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ABSTRACT

INFINITE band calculations indicate that the process of flow localization in voided solids is highly sensitive to
non-uniformity in void distribution. In this paper, a model is proposed for an elastic—plastic solid with an
excess of voids in a disk-shaped cluster embedded in a uniform background distribution. The model is used to
study the effect of a void cluster on plastic flow localization. Substantial reductions in ductility due to non-
uniformity only occur for quite large clusters when the triaxiality of the overall stresses is low, as in uniaxial
tension. At higher stress triaxialities, a small cluster can be severely deleterious.

1. INTRODUCTION

Two TYPES of calculations have been performed to predict the relation between
ductility and hole growth in rate-independent elastic—plastic solids. TVERGAARD’s
(1981) calculations for a doubly-periodic array of cylindrical voids subject to plane
strain deformation represents one type. In the first stage of deformation, the solution is
doubly-periodic with the same deformation of the void in each unit cell. Overall
ductility terminates when flow localizes along some line of voids. This localization is
manifest in the form of loss of uniqueness of the doubly-periodic solution by bifurcation
into a banded deformation field.

In the second class of calculations, a continuum constitutive model for a voided,
dilating material, such as that proposed by Gurson (1975, 1977), is invoked which
specifies a yield condition, a flow law and an evolutionary rule for the volume fraction
of voids. Studies, such as those of YAMAMOTO (1978) and SaJE, PAN and NEEDLEMAN
(1982), have considered the localization of plastic flow in an infinite block of the
material which contains an infinite planar band with an excess void level. The
properties within the band are uniform but different from the uniform properties of the
material outside the band, so that the entire block of material is characterized by only
two states of deformation. The analysis follows the evolution of the difference between
these two states. The limit of overall ductility occurs when plastic flow comes to a halt
outside the band.
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To set the stage for the present study we display in Fig. 1 ductility predictions based
on the infinite band calculations of the type reported by YamamoTo (1978) and SAJE et
al.(1982) based on the Gurson model, which will be specified in the next section. For the
purpose of the present discussion, the band is restricted to be normal to the z-direction,
the principal direction of straining. In Fig. 1(a), the initial void volume fraction outside
the band is f; = 0.01, while the initial value inside the band is denoted by 7. The infinite
block is subject to proportional axisymmetric remote stressing such that ¢° = o’
= po where p is held fixed. The ductility limit, (¢)°),,, is associated with the maximum
strain attained outside the band, as described above. Curves of ductility versus the
initial volume fraction difference, A = fP—f;, are shown in Fig. 1(a) for three levels of
overall stress triaxiality as measured by p. This figure brings out the exceptionally
strong dependence of ductility on remote stress triaxiality and non-uniformity in the
initial void volume fraction. The material is highly imperfection-sensitive to non-
uniformity in initial void distribution—so much so, that the slope of the relation
between (&), and A becomes infinite as A — 0, as can be seen in Fig. 1(a). In the limit
problem for A = 0, localization appears at (¢2°)., in the form of a bifurcation solution
having continuing deformation in the band and no additional plastic deformation
outside it (RICE, 1976).

The strong sensitivity of ductility to non-uniformity in void distribution is brought
out even more clearly in Fig. 1(b) where ductility curves for constant ratios of f; to /P are
plotted against f T, in eachcasefor p = 0.25. Onlya 5% difference between fand f{ results
in a factor of about two reduction of ductility below that for the material with a uniform
distribution.

