (5-1)
In addition to the indicial symmetries &, = £ = Loy, it is assumed that
P i = £ ;- Transverse isotropy requires

32222 e 33333: (5:2)
L1101 = L1133, (5-3)
°g1212 = “?1313 (5-4)
and :
2% 5500 = Losee — Loama {5:5)
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Components such as #1,,; and £ ,,5 vanish. The above incremental relation describes
the hyperelastic material (2-16)—(2-18) in the state of equal biaxial stressing. It also
characterizes the plastic loading branch of the flow theory {2-1)-(2-3) and the hypo-
elastic material (2-19) in this state of stress.

The components of the Eulerian strain-rate are related to the velocity components
by

Dy = $ogy+v;. (5-6)

Incremental equilibrium iz most easily stated in terms of the nominal stress-rate %,
as

Ay = 0. {5-7)

Using the connection hetween the nominal stress-rate and the Jaumann rate of the

Cauchy stress together with (6:1) and (5-6), one can show that

Rg; = Cizua¥ip+ 905 (6-8)
where
Cigig = Liga+ 50101 — $0udy; — 39 3.0 — 3T 361 (5-9)

The incremental equations for the half-space admit bifurcation modes of the form

v, = A4 /%1008 Py I, CO8 Py,
v, = Ay ePT18in py T, COS 052y,

. (5°10)
vy = A3 eFF1008 0,2, SiN Py g,

g = G eF%1 008 P, T, COS Py X,
where g, and p, are real and p is complex with positive real part such that the mode
decays exponentially into the half-space (z; < 0). The amplitude factors, the 4; and
&, may also be complex. It is to be understood here and below that physical quantities
are given by the real part of a complex value. On the surface z; = 0 the normal velocity
component varies in a checkerboard pattern according to cos p,a; cos pas; the other
components are phased in a manner consistent with the normal component. The
incompressibility condition v, ; = 0 requires

pAy+py Ayt pgdy = 0. (6-11)
Using (5-8)—(5-11) together with (5:2)-(5-4), one can reduce the three equations of
incremental equilibrium (5-7) to the algebraic equations
PAIL 11— Lrope = L1912+ 0/2) PP~ (Lrarp + 0/ 2) (0§ + p5)] = — Gp?, {6:12)
P2 As[( L1010~ 0/2) P2+ (L1g1p— Lnga + L1120+ 0/ 2) ph~ L35 05)]
+P3Aal L 1ps — Losgs + L raoe — Loans +0/2108 = Gpf,  (5:13)
P3As[(L1012— 0/2) P2+ (L yp12~ Lgpa+ L1100+ 0/2) P — L a23 03]

+ 0o A o[ Lioye— Laosg + Lr1ea~ Logea+ /2] p5 = Gp§  (5-14)
supplemented by (5-11).

12-2
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To reduce these equations further, add (5-13) and (5-14), noting (5-5) and (5:11)
with the result

PAN(F 1012 —0/2) PP+ (Lraro+ Lrise— FLogan+ 0/2) (p+p3)] = — G} +p3). (5:15)

Next, let
z=pf/p where p = .(p}+p}) (5-16)

and then rewrite the two equations (5:12) and (5-15) involving the two unknown
amplitude factors 4, and & as

PAL(ZL 11— L g — Lraa+ 0/2) 22— (£ 115+ 0/2)] + G2% = 0, (5:17)
PA(Fra1a—0/2) 22+ (FLras + L1195 — Lopon + 0/2)]+ G = 0. {5-18)

Existence of a solution to (5-17) and (5-18) requires
(FLro10—0/2) 2 — (L + FLogoo— 2L 1100 — 2L 1910) 2° + (Lo +0/2) = 0 (5:19)

Since there is no characteristic length in the half-space problem, only the ratio of the
wave numbers, in the form {5:16), can be determined. Arbitrary real values may be
assigned to p, and p,; p is then obtained from z using (5-16), as will be made clearer in
the sequel. By considering the difference between equations (5-13} and (5-14) one can
show that 4, and 4, are given in terms of 4, by

Ay = —d,pp,/p* and Ay = —4,pp,/p" {620

Thus 4, may be regarded as the amplitude of the eigenmode with 4,, 4; and & tied
to it by (5-20) and (5-17) or (5-18).

