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Abstract—Inhomogeneous flow in metallic glasses is studied in this paper within the context of con-
tinuum mechanics. Motivaied by similar work for elastic-plastic solids, the possibility of strain localiz-
ation into a shear band is investigated for a metallic glass which is modelled as a nonlinear viscoelastic
solid. The essential features of the localization problem aré brought out through an analysis of the
constitutive law which reveals a catastrophic softening via free volume creation. Analytic expressions for
the siress at catastrophic softening agree very closely with the stress at strain localization calculated
from the numerical solution of the full set of shear band equations.

Résumé—Nous étudions dans cet article Fécoulement hétérogéne dans les verres métalliques, dans le
cadre de la mécanique des milieux continus. Poussés par des travaux analogues dans les solides élasti-
ques-plastiques. nous avons envisagé la possibilité d'une localisation de la déformation dans une bande
de cisaillement d’un verre métallique. représenté par un solide visco-élastique non linéaire. Les traits
essentiels du probléme de cette localisation sont pris en compte par une analyse de la loi de constitution
«qui révéle un adoucissement catastrophique par l'intermédiaire de la création d'un volume libre. Les
expressions analytiques de la contrainte pour ['adoucissement catastrophique sont trés proches de la
contrainte & la localisation de la déformation que I'on calcule en résolvant numériquement I'ensemble
complet des équations des bandes de cisaillement.

Zusammenfassung—In dieser Arbeit wird das inhomogene FlieBen metallischer Gliiser im Rahmen der
Kontinuumsmechanik behandelt, Angeregt von dhnlichen Arbeiten an elastisch-plastischen Festkérpern
wird in der Niherung eines nichtlinearen viskoelastischen Festkérpers untersucht, ob die Verformung
sich in metallischen Glisern in einem Scherband lokalisieren kann. Die wesentlichen Eigenschaften
dieses Lokalisierungsproblems werden mit einer Analyse der Grundgleichungen ermittelt; es ergibt sich
eine katastrophale Entfestigung durch die Erzeugung freien Volumens. Die analytischen Ausdriicke fir
die Spannung bei dieser katastrophalen Entfestigung stimmen sehr gut mit der Spannung bei der
Lokalisierung der Dehnung iiberein, welche mit dem vollstdndigen Satz der Scherbandgleichungen
numerisch berechnet wirde. ‘

1. INTRODUCTION steady-state flow governed by a microscopic shear
transformation analogous to the formation of a dislo-
cation loop. The free volume creation parameter was
chosen independently of this transformation,

The present work is a more extensive treatment of
strain localization using a simpler and more self-con-
tained constitutive model proposed by Spaepen [1].
The shear band analysis takes full account of the tran-
sient nature of free volume creation and no assump-
tions are made as to the existence of a steady-state.
Analytic formulae are derived for the stress at localiz-
ation in terms of physical parameters such as the elas-
tic shear modulus, initial free volume, and applied
strain-rate.

In recent years, the need for a more fundamental
understanding of flow in metallic glasses has moti-
vated a variety of experimental investigations: map-
ping out flow regimes['1, 2], evaluating temperature
and strain-rate sensitivities [2-4], and assessing the
dependence of flow on microstructure and heat treat-
tent [5-7]. Theoretical models have been put forth
concurrently and have helped to explain various
features of flow, particularly in the hemogeneous
regime [1, 4, 8-11].

Relatively less has been established concerning in-
homogeneous flow. I particular, little is understood
about the embrittlement with annealing of metallic
glasses that are otherwise ductile and flow at higher
stresses by the formation of a shear band [10,12].
Investigating strain localization alone seems to be a
first step in approaching the problem of inhomo-
geneous flow. Argon[11] has shown that flow can
localize in a band in which the strain rate has been

2. PHENOMENOLOGY
OF FLOW REGIMES IN
METALLIC GLASSES

The phenomenology of the various flow regimes in

perturbed, when the threshold stress for driving the
local shear transformations is altered through the cre-
ation of free volume. He used the stress exponent for

-extensive

amorphous metals has been the subject of several
reviews [1,8,10,13,14), The standard
mechanical test involves pulling a narrow rectangular
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strip in tensien. In the range in which the material
can be considered a solid, essentially two deformation
modes can be distinguished: homogeneous flow and
inhomogeneous flow.

