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31 Introduction

Certain structures have the tendency to propagate a buckle once
one is initiated. Perhaps the most important example is buckle propaga-
tion along an undersea pipeline (Palmer & Martin, 1975). Buckle propa-
gation along a pipeline involves large deflections and plastic deformation.
A detailed theoretical analysis of the propagation process in the pipeline
problem has not yet been performed, although important related
theoretical and experimental studies have been carried out (e.g.
Kyriakides & Babcock, 1980; 1981). In this paper we study buckle
propagation in a simple model system with the aim of elucidating some
of the general features of buckle propagation in elastic structures. A
feature common to both the pipeline and our model problem is that
once initiated the buckle can spread at a load substantially below the
initial buckling load of the perfect structure. It is this aspect of the
phenomenon which renders it of some practical significance.

The model is a linear elastic beam resting on a nonlinear elastic
foundation with a stiffness per unit length of k(w) where w is the lateral
deflection. The beam is subject to a uniform lateral load P as depicted
in Fig. 3.1. The restoring force per unit length of the foundation,
F = k(w)w, is assumed to have the general form shown in Fig. 3.1 with
F rising to a peak, F,.,, falling to a local minimum, Fi,, and then
increasing steadily with further compression.

At any load per unit length P which falls between Fii, and Fiay, a
straight beam has three possible static equilibrium displacements, w4,
wy and wg, with the intermediate deflection wy being unstable. We
will suppose Fin <P < F.x and we will begin by looking for buckling
modes such as that shown in Fig. 3.1 where the beam has a straight
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collapsed section behind the transition region with deflection wp as
x - —00 and an uncollapsed straight section with w = w, ahead of the
transition as x » +00. We will show that there exists only one load P*
corresponding to a mode of this type, and that load falls roughly halfway
between Fy,, and F,,.«. Furthermore, quasi-static, steady-state propaga-
tion of the mode along the beam is possible at the load P*. That is, if
inertia is neglected, continuing buckling can take place with the mode
assuming a fixed profile which simply translates down the beam.

We will then consider the initiation process by analyzing the spread
of the zone of collapse from an initially weak region of the foundation.
As the buckle spreads and begins to propagate, it approaches the
steady-state mode shape as the load approaches P*. Finally, we end the
paper with a brief study of the effect of inertia on dynamic steady-state
propagation.

3.2 Quasi-static, steady-state propagation

The equation governing the deflection of the infinite beam is

d*w

dx*

where EI is the uniform bending stifiness. We look for solutions to (1)
for P = P* between Fmin and Foay such that

EI

+k(w)w =P, 9]

w—o>w, as Xx—> +00
2)
w-o>wg as x-> —00,
where
k(WA)WAZk(WB)WB=P*‘ 3)

Fig. 3.1. Beam on nonlinear elastic foundation.
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To obtain a third equation relating P*, wa and wg, multiply (1) by
dw/dx and integrate with respect to x from —o0 to + 00 with the result

J‘ Elﬂﬂdx+J‘ k(w)w—dx J‘ P* Y dx. 4)

Assuming that (2) pertains and that the derivatives of w vanish as
x - +00, one finds, using integration by parts, that the first term in (4)
is zero. The remaining condition can be rewritten as

J‘ ; kiw)w dw = P¥(wg—w ). (5)

The term on the left in (5) is just the work per unit length needed to
deform the foundation from wa to wg. Equation (5) with (3) has the
graphical solution shown in Fig. 3.2, i.e. the area under the force-
deflection curve between wa and wp must be equal to the area of the
rectangle with height P* and width wg —wa. Or, equivalently, the areas
of &, and &, must be equal. In the context of phase transformations,
James (1979) refers to the horizontal line in Fig. 3.2 as the ‘Maxwell
line’ after Maxwell (1875) who noted the relevance of this graphical
solution to certain coexisting phases.

For a force—deflection curve such as that shown in Fig. 3.2 there is
only one load P* at which this type of collapse mode can exist. Further-
more, the mode can undergo quasi-static propagation along the beam
at load P*. This will be made clearer in the next section when we take

Fig. 3.2. Graphica! solution for load P* for quasi-static, steady-state
buckle propagation (%, = R,).
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the quasi-static limit of a steady-state propagating solution which
includes inertia. Here we note that if w(x) is a solution to (1) then so
is w(x —a), corresponding to a shift of the buckle to the right (or left)
by any amount a. For steady propagation of the buckle in the positive
x-direction at constant P*, (5) is simply the statement that the increase
in strain energy stored in the system must equal the work done by the
lateral load for each unit length of propagation.

A numerical solution for the entire buckled shape of the beam is
shown in Fig. 3.3, for the example, where

k(w)=ko[1—4.5w/H)+5.25(w/H)*], (6)

where H can be thought of as the distance between the undeflected
beam and the foundation base. The force—deflection curve from (6) is
plotted in Fig. 3.1. The curve with pc>=0 in Fig. 3.3 applies to the
present quasi-static li}rlit, while the curves for pc®# 0 involve inertial
effects and will be discussed in a later section. The solution method for
obtaining w{x) is given in Section 3.6. In Fig. 3.3, w(x) has been shifted
so that w(0) = (wa +wg)/2.