In what follows, it will be useful and illuminating to introduce two instantaneous
shearing moduli g and g* which will now be defined. In the current state of equal
biaxial stressing, consider a ‘plane strain’ increment with Dgy = 0 (or equivalently

i-3]

with Dy, = 0) and note that (5-1) gives

v v v

oy = 2uD, and oy — 0y = 20Dy, — Dyy), (6-21)
where

=Ly and du* = L+ Logpy — 28150 (5-22)

Thus 4 governs an increment of shear parallel to the z; axis and any axis perpendicular
to it, while #* is the instantaneous shear modulus for shearing at 45° to those axes.
It is also seen that 4u* is the instantaneous plane strain tangent modulus such that

;11 = 4u*D,, with Dy, = 0 and 0?22 = 0. These moduli are featured in the plane strain
incremental analysis of Hill and Hutchinson (3) and of Young(4).

The coefficients of the quadratic in 22 in (5:19) can be expressed in terms of g and p*.
The lowest bifurcation occurs at a stress satisfying o? < 16g*(x—u*), as can be
verified a posteriori, such that there are two roots of (5-19) with positive real parts
which are complex conjugates of one another. Denote the square root with positive
real part of
- 2p* — p+ iJ{4p*(p — p*) — o?/4} (5-23)
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by z and its conjugate by z where 7 = |/ — 1. The general solution of the form (5-10)
to the incrementatl equilibrium equation satisfying exponential decay as 2, - — o is

vy = (A eF1 4 4 eP?1) co8 Py, COS Py Ty,
vy = —ppAperti+ %ﬁef’zl) 8in pyx, €08 Py x4, (5:24)
vy = — pgp U Apert + AP efrL) cos py x, SiN g Ty,

g = (Gert + G ef™) cos pyy COB Py T,

where 4 (= 4,)is complex, p = zp and G is given in terms of 4 by (5-17) or (5:18).
A zero traction-rate on the free surface z; = Orequires ny, = 0 (i = 1, 3); these three
equations are satisfied by the eigenmode (5-24) if

o

(Lrn— L) (Ap+4p)+ G+ G = 0, (5-25)
Al +20)+ A(147%) = 0. (5-286)

Use (5-18) to eliminate G + G in (5-25) in favour of 4 and 4; the resulting equation and
(5:26) have a solution if and only if

(4= $0) (2228 4 22+ 24 22) + (U — dpu* + 0/2) (1 — 22) = 0. (5:27)

This equation can be reduced further using (5-23) to the bifurcation condition

(o o 2u—o
Z;;;"-—’-l-{-;? (2#+0_) (5-28)
An equation equivalent to (5-28) was derived for the special case of ineremental
plane strain by Biot (10), (4-39). This equation, with precisely the same notation, was
also obtained for the plane problem by Hill and Hutchinson (3), {6-5), and by Young (4),
{5-28), who specifically considered the half-space problem. The family of modes {5-24)
includes plane strain modes (e.g. with p; = 0, v, = 0 and the velocity vector lies
within the @,—z, plane). But it also includes inherently three dimensional modes with
arbitrary values of p, and p,, all of which are associated with the same bifurcation
stress {5-28}. As already remarked, the lateral scale of the modes is undetermined since
there is no characteristic length in the problem; the exponential decay into the interior
is related to the lateral scales through (5:186). It is also noted that p, and p, affect the
exponential decay only in combination pi+ pf, and thus all possible aspect ratios of
the lateral checkerboard variation are simultaneously available for each possible p.
This muitiplicity stems from the incremental transverse isotropy in the primary
state of equal biaxial stressing.
Axisymmetric surface modes alsc first become possible when (5-28) is attained.
With B = (22 + 22)t, the two non-zero velocity components in a cylindrical coordinate
system are related to a stream function y(z,, K} by

vp= —o8y/éz, v, = R13(Ry)/eR (5-29)

as a consequence of incompressibility. By carrying out an analysis along the lines of
the one just completed, it can be shown that (528) is the eigenvalue equation for
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modes of the form
¥ = (ce™1 +ge'n) J (AR), (5-30)

where ¢ is a complex amplitude factor, A is an arbitrary positive scale factor, z is
defined as before in (5:23), and J, is the Bessel function of the first order of the first kind.
For the deformation theory solid, (2-16)—(2-18),

g=1%E, and 4dp*=E.+E/3, (5-31)
where ¢ = (3¢/2)coth (3¢/2) and e is the effective strain defined in (2‘14).. V‘.flr.len
expressed in terms of ¢, the bifurcation condition (5-28) becomes (4'2.). Specx.a,hzl.ng
further to a pure power relation between effective stress and effective stL:a,m, i.e.
e = Koy, one finds E,/E, = n with (4-2) replaced by (4-3). For large n (4:3) gives