Homogeneous flow occurs at low stresses and high
temperatures. Flow takes place uniformly with each
volume clement contributing an equal amount of
strain. At lower stresses, the strain-rate increases
linearly with stress; at slightly higher stresses the
strain-rate follows the sinh (stress) law [4]. Fracture
occurs when some section has necked down to a nar-
row thickness.

Inhomogeneous flow is observed at high stresses
and low temperatures. The flow is localized in a thin
band oriented at a 45° angle with tensile axis. The
stress is very insensitive to strain-rate and tempera-
ture. Intense shear strains in the band decrease the
load bearing cross-section, and fracture occurs along
the plane of the shear band. The mechanism of frac-
ture is a Taylor instability as evidenced by the typical
vein-like pattern on the fracture surface [15, 16]. The
localization of deformation into a shear band, as well
as the occurrence of fracture by the Taylor instability
along the planc centaining the shear band and not
along the plane of maximum normal stress, suggests
that a softening of the material has taken place. Dif-
ferential etching of the shear band indicates chemical
changes, which supports the conjecture of a local
softening {17]. Spacpen and Turnbull [18] have sug-
gested that a local stress concentrator such as an edge
crack may provide the softening needed to initiate the
shear band. They calculate the effect of the dilatation
on the viscosity at the point of the near-crack stress
field where the theoretical strength is reached and con-
clude that the softening is substantial at least locally.

3. CONSTITUTIVE LAWS

Constitutive equations proposed by Spaepen[1],
valid for homogeneous and inhomogeneous deforma-
tion, are employed. The equations model flow as
occurring as a result of many microscopic rearrange-
ments each contributing a small local shearing defor-
mation. In general, the macroscopic shear strain-rate,
7, is given by the following product

# = (strain produced at each jump site) x (fraction
of potential jump sites) x (net number of for-
ward jumps at each site per second)

8y

In [17 the shear strain at each potential jump site is
assumed 10 be 1. A potential site is a region in which
the free volume {(a measure of the departure from the
ideally ordered structure) is greater than some critical
volume (the effective hard-sphere volume of an atom,
for example). Such an amount of free volume would
allow the atoms participating in the rearrangement
leading to the loca! shear strain to ‘get by’ one
another. The atom fraction of potential sites can be
calculated from the free volume theory of Turnbutl
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and Cohen [19-21] as follows. Since in an amorphous
metal the free volume is distributed statistically
among all atoms, one can use fluctuation theory to
calculate the probability that any one atom has about
it a free volume greater than the critical volume. The
fraction of potential jump sites is equal to that prob-
ability, therefore

the fraction of potential jump sites

o -]
=eXp| — —
Vs

where « is a geometrical factor of order 1, v* is the
critical (hard-sphere) volume, and 5, is the average
free volume per atom. Throughout this paper, when
dimensional and nondimensional quantities are to be
distinguished, barred quantities will be dimensional.
Also, the notation follows that of Spacpen [17 as closely
as possible. _

The net forward jump rate may be calculated
from simple rate theory. In the absence of an
applied shear stress, the numbers of forward and
backward jumps coincide (no net shear accumulates),
and the number of successful jumps in an unbiased
system per second

AG"']
kT

= vexp[—

where v is the frequency of atomic vibration and
AG™ is the activation energy. In the presence of an
applied shear stress the system is biased. The stress
working through the local shear strain allows the
system to lower its potential energy, whereas accom-
plishing a shear strain against an opposing shear stress
requires an increase in potential energy. This biasing
results in an extra factor in cquation (3), hence
the net rate of forward jumps in a biased system