Predictions from the infinite band model provide the only available theoretical
insight into the effect of non-uniformity in void distributions on ductility. Realistic void
distributions are, in general, inherently three-dimensional and calculations based on
them have not yet been attempted. In this paper we make a first attempt to gain some
insight into the effect the size of the region of non-uniformity has on variations in
ductility. The model we will introduce allows for a spatial distribution of voids in a
band as depicted in Fig, 2. Details of the model will be spelled out later. Here, however,
we simply note that Gurson theory will be used to characterize the material, and the
initial void volume fraction within the band will be taken to be axisymmetric with

fP=f+A exp{—%(;}) } (1)

The initial thickness of the band A enters the analysis as an arbitrary scale length, which
will be identified with the initial average void spacing when we interpret results. Other
conventions are shown in Fig. 2. The initial void volume fraction outside the band is
uniform and given by £, and this same value is approached inside the band for r >» sAi.
Thus, the non-uniformity of the initial void distribution is a disk-shaped cluster of
thickness 4 and approximate radius sA whose excess in volume fraction at its center
over the uniform background level is A.

The model is formulated to permit contact with the results based on a uniform
distribution within the band (hereafter referred to as the uniform band results). For a
given A, the uniform band results will be obtained when s — o0, while the bifurcation
limit corresponding to a uniform distribution with f = f; will be obtained as s — 0. Our
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Fic. 1. Critical strain for the onset of plastic flow localization in an infinite band perpendicular to the

direction of maximum principal stress a3 (v = 0.3, &, = 0.0033 and N = 0.1). (a) Ductility vs initial void

volume fraction difference for various stress triaxialities ( f; = 0.01 in all cases). (b) Ductility vs initial void
volume fraction in band for various ratios of i/ f? (p = 0.25 in all cases).
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FiG. 2. Convyentions,

main aim is to determine the effect of cluster size as measured by s on the ductility. In
particular, we seek to discover how large s must be such that the uniform band results
become applicable. It will be seen that the answer to this latter question depends
strongly on the triaxiality level p.

2. (GURSON MODEL FOR A VOIDED, RATE-INDEPENDENT SOLID

The Gurson model (19735, 1977) has been formulated to incorporate void nucleation
as well as void growth. While nucleation is undoubtedly an important factor in the
effects of non-uniformities, we shall confine our attention here to voids which are
initially present at zero strain. The equations of the Gurson model have been used by a
number of authors and therefore we will summarize these equations as briefly as
possible in the form to be used here. TVERGAARD (1981, 1982a) has suggested a slight
modification of these equations which will be adopted.

The current overali stress and void volume fractions are denoted by g;; and f.
Cartesian components will be used and the stress components are those of the Cauchy
true stress. The matrix material itself (or equivalently the material with f=0) is
assumed to be characterized by a uniaxial true stress—logarithmic strain relation of the
form

_ e, £< ¢,
o0y = {(E/s,.)”, E>e, @

where o, is the yield stress, ¢, = g,/E is the yield strain and E is Young’s modulus.
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Given the current level of effective flow stress & in the matrix material, the yield
condition for the voided material in terms of the overall stress a;; is

g

2
(g, o) = ((;) +2fq, cosh (%420'“(/0—')_(1 +43f2) =0, (3

where o, = (30};0; i/2)M? is the effective stress and o7; is the stress deviator. Following
the recommendation of Tvergaard, q; = 3/2,q, = 1 and q; = g%. The overall inelastic
strain-rate is denoted by éF; and the rate of change of the void volume fraction is related
to it by

=00 )eh 4
The condition, ¢;;¢%; = (1—f )G¢P, equating the overall plastic work rate to the matrix
plastic work rate per unit volume leads to the evolutionary equation for
o = h[(1-£)d]1" ‘0,65, &)
where
A e 6

Normality of inelastic flow to the yield surface gives the flow law for continued
plastic loading

1 /a\? od o0 v
P — | — _—
811 H (2) ao,ij (70“ le’ (7)
where
a 0P 3 gy
- =Y 5. 8
230, 26 0w ®
1 : 1 O
& = 3414,/ sinh 2‘12? > 9)

H = %[(";) +a%:| ~36(1—f)a [ql cosh ("7 %)—qaf] (10)

and &;;is the Kronecker delta. The spin-invariant Jaumann stress-rate Z—U is used in (7).
The reduction in the elastic moduli due to the presence of the voids is neglected and
the elastic part of the strain-rate is taken to be given by

o 1t v
Sij:Tgij_Egkk‘sij, (11)
where v is Poisson’s ratio. The rate constitutive relation can be inverted to give
gij = Lijkléklv (12)
where
Lo Lt (Goyj/6 + Kud,; ) (Goy /o + Kady)
T (19)H+(G/3)(0./6) + Ka?