€= 0576+ 1-06/n+0(1/n?) (m = 1, biaxial tension),
€= 0402+ 0-518/n+ O(1 /n%} (m = — 1, biaxial compression),
with the complete results plotted in Fig. 4.
For the flow theory solid, {2-1)-(2-3),

p=E/3 and 4p*=E,+E/3. (5-32)
From (5-28) it is readily seen that bifurcation in a surface mode of the type \.:ons1dered
here requires o to be on the order of the Young’s modulus E (ro.ughly E/2if E p <€ IIVJ ).
A stress level of this magnitude is normally far beyond attainable levels in poly-
crystalline metals. o

The sensitivity of the onset of surface bifurcations to the tg‘rpe of elastoplas ic
constitutive relation used is further demonstrated by considering the hypoelastic
material (2-19) for which

#=3%E, and 4p*=E,+E,/3. (5-33)
Now the bifurcation condition (5-28) reduces to
1— 3me/2 1 K (5-34)
= — A | =—4—=
m[l Jl m 3m€/2] 373,

instead of (4-2). For the pure power law relation, E,/E, = » and for large n (5-34)
ields i .
d €= 05174+0748/n+ O(1/n?) (m = 1, biaxial tension),
€= 0375+0-409/n+0(1/n?) (m = —1, biaxial compression).

These eigenstrains are about 10 %, below the corresponding predictions for .the hyper;
elastic deformation theory. It was noted (cf. Fig. 4) that the lowest surface hlfurcatlol?s
occur within the elliptic range for 1 € n < co0. This is not the case for th_e hypoelal:“:tlc
material. In fact, for the tensile case (m = 1), for example, (5-?4.) admits a solu’mog
only forn > 3. At n = 3, ¢ = § which coincides with loss of ellipticity (Needleman an
Rice (11)).

6. Discussion. In an elastoplastic medium, bifurcation usually. takes place gn?;r
increasing overall straining, involving a combination of the eligenmode‘ aln h e
primary solution, such that the instantaneous moduli associated with plastic loading
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are everywhere in effect. The relevance of the deformation theory (or of the hypo-
elastic relation (2-19)) to elastoplastic solids is that it models the instantaneous moduli
associated with nearly proportional loading when a corner is assumed to develop on
the yield surface. The combination of primary solution increment and eigenmode
comprising the total bifurcation mode is constrained to ensure that nearly propor-
tional loading does occur everywhere at bifurcation (Hill (2)).

A yield surface corner as modelled by the deformation theory substantiaily reduces
certain of the incremental moduli as compared to the flow theory based on a smooth
yield surface (2-3). This accounts for the fact that bifurcation occurs for the defor-
mation theory solid and for the solid (2-19) but that it is effectively excluded as a
possibility for the flow theory solid (2-3). The issue of which class of theories best
models polycrystalline elastoplastic solids in bifurcation applications is a complicated
one which is not yet fully resolved. In applications involving plastic buckling of plates
and necking in thin sheets under biaxial tensile straining, bifurcation predictions
based on deformation theory do appear to be more relevant than corresponding pre-
dictions from classical flow theory. The bifurcations at a spherical hole found here
take place at much larger strains than is usual in plastic buckling and at somewhat
larger strains than in sheet necking problems. The physical significance of the bifur-
cations found bere remains to he seen.

Another unusual feature of the present problem is that the characteristic wave
length of the lowest hifurcation mode remains undetermined and must only be very
short compared to the radius of the hole. There is nothing in the structure of the
continuum elastoplastic theory used here which limits the spatial gradients of the
strain-rates. It is tacitly assumed that the scale of the deformation is long compared
to grain sizc, for example, but no grain size effect is incorporated in any of the present
constitutive laws. It is possible, under some circumstances, that the scale of the surface
bifurcations found here is determined by grain size considerations and that the bifur-
cations play a role in the development of roughness on the surfaces of highly strained
polycrystalline metals.

We are much indebted to Professor B. Budiansky of Harvard University for his
stimulating interest in this work. The work was supported in part by the National
Science Foundation under grant NSF-ENG78-10756, and by the Division of Applied
Sciences, Harvard University. One of us (D.D.} wishes to acknowledge the warm

hospitality of the Division of Applied Sciences, Harvard University, during the year
1978.
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