=2y exp[— ii,r:'sinh(%)

where € is the atomic volume and ¢
stress.-

Therefore, the irreversible (viscous) part of the
strain-rate can be represented by the following
general flow equation '

i = awexp] - Jexo] - A ion{ 22
b 2vexp[ l_?I]cxpl: T sinh T 1]

A stress dependent viscosity # may be defined as
follows:

@

3

@

is the shear

T ov* AG™
= _T exp = exp —ic—.IT (6)
2 sinh(t ) v

n=

.'iﬂ-n

2kT

Varying the free volume 7, can radically change the
viscosity. As will become evident, the softening
induced by increasing the free volume permits the
Iocalized deformation pattern which distinguishes in-
homogeneous from homogeneouns flow.
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At low stresses, typical of homogeneous flow, the
free volume is fixed and is representative of that in the
liquid at the glass transition temperature. As men-
tioned above, inhomogeneous flow differs from homo-
geneous flow by the presence of severe strains concen-
trated in a few narrow bands of material which has
undergone a structural change. Polk and Turn-
bull [22] suggested that the structural change is a
process of strain-disordering. This concept has been
extended and quantified by Spaepen [1] who also in-
cluded a reordering process. In Spaepen’s model, the
free volume is the measure of disorder in the system.
Free volume can be created (disordering) by the shear
stress squeezing an atom into a hole smaller than
itself’, free volume can be annihilated (reordering) by a
series of atomic jumps similar to those that aliow a
sample to relax towards metastable equilibrium dur-
ing annealing. The net rate of increase of free volume,
i.e. the difference between the amount created and the
amount annihilated per unit time, is

. " or* AG™
Up = vTVEXpP| -!_,— exp| — T(F
Fi

20kT 0 1
— ——1]-— T
* { BeS (COSh 2kT 1) "n} g

where np is the number of atomic jumps needed
to annihilate a free volume equal to v*, and

(1-o)
where G is the shear modulus, and ¢ is Poisson’s
ratio.

In Section 5, results will be presented of an examin-
ation of strain localization in a viscous material
modelled by the constitutive equations discussed
above. As mentioned in the Introduction, it has been
suggested that the shear band is initiated by micro-
cracks {or other suitable stress raisers) which cause a
local softening which propagates rapidly as deforma-
tion proceeds. But for time-independent plastic solids,
much insight into localization phenomena has been
gained by analyzing the mechanics of a body contain-
ing a material imperfection in the form of a band of
slightly weaker material. In the same spirit, a shear
band analysis of the present nonlinear visco-elastic
solid will be carried out.

Prior to the shear band analysis, however, the uni-
form shearing of a homogeneous body modelled by
the constitutive equations (5) and (7) is considered.
The uniform shearing isolates the constitutive behav-
ior from the kinematic effects of non-uniform defor-
mation associated with a shear band. The strongly
nonlinear character of the constitutive law, in particu-
lar the differential equation governing free volume
creation, equation (7), permits a catastrophic soften-
ing to occur in the uniformly shearing body. The sim-
plicity of the uniform deformation allows explicit ex-
pressions 10 be derived for the stress at which catas-

§o350t9

trophic softening oceurs. Upon comparison with the
shear band analysis, the stress at catastrophic soften-
ing will be seen to coincide with the stress at the onset
of strain localization in an identical sample with a
thin band of slightly weaker material. Therefore, the
creation of free volume, with the attendant catastro-
phic softening, plays the central role in strain localiz-
ation.

4. ONSET OF CATASTROPHIC SOFTENING
IN UNIFORMLY SHEARING BODY

In addition to equation (7), the equation modelling
a solid undergoing homogeneous shearing is

+ 2vex _au“‘ ex -—é—g-m— inh ;r!l = ¥
PL7 5 %P % ™\ &) T

®)

Equation (8) states that the total strain-rate, ¥, is
the sum of the elastic strain-rate and the viscous
strain-rate. In what follows, the total strain-rate is
regarded as a prescribed constant over the
deformation history.