33 Quasi-static spread of a buckle from a weak spot on the
foundation
To illustrate the development of a propagating buckle, we take
the unloaded beam to be straight but we assume the elastic foundation
has variable stiffness according to

k(w, x) =ko[1—4.5(w/H)+5.25(w/H)*|(1—n e, 7)
where £ = x (ko/EI'/*. With n >0, the foundation is weakest near the

Fig. 3.3. Buckling mode profiles for steady-state propagation.
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origin and it develops its full strength for A¢” > 1. As the uniform load
per unit length P is increased from zero, the beam undergoes its largest
deflection at the origin and this is the first section of the beam to
experience collapse. A plot of a sequence of deflections is shown in Fig.
3.4 along with associated values of P. The load is normalized by P*, the
steady-state propagation load of the unweakened foundation. The
deflections in Fig. 3.4 illustrate the case where 1 =.2 and A = 1/6, which
corresponds to a weakened region whose half-length is about the width
of the transition zone of the steady-state shape in Fig. 3.3. The least
deflected configuration in Fig. 3.4 corresponds to P/P*=1.46 which is
just below the maximum load the weakened beam can support. After
the peak load is achieved the buckle localizes under falling load until
complete collapse occurs in the vicinity of x = 0. This part of the process
has features in common with the localization of buckling modes as
discussed by Tvergaard & Needleman (1980). But with further deflection
the foundation stiffens up again in the vicinity of the origin and the stage
is set for the buckle to spread. It can be seen in Fig. 3.4 that the buckle
attains the steady-state profile as it spreads and it does so with P
approaching P*.

The spread and approach to steady-state is displayed in another way
in Fig. 3.5 where the load is plotted as a function of the point x =L,

Fig. 3.4. Quasi-static buckle growth and spread for a foundation
weakened near the origin (n =.2, A =1/6).
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where the deflection attains the value associated with the local peak
load of the foundation. For the foundation described by (7) the peak
occurs at w/H =.15 for all x. Curves are shown for three levels of 7
with A =1/6 in each case. The intercept with the ordinate in Fig. 3.5
corresponds to the load when the deflection at the origin first attains
w/H = .15. The curve for 7 =.2 can be compared with the deflec-
tion profiles in Fig. 3.4. The buckle starts to spread as the load rises
above the local minimum at P/P* = 87 when L(ko/EI)"*=5. As the
buckle propagates, the load level quickly approaches the steady-state
load P*.

If the foundation is sufficiently weakened near x =0, as it is in the
case 11 =.7, the load approaches P* from below. For smaller n a load
greater than P* is needed to initiate the spreading process. Of course,
if the loading P is prescribed as a dead load, the portion of the deflection
history in which the load is falling is unstable. At any local maximum
of the load history the buckle would start to run dynamically. For either
of the examples with n =.2 and .4 in Fig. 3.5, the buckle would not
arrest if the load was held at the maximum value. However, in the case
of the foundation which is weakened most at the origin (n =.7), the
buckle would arrest since the load needed to initiate spreading is below
P*.

Fig. 3.5. Quasi-static spread of buckle for three levels of local
foundation weakness (A =1/6).
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34 Dynamic steady-state propagation

We now reconsider steady-state propagation by including the
inertia of the beam and inertial flow of an incompressible fluid which is
imagined to be contained between the beam and the base of the founda-
tion. As will be seen, the beam inertia itself does not affect the steady-
state propagation load but the fluid does. The fluid is intended to give
some insight into the effect which fluid in a pipe has on the propagation
process.

The fluid flow is modeled as being quasi-one-dimensional with a single
horizontal velocity component v taken to be positive in the positive
x-direction. We consider steady-state buckle propagation where the
deflection is of the form w(x —ct) where ¢ is time and ¢ is the velocity of
propagation. As in Fig. 3.1, the beam is imagined to have collapsed
behind the transition and the buckle travels in the positive x-direction
{c >0) into the uncollapsed region. By continuity, the velocity of the
fluid at any point along the beam in this steady-state problem must satisfy

(v—c)H—w)=const= —c(H —wa). (8)
We have taken the ‘pipe’ to be blocked well ahead of the buckle so that
v->va=0 as x » +00. Bernoulli’s equation supplies the pressure p in
the fluid. It is assumed that far behind the buckle as x -+ — o0 the ‘pipe’
is vented to a pressure pg. Thus at any point along the beam

p+ip(—c) =pp+ipa—c), 9)
where p is the density of the fluid.