(13)
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Sia = G0+ 030 ) + (K — 3G);50y, (14)
with G = E/[2(1 +v)] and K = E/[3(1—2v)]. For an elastic increment, i.e. for

1 00

0 = —
® <0, or =0 and H 3o,

&, <0, (15)
the moduli are taken to be L.

It will be useful to cast the rate equations in terms of the updated nominal stress-rate,
which is related to the Jaumann rate by

R v . .
R = Gij*Gikaj—EikUkj+3kkUij- (16)

Here, Q;; is the spin tensor so that with #; as the displacement-rate and with
()i = 0()/ox,,
P:ijz%(di,j+dj,i) and Q= 3(t; ;—u;). (17

In our model of the axisymmetric band undergoing axisymmetric deformations,
rotation is not expected to play an important role. In formulating the model we will
neglect any rotation of the interface between the band and the semi-infinite half-space
when we apply continuity conditions across the interface. For consistency and
convenience, we also neglect the spin term 6, Q, ; in (16). With this spin term neglected,
the rate-constitutive relation can be recast as

Hij = Cijabis (18)
where

8 — 1 1lg
Cijr = Ly — Zéikajl_ 30405+ 0,04. (19)

3. MODEL FOR ANALYZING LOCALIZATION IN PRESENCE
OF A DisK-sHAPED CLUSTER OF EXCEss VoIDS

3.1. Description of model

The material is everywhere characterized by Gurson theory. Attention is restricted to
initial void distributions which are axisymmetric with respect to the z-axis and to
subsequent deformations which preserve this axial symmetry. At triaxiality levels as
low as p = 0 (uniaxial tension) the critical orientation of a localization band is likely to
be inclined to the axis of principal strain. However at somewhat higher triaxialities,
axisymmetric localization bands are commonly observed as the center section of the
cup-cone fracture of a round tensile bar. As depicted in Fig. 2, an infinite planar band of
initial thickness 4 contains a non-uniform distribution of initial void volume fraction
() given by equation (1). Everywhere outside the band the initial void volume fraction
is the uniform value f;, which also corresponds to the limit in the band for large r.
Proportional, remote axisymmetric stressing will be prescribed such that ¢° = o
= poy with p fixed.

The initial thickness of the band A enters the analysis as a scale length that can be
prescribed arbitrarily. The initial void distribution in the band (1) is also scaled by 4.
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The essence of localization once it is underway is the accelerated growth of a single
plane of voids. Thus, in interpreting the results from the model, we will identify 4 with
the initial average void spacing, as depicted in Fig. 2. Application of a continuum
theory such as the Gurson model is usually restricted to characteristic deformation
wavelengths which are large compared to the average void spacing. However, the
stress—strain relation of the Gurson model was obtained from the approximate analysis
of a unit voided cell whose size was identified with the void spacing. Thus it is not
inappropriate to use the Gurson theory to characterize the material in the band even
when 4 is identified with the initial average void spacing.

In principle, a numerical method such as the finite element method could be used to
solve the governing equations and follow the evolution of the void volume fraction
throughout the body. We have elected to make some further simplifications to the
model so as to make it more amenable to analysis. First, rotation and shearing in the
band will be neglected. This approximation is justified as long as the in-plane
dimension of the cluster is large compared to 4, i.e. s > 1. The non-zero strain-rates in
the band (¢, £ and £,) will be taken to be independent of z. A second important
simplification is that spatial variations of the incremental moduli outside the band will
be ignored. At each instant in the deformation history, the incremental moduli in the
material outside the band will be taken to be the incremental moduli associated with
the remote stress state ¢™. Furthermore, as already mentioned, rotation of the interface
will be ignored in applying conditions of continuity of traction-rates and displacement-
rates between the band and the half-spaces outside the band.