It is convenient to introduce the following
dimensionless variables

&3 =

vy = bfuv¥, T = Q2T

t=Ri, G = GQ/2T

R = VCKP[— ARGTT:I‘

Then equations (7) and (8) become

where

= e i C_QEP_TH:‘_}— _— i
av; = e f[ G, - )]
& + 2 Wisinh =y (10)
where
g = 2{1 + o) v*
T31-0 @

and () denotes differentiation with respect to t.
At t =0, 7 and v, are taken to have their initial
values t = 0, and v; = ;. As mentioned, ¥’ is taken
to be constant.

In order to follow the variation of stress and free
volume with time in a sample subjected to a given
applied strain-rate, equations (9) and (10) were inte-
grated numerically for various values of ¥, G, and v;.
For all values of the parameters, the curve of stress as
a function of total strain is qualitatively similar to
Fig. 1. An initial elastic response is followed by a
precipitous drop in stress during which the creep
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Fig. 1. Example of a stress-strain curve for a uniformly
shearing body under constant strain-rate.

strain-rate increases by many orders of magnitude.
(For strains larger than 0.15, the curve in Fig. | indi-
cates that a steady state stress has been achieved at
which the free volume and viscosity stay constant.
That the maximum stress is 5 or 6 times the steady
state stress will be of interest later.) It is noted that the
maximum stress immediately precedes the precipitous
drop in stress. The points in Figs 2-4 show the depen-
dence of the maximum stress 7,,,, on various essential
parameters.

An approximate, but accurate, formula for 1, is
now obtained by integrating an appropriately modi-
fied version of equation (9). Since 1 = 1, at v’ = 0,
equation (10) implies that 1, satisfies

2¢e”rsinht,, =17 (11)
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Fig. 2. Comparison of the nondimensional maximum

stress as given by the numerical solution of equations (9)

and (10) with their approximate solution equation (21) for
various values of the nondimensional strain rate '
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Fig. 3. Comparison of the nondimensional maximum
stress as given by the numerical solution of equations (9}
and {(10) with their approximate solution equation (21} for
various values of the nondimensional initial free volume r;.

One can rewrite equation (9) in the form

dv, , “ipe, | COshT =1 1
aqir = T - )

It is evident from Fig. | that before the first peak
the stress is linear with strain except in the immediate
vicinity of the maximum. That is, nonlinearities in the
constitutive law are so strong that an essentially
linear elastic response is followed immediately by
such a drastic decrease in viscosity that the stress falls
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Fig. 4. Comparison of the nondimensional maximum
stress as given by the numerical solution of equations (9)
and (10) with their approximate solution equation (21} for
various values of the nondimensional shear modulus G.
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off precipitously. Therefore, to allow equation (12) to
be integrated in closed form, an acceptable approxi-
mation js to let 7" = Gy’ in equation (12) prior to
attaining the maximum stress, even though the con-
dition for the maximum is ¢’ = 0.

Finally, annihilation is taken into account approxi-
mately. Completely neglecting

I, . ., cosht —1
—— in comparison with ———
Hp G,B!J_f

would rule out annihilation altogether and permit the
system to create free volume at even the lowest
stresses. {(Furthermore, the annihilation of free volume
must play a key role in determining the steady state,
Results to be presented later on the localization
problem indicate, however, that the steady state
may never be attained.) The approximation is to
neglect the term 1/np in equation (12) but to integrate
the right hand side from t = 7, (instead of 7 = Q)
where 7, is the stress at which creation would first
exceed annihilation. While the assumption of

cosht — 1 . i
Gﬁt)f np

is poor for t less than !, little damage is done to
the calculation of free volume. This is true primarily
because the exponential term in equation (12) is much
smaller initially at lower free volumes than later at
higher free volumes. 1, satisfies
coshty =1+ %