The equation governing the deflection of the beam is
Ew™+k(w)w =P—ph—mczw", (10)

where ( )’ denotes the derivative of w (x — ct) with respect to its argument.
Here m is the mass per unit length of the beam and 4 is its thickness
in the direction perpendicular to the plane of Fig. 3.1. Since the exit
pressure pg can be absorbed in P by subtracting off pgh, we will take
pe =0 without any loss in generality.

Assuming as before that the derivatives of w vanish as x - +00, the
equilibrium conditions far ahead and behind the transition region are

P—pah=k(wa)wa and P=k(wgplwg, (11)
with

(va—c)(H —wg)= —c(H —wa) (12)
and

pa+apc’=1p(vg—c). (13)
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A fifth equation linking P, wa, wg, pa and vg is obtained by multiplying
(10) by w' and integrating from —oo to +00, as in the quasi-static case,
with the result

wa . 2
f kiw)w dw +%ph(UB—C)2M=P(WB—WA)' (14)

A H—-wja
That the inertia of the beam does not enter into the steady-state energy
balance (14) is easily understood since the total kinetic energy associated
with a translating profile w(x —¢) does not change with time. Thus, if
the inertia of the fluid is neglected (p = 0), the graphical construction of
Fig. 3.2 still pertains and P* is independent of ¢, although the shape of
the propagating buckle does depend on mc” through (10).

Suppose ¢ is regarded as being specified. Then (11)—(14) provide five
equations for the unknowns P, w,, wp, pa and vg. As pc2—> 0 the
quasi-static solution is retrieved with P = P*. Expanding the solution to
(11)-(14) about the quasi-static solution for small pc2 gives
(wE —wh)H —wk)

(H—~w§)’
where wX and wj} denote values at the limit pc>=0. A numerical
example is given in Fig. 3.6 for the foundation law (6). The relation
between P/P* and pc*h/(koH ) is plotted over the range between pc? =0

P=P*+3pc?h +0(pc?)?, (15)

Fig. 3.6. Load for dynamic steady-state buckle propagation. ;
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and the right limit where the curve has a vertical tangent. Buckle shapes
are shown in Fig. 3.3 for two values of pch/(koH ) along with the profile
previously presented for the quasi-static case. For the two dynamic
examples the additional nondimensional parameter was specified to be
mH(ﬁ)l/Z
ph \EI
although additional calculations indicated that the shapes have relatively
little dependence on this parameter over the range from 0 to 10.

’

3.5 Discussion

As long as the load is below the quasi-static propagation load
P*, no buckle can run the full length of the structure. If the load exceeds
P* then a buckle may run the full length of the structure if an initial
disturbance or imperfection of sufficient magnitude can set off the
process. The buckling behavior of the perfect structure involves the
attainment of a limit load (P =Fuax) and this type of buckling is only
weakly imperfection-sensitive. In other words, it does take a fairly
substantial local imperfection or disturbance to initiate a propagating
buckle when the structure is loaded to P* or just above. Nevertheless,
if a local collapse can be repaired or tolerated while a complete running
collapse is untenable, then P* may be significant for structural design.
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3.6 Appendix
The numerical method used in solving for w(x) for the steady-
state problem will be illustrated using the quasi-static case governed by

(1). First, (1) is rewritten as
4

‘;?':w —U(w), (16)

where

£ =x(ko/ED"* and U(w)=£—{P+[k0‘k(w)]w}. (17)
(4]
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An integral equation for w can be written as

w(£) :J GE—)U[w(r)]ds, (18)
where the Green’s function is
| .
G(&) =5 5 e Isin((€]/v2) +cos(¢/v2)]. (19)
A change of variable is made according to
~ta hig*“’sg@o} (20)
z=tan V2° —1<sz2<1.

Then an approximation to w in terms of the new variable is written as

N
w(z)=3(wa+twe)+3(Wa—wg)z+ T (A, cOsAnz +B, sin w.z),

n=1
(21)
where A, = (2n —1)7/2 and w,, = nw. To render the solution unique, we

require w(0) =(w, +wg)/2 so that the following constraint must hold:
N

A,=0. (22)
=1

n=

The 2N free parameters, A, and B,, in (21) were determined by satisfying
(18) at 2N —1 values of z and by meeting the constraint (22). The
integration in (18) was carried out using Gaussian quadrature. Since
(18) is nonlinear in the free parameters, Newton—-Raphson iteration was
used to compute the solution. A convergence study based on increasing
N revealed that the choice N =9 gave results for w which are accurate
to about three significant figures.

The above approach could have been adapted to the analysis of the
spreading process for the initially imperfect system, but we found it
simpler to use a direct two-point finite difference integration scheme
applied to the incremental problem. The infinite beam was approximated
by a finite beam of length 2/, where [ =60 (EI/k0)1/4, corresponding to
about ten times the length of the transition region of the steady-state
mode shape. At low loads, increments of P were prescribed. But as P
approached a peak, a switch to the most rapidly changing displacement
value was made for use as the prescribed incremental quantity.
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