3.2. Governing equations, reduction to an integral equation, and critical condition for
localization

At a given instant in the deformation history the non-zero components of the
nominal stress-rate and strain-rate in the band are related by

-b b b b b by /b
n, LII L12+Gr L13+0r &y
ib b b b b b b
fg | =| Li>+oy L3, Lys+og || & |, (20)
7y Ly3+0) Lys+oy L35 &

where Lf; = L},;; (no sum). The incremental moduli in the band are functions of r due to
their dependence on the initial void volume fraction fP(r) and due to the r-dependence
which stresses in the band, a®(r), develop.

Outside the band, from (18),
f'ij = Cic}]klékl’ (21

where the ¢® are evaluated at infinite. For the region outside the band, denote all
quantities associated with conditions at infinite by a superscript ( )® and let

S e Lk e ek s s ik
My = R 05 Uy = U+ U7, & = &5 T, (22)

where the additional parts are denoted by ( )* and they satisfy

(i

bakur) -0 as ri4z2 - oo (23)
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Then, (21) can be split according to

r'!(x)

_ . Sk 00 A%k
3 = Chuba  and  Af = el (24)

or, because of the transverse isotropy with respect to the z-axis, as

(r'::")_( BALEor i“a+0f°) (sw) )
i)\ Alz+er) Ly )\
it Lfy  Lfptey Listar) fif,
i | = Liver  Lf Lfor i, (26)
i) \Lptor Lpver L3 /) \a,

it = (L% —%Gf“)(ﬁ:'fﬁﬂ:,)} &7
where LY = L;;(nosum)and Lg, = L{5,3 = L{5;,- Our neglect of the spin term Q2 in
arriving at (18) has no effect on equations (20), (25) and (26). Only (27) is affected by
having omitted this term. The omission has essentially no influence since Lg is the
elastic shear modulus G during the entire history and coefficients proportional to the
stresses which were neglected in arriving at (27) are, by comparison, very small.

Since n* is uniform, incremental equilibrium requires
ri:‘.:r + (ﬁ;" - ﬁ;‘)/r + ri:z.:r,z = 07 (28)
nf,+nk +ak/r=0. (29)

Because of symmetry with respect to the central plane of the band, only the upper half-
space need be considered. Continuity of traction-rates and displacement-rates across
the interface between the band and the upper-half space is met if

A2(r) = A& 4 i*(r, 0), (30)
Az (r) = ni3(r,0) = 0, (31
uP(r) = ré® +uX(r,0) (or é%(r) = £° + £X(r,0)) (32)
and
&0(r)A exp {eb(r)} = éXA exp {&2} + 2uX(r,0). (33)

In words, (33) states that the rate of thickness increase at any point in the band over the

corresponding rate at infinity must equal the additional separation-rate 2ii¥(r, 0) of the

faces of the half-space. As previously mentioned, we have taken the current normal to

the half-space to be in the z-dircction, consistent with the assumption of small

rotations. Furthermore, rate quantities on the interface in the material outside the band

are evaluated at the same z-value, which for convenience has been taken to be z = 0.
Substitution of (20),, (25),, (32), and (33) into (30) results in

auk(r,0) u}(r,0)
or

y 20¥(r,0)

i#(r,0)— (L8, +0® ) N AU
i¥(r,0)—(L}; +07) 33iexp(8'z’)

—(L33+0d)

=4q(r), (34)
where

4(r) = [LY3+ L33 — 2L + 202 — 0 7)167 + [exp (e — ) L§s — L33]é7. (39)
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Thus, the boundary conditions have been reduced to (34) and to (31) or, by (27), to
ur, +u¥, =0. (36)