(13)
Hp

With'the above assumptions, equation (12) can be
approximated by

G?,ugv_f — ot} SOSHT — 1
dr Gpu,

Applying the limits of integration as specified above,
one can arrange equation (14) in the form

(14)

vy T
J. G Bay'vetl dv=f {coshx — I}dx  (15)

4]

where vy is the current value of the free volume.
This can be integrated exactly [23], to give

%Gzﬁczy’{u,'e””f(v, + 1) —'pet®iy; + 1)

— [Ei(1/v;) — Ei(1/0)]}

=sinht — t — {(sinhtg — 1) (16)
where Ei(z) is the exponential integral function
defined as [24]

[ -

& (an
i

— Ei(—2) =£

AM 3021

Since the arguments of Ei(z) in equation (16) are large
(004 < v < 007), Ei(z) may be replaced by its
asymptotic expansion for large z [25], allowing
equation (16) to be rewritten as

Gzﬁrx'}"{l)f,'f.’”"‘ — u}e”"l]

=sinht — 7 — (sinh1g = 14) (I8)
Equation (11), rearranged in the form

2 i h max
ollor sm?,t (19)

is now imposed on equation (18).
The maximum stress satisfies

G?Bay'vie!™ = sinh 1pp 1 4+ A = e = By (20)
where

2G%Ba .
A=z—=———" and B, =sinht, — 1,
[ln 2sinh -rm,:I

4

Generally, A turns out to be very small compared
to 1; within the acceptable approximation A < 1, the
maximum stress depends on only two parameters I
and B, '

Sinh Ty ~ Tax = I + Bp 21

where
I = G*Bay'pPetiv (22)

Aside from By, which is found to be generally much
less than I, all the parametric dependence is contained
in the single nondimensional quantity I.

To compare the approximate solution, equation
(21}, with the results of the full numerical solutjons of
equations (9) and (10), equation (21) is also plotted on
Figs 2-4 as a function of several individual par-
ameters. In addition, the nondimensional mazimum
stress is plotted against the dimensionless parameter 1
in Fig. 5. )

Using the results of the approximation A < 1, one
can calculate 4. At very low dimensionless strain-
rates (¥ ~ 1078), A <1 is an excellent approxi-
mation. For very large dimensionless strain-rates
(' = 1072), A can be 0.27 or larger, but because of
the logarithmic dependence at high stresses, its rela-
tive effect is small. B, is generally less than 1, and
therefore only contributes at very low dimensionless
strain-rates.

Limiting cases of equation (21) provide additional
insight into the dependence of the maximum stress on
physical parameters. For 1z, large, equation (21)
becomes

Tmax = IN[2(I + By)] (23)
while for ., small
Tmax = [6(I + -B())}”3 (24)




452 P. 8. STEIF et al.;

18 T T T

af- go2 4

Bo+1
Bys0

1 1 1
% O 6 5
In T

Fig. 5. Dependence of the nondimensional maximum

stress on the nondimensional parameter I for several values

of By, from equation (21) indicating an insensitivity to the
free volume annihilation process.

5. SHEAR BAND ANALYSIS

A shear band analysis is now carried out with a
geometry chosen to simplify the mathematics. Later,
mention will be made of an analysis of a shear band
inclined with respect to the tensile axis. As depicted in
Fig. 6, a sample is subjected to shearing boundary
conditions. The sample is homogeneous except for a
thin band of volume fraction p (a typical value of
107° will be used) of weaker (less viscous) material
lying parallel to the direction of shearing. This geo-
metric configuration was also considered by
Argon [11] in his study of localization,

Equilibrium requires that the only non-zero com-
ponent of stress, denoted by 1, be uniform throughout
the sample. The constitutive l]aw must be satisfied
inside and outside the band. In the nondimensional
variables defined earlier, the constitutive equations
are written as

i

’(—; + 2e~Weginh 1 = 3 25)

% + 2~ "osinht = 7, (26)

where y;, and y, are the strain-rates inside and

veyr2

Ve /2

Fig. 6. Geometry for the shear band analysis.
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outside the band, respectively, and v, and v, are the
free volumes inside and outside the band, The
respective free volume equations are

, —im,} COsShT —1 1
Wy = € l:--——ﬁvb - H_p (27)7

. 1| COShT ~1 1
(o = e [——G T - ﬂ_n (28)

The total strain-rate, y,, is equal to the volume
weighted average of the strain-rates inside and outside
the band, according to

P+ (1 —p)vo = ¥, 29

The initial conditions are v, = v,,, vy = v, and
t=0 at t = 0. v, is the frec volume at the glass
transition temperature and v, is a small fraction
above v;,. The higher free volume in the band pro-
vides for a slight initial weakening (lower viscosity).
The free volumes should never achieve values lower
than their respective initial values (ie. the as-
quenched state is the most relaxed state the materjal
is capable of achieving). This is enforced by requiring
that when v, = v, OF vy = 1y, initially for example,
equations (27) and (28) only be valid when the term in
brackets is non-negative. A constant total strain-rate,
Ya» is imposed and the equations are simultaneously
integrated numerically to find the stress, free volumes,
and viscosities as a function of time (or macroscopic
strain).

A plot of the shear strain in the band as a function
of the applied strain is shown in Fig. 7 for a typical
set of physical parameters. The catastrophic character
of the strain localization is evident: the applied strain
and the stress remain essentially constant as the strain
and the free volume in the band rise rapidly. The

o
B % ezwg 4
vg;2.01
v, * 0102
% G 60
o "etd -
A .
2+ ~
o ) 1 I
0 ¥ 2 ERL )

Fig. 7. Shear strain in the band as a function of the total
shear strain,
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Fig. 8. Comparison of the localization stress with the stress
at catastrophic softening for various values of the applied
strain-rate.

points in Fig. 8 represent the stress at localization for
several values of applied sirain-rate.

To assess the accuracy of using the maximum stress
(catastrophic softening) of a uniformly shearing
sample. as an estimate of the stress at the onset of
Jocalization, plots of the maximum stress as a func-
tion of strain-rate as given by equation (23) are also
included in Fig. 8 (solid lines). The upper and lower
curves correspond respectively to equating v; with v,
and v, of the comparable inhomogeneous sample.
The near coincidence of the maximum stress with the
localization stress indicates that localization hinges
on the catastrophic softening due to free volume
creation.

An analysis of a shear band inclined with respect to
the tensile axis was carried out using the J, invariant
to generalize the constitutive Iaw to multiaxial stress
states. All results continue to hold qualitatively and
quantitatively regardless of the initial inclination of
the shear band.

6. DISCUSSION

As mentioned in Section 2, Spaepen and Turn-
bull [18] have suggested that when inhomogeneous
fiow occurs the weakening which initiates the shear
band is due to the stress concentration near micro-
cracks which are inevitably present. The more trac-
table problem of strain localization in an initially
weakened band in an infinite body has been con-
sidered here, however. The principal result is that
equation (23), to a high degree of approximation,

gives the stress at the onset of strain localization

under conditions of constant applied strain-rate.
In what follows, the variation of the localization
stress with temperature and strain-rate is investigated.
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When these variations are compared with results from
tests carried out in the inhomogeneous flow regime,
the simplified nature of the present model must be
borne in mind. Furthermore, comparisons with theor-
etical models of steady state inhomogeneous flow are
difficult because the stress at the onset of strain local-
ization is considerably above the steady state flow
stress (cf. Fig. 1) and has a very different dependence
On parameters,

The flow properties are most concisely displayed on
a deformation map [26-28], consisting of constant
strain-rate contours plotted on axes of normalized
stress and temperature. The deformation map in
Fig. 9 shows the dependence of the localization stress
on temperature for various values of strain-rate as
given by equation (23).