The semi-infinite half-space above the band has uniform moduli with transverse
isotropy with respect to the z-axis. Since the loading is axisymmetric, the solution also
preserves axial symmetry. A general representation of the solution to the incremental
field equations in this upper-half space can be obtained along the lines first indicated by
ELL10TT (1948, 1949), as discussed further in the Appendix. The general solution for the
starred quantities which meets the boundary condition (36) gives

i (r, 0) = *Jm a;g(8)EN,(Er) dE, (37)
0
uz(r,0) = —Jw 2,9(E)EJo(¢r) dE, (38)
0
Az (r,0) = J- a3g(E)&>Jo(r) dE. (39)
4]

Here ¢(£) is an unknown function which will be chosen to meet the other boundary
condition (34), and J, and J, are Bessel functions of the first kind of order zero and one,
respectively. In addition,

it 1+k 1k~
Y 0
k o0 €0 [c &) /11/2 1+k ]z a0 s 0] o0
xy = ;L33* 130 “Fﬁ ELss‘ 13705 )
where g, 1, k and k are functions of L™ and ¢® given in the Appendix.
The function g(&) is determined by substituting (37)-(39) into (34):
j K(&,r)g(d)dE = 4(r), (41)
4]

where
K(Z,r) = Lo+ o, (LY +a)]E3g(Er)
—ay (LY — Ly3)r =" 820 (Er)+ 20, LS5 [4 exp (e9)] ' E2Jo(ér).  (42)

Itis recalled that quantities labeled with a superscript b are associated with the solution
in the band and are functions of r. The loading term, 4(r), in (41) which is given by (35)
depends on the current state and on the remotely specified strain increments £*.
Solution of the integral equation (41) for g(£) provides the entire solution to the
incremental boundary value problem, since incremental quantities in the band can then
be obtained from the interface equations (30}H33) together with (20). Thus, if the history
of remote stress or strain is specified, the behavior in the band, including the evolving
void distribution f®(r), can be obtained by the solution of a sequence of incremental
boundary value problems governed by (41).

As remote straining increases, an eigenstate is reached where the integral equation
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(41) admits a non-zero, homogeneous solution, i.e. a non-trivial solution exists to

oo
f K(£ rg(&)dZ = 0. (43)
0

When this critical state is reached, the band will undergo an increment of continued
straining and void growth unaccompanied by additional straining at infinity. This is
the onset of localization, and we will denote the remote axial strain associated with
attainment of (43) by (¢2°),,.- Depending on the details of the initial void distribution in
the band, the localization process in the band may proceed to final rupture with elastic
unloading occurring outside the band, or, after a certain amount of void growth in the
band, the localization process may arrest such that further remote straining becomes
possible. Behavior in the band subsequent to attainment of the critical state (43) will be
discussed in the next section.

The corresponding critical condition is reached in the uniform infinite band problem
when L5, = 0. From (20) it can be seen that this condition permits a strain-rate in the
band with é° > 0, £&® = ¢ = 0, and #? = 0. This is the eigenstate condition for the
uniform infinite band problem at which unloading outside the band begins. In the
present problem for the non-uniform band, L5, becomes negative over part of the
cluster region before the overall critical eigenstate characterized by (43) is reached.

4. RESULTS AND DISCUSSION

The numerical method used to solve the integral equation and the associated
equations is described in the Appendix. In all cases, the remote stresses were increased
proportionally with p = ¢;°/o° held constant. The problem is inherently incremental,
and the incremental step size was adjusted to ensure small increases of strain and void
volume fraction in the region in which deformation was increasing most rapidly,
usually at the center (r = 0) of the band. In all the numerical results reported below
v=103, g, =0.0033 and N = 0.1, except for some results on the effect of strain
hardening where N is varied.

4.1. Evolution of void distribution and critical strain

The overall strain (£2°),, at which condition (43) for the onset of localization is met is
plotted in Fig. 3 as a function of the size s of the cluster for four levels of p. In this figure
the background initial void volume fraction is f; = 0.01 and the excess at the center of
the cluster is A = 0.01. On the left hand side of the figure a broken line indicates the
bifurcation strain for an initially uniform infinite block with f; = 0.01, except for the
case with p = 0 where no bifurcation occurs and the line corresponds to the limit when
o, — 0 (f > 2/3). The dashed line on the right corresponds to the localization strain
predicted by the uniform infinite band model with /¥ = fi+ A = 0.02.

The model reveals that the transition between these two extreme results is a strong
function of the remote triaxiality p. Let s,, denote the value of s associated with the
critical strain which falls half way between the two extreme values on the log scale of
Fig. 3 (indicated by a dot in that figure). This transition value, s,,, is plotted against p in
Fig. 4. Recalling that s/ is the approximate radius of the initial cluster, we note that the
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transition towards the uniform infinite band results occurs for a cluster radius of only
about 5 void spacings when p = 0.5 and about 2 void spacings when p = 0.65,
assuming A is identified with the initial void spacing. These are high triaxiality levels
but, nevertheless, characteristic of situations where plastic flow occurs under highly
constrained conditions such as at the tip of a plane strain crack. The triaxiality level
p = 0.25 is not untypical of values at the necked down section of a rounded tensile bar
just prior to localization. At this p-level, a fairly large cluster of about 20 to 30 void
spacings in radius is necessary to reduce the localization strain significantly below the
critical strain associated with bifurcation in a block with an initially uniform
distribution f,.

Figures 5(a, b) show the evolution of void volume fraction within the band when

1.0F ' T ' '
F 5:80, p=0.25
e oo el fr = A=0.01
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F1G. 5. Evolution of void volume fraction within the band. Dashed lines indicate evolution after critical state
is attained. (a) s = 80. (b) s = 20.
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p = 0.25, in (a) for a fairly large cluster (s = 80) and in (b) for a relatively small one (s
= 20). For the larger cluster the voids at the center of the cluster grow much faster than
those far removed from the center, so that at the localization strain (¢®),, = 0.72,f0)is
more than 4 times f°(c0). By contrast, the peak in the initial distribution is leveled as
straining proceeds in the case of the smaller cluster in Fig. 5(b). Thus in this latter case
the critical strain is not much reduced below the bifurcation strain. The dashed line
curves above that for the critical strain correspond to the post-critical evolution of the
void volume fraction within the band which will be discussed in the next subsection.

We now ask how the larger cluster of Fig. 5(a) is able to cause localization at a strain
level considerably below that required for localization in its absence. As straining
proceeds the voids within the cluster grow fastest, as seen in Fig. 5(a), resulting in an
increasing difference between deformation of material in the band and that outside it.
As this difference becomes accentuated the local triaxiality level, o, /(36,), in the cluster
rises significantly because the band material is constrained in the radial and
circumferential directions by the material outside the band which is straining more
slowly. In fact when localization sets in, so that deformation outside the band ceases,
the radial and circumferential strain-rates in the band become zero. The distribution of
the triaxiality in the band, as measured by o,,/(30,), is shown in Fig. 6 for four different
overall strain levels, including that at the critical state. An e¢levation of the local
triaxiality of almost a factor of three is seen to occur near the edge of the cluster at
r = 504. Void growth is strongly enhanced by stress triaxiality (McCLINTOCK, 1968;
RICE and TRACEY, 1969), and the Gurson model reflects this through the second term in
the yield function (3). This strong triaxiality dependence, coupled with the tendency for
triaxiality to develop as localization progresses, leads to greatly reduced overall
ductility when the cluster is large enough.