Also plotted on the deformation map is an estimate
of the curve below which ne localization can occur.
The following considerations allow an explicit ex-
pression for this curve to be derived. If the stress
remained below the value 7, at which creation first
exceeds annihilation no creation could occur, and
hence the catastrophic softening necessary for strain
localization would be precluded. The boundary curve
is therefore given implicitly by equation (13). In fact,
this is only a lower bound to the boundary curve,
Although free volume creation occurs for pairs of
stress and temperature above the curve shown, the
softening may be insufficient (the stress relaxes before
adequate rates of free volume creation are achieved)
to cause localization.

It is noted that the localization stress is rather in-
sensitive to temperature, consistent with experi-
ments [8, 13]. Generally, the flow stress is observed to
decrease slightly with temperature, whereas the
present model predicts both increases and decreases.
Furthermore, the localization stress is relatively
strain-rate insensitive, as judged by the spacing of the
strain-rate contours. The model does not predict,
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Fig. 9. Deformation map based on equation (23),
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however, an almost ideally-plastic solid as Spae-
‘pen [1] and Argon[11] do on the basis of equations
- modelling steady state flow.

"~ Formulae are now derived for the temperature
coefficient and the strain-rate sensitivity of the localiz-
~ ation stress. If the initial free volume, v;, is also a
function of temperature, the change with temperature
of the localization stress as given by equation (23) is

AG™ + (1-3w) 9)1

2+ kT o dT

é
—=log

oT i

i1
G T

Tmu

(30)

where Ty, is defined by equation (23). The localiz-
ation stress rises or falls with temperature depending
on whether the second term in the brackets in equa-
tion (30) is less than or greater than 1. The strain-rate,
shear modulus, and certain other parameters
influence the temperature coefficient through their
effect on 1,,,. Recent work by Taub and Spae-
pen [7, 10] on homogeneous flow suggests that even
though a specimen is configurationally frozen, small
reversible changes of free volume with temperature
are possible, The term

1- 3!)1 dU;

Tv,z daT

incorporates this effect, and it is always positive. Such a
contribution would decrease the temperature coeffi-
cient but is not included in the results of Fig, 9.

. ~The strain-rate sensitivity is equal to the inverse of
the stress exponent given by

_ Oy

- - - 2,003 L jug
i Teee Tmax = IM[2BaGy'pie'™]  (31)

Equation (31) is plotted in Figure 10 as a function of
strain-rate v’

As emphasized earlier, the present analysis is con-
cerned only with the stress at the onset of Iocalization.
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Fig. 10. Comparison of the steady state flow stress expo-
nent with the stress exponent of the localization stress,
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The localization stress deviates most widely from pre-
vious predictions of steady-state models in its strain-
rate sensitivity. With the steady-state flow stress taken
from Fig. 1, the steady-state strain-rate sensitivity
may be calculated numerically. This has been done
using the same parameters as above and is also plot-
ted in Fig. 10. It is clear that the strain-rate sensitivity
of the localization stress is very different from the
present prediction of steady-state flow strain-rate sen-
sitivity. '

The present work gives insight into the variation of
localization stress with physical parameters assuming
the shear band is allowed to propagate freely across
the specimen. An important qualitative result is evi-
dent from Fig. 3: a 50°% decrease in the initial free
volume of the sample teads to a twofold increase in
the localization stress. Annealing of metallic glasses
leads to decreases in free volume of this order [7]; the
resultant increase in localization stress makes clea-
vage at a stress concentrator more likely. We are pur-
suing the implications of this effect on the brittle frac-
ture mechanism. Furthermore, the lower bound to in-
homogeneous flow, equation (13), provides an indica-
tion as to whether the deformation will localize or
rather take place homogencously with the sample
slowly necking down.
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