Figures 7 and 8 show the effect of varying f; and A on the critical strain in each case
with p = 0.25. The size of the cluster associated with transition between high and low
ductility is relatively insensitive to f; and A; it depends mainly on p as previously
discussed. The effect on (¢2°),, of varying the strain hardening exponent N is shown in

L I S —_—
o] 50 100 150 200 250
r/x

F1G. 6. Evolution of ratio of mean stress to effective stress within the band.
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Fig. 9. Here there is a tendency for the transition size of the cluster to decrease with
increasing hardening.

4.2. Growth of void distribution after critical state

The critical condition (43) for the onset of localization corresponds to the attainment
of an overall strain level such that an increment of strain and void growth in the band
occurs with no associated increment in remote strain. Examples of the evolution of the
void volume fraction distribution subsequent to attainment of the critical state are
shown as dashed line curves in Figs. 5(a, b). The growth in the band beyond the critical
state takes place with elastic unloading at infinity, although only a very slight drop in
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F1G. 8. Effect of A on ductility for constant f; with p = 0.25.




Plastic flow localization due to non-uniform void distribution 77

50

T 1o TrTrroUrTaThg T TT 11 07TT

F16. 9. Effect of strain hardening exponent N on ductility for constant f; and A with p = 0.25.

the remote stress occurs. To model the post-critical incremental behavior of the
material outside the band, we took

i = Chuéil, (44)
where ¢® denotes the elastic moduli, consistent with elastic unloading at infinity. For the
additional rate-quantities, which are largest near the cluster and vanish at infinity, we
took

nE = clged, (45)

where ¢* is the tensor of plastic loading moduli of the outer material at the critical state.
Within the framework of the present model, this manner of splitting up the response for
the region outside the band models in a crude way elastic unloading remote from the
cluster and continued plastic load in the vicinity of the cluster. The integral equation
(41) still applies with this modification if L.* is replaced by L° in the expression for §(r),
with the other dependencies on L* being unaltered. In the band, the constitutive
relation (18) is used exactly allowing for either plastic loading or elastic unloading.
In each case investigated in this paper the voids continue to grow in the band at
essentially constant remote strain and stress once (¢.°),, is attained. Figure 10 illustrates
further details of the post-critical expansion of the region of localized flow for the case
shown in Fig. 5(a). Figure 10(a) shows plots of the radial variation in the band of the
local triaxiality level together with fand f/( )., just following attainment of the critical
state. The same quantities are plotted in Fig. 10(b) after the localized region has
expanded to a radius almost two times the initial cluster radius. By this stage, the
highest triaxiality has developed at the outer edge of the region of localized flow and
associated with this high triaxiality is a high void growth-rate. Void growth in the
center of the region sheds load to the outer edge and in this way the process is seif-
sustaining. Note that the material in the band outside the region of localization has
undergone elastic unloading. But as the region of localized flow spreads outward,
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F1G. 10. Variations within the band for case s = 80, p = 0.25, A = 0.01 and f; = 0.01. (a) Immediately after
attainment of critical state. (b) After cluster has undergone about a factor of two increase in radius by self-
sustained growth.

material on the edge of this region reloads and becomes part of the expanding disk of
localized flow.

Whether the process is self-sustaining or whether it arrests requiring additional
remote straining to start it up again depends on the initial distribution of voids in the
band. For example, if the remote initial void volume fraction f; is zero the process will
obviously arrest when the edge of the expanding localized region encounters the very
low remote void levels.

4.3. An alternative condition for the onset of localization

TVERGAARD (1982b) has argued that the Gurson model is invalid for void volume
fraction above some value f; in the range 0.1 to 0.2. He suggests that the actual stress
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F1G. 11. Effect of alternative condition for-onset of localization based on attaining a critical value of /™.

carried by the material drops dramatically with little additional straining once f reaches
f.. Tvergaard modifies the Gurson model to reflect the sharp drop-off in stress carrying
capacity for f > f..

To obtain some feeling for the sensitivity of our predictions to the details of the
Gurson model, we will now say that localization starts either when the maximum value
of f® first reaches f, = 0.15 or when the critical condition (43) is attained, whichever
occurs first. The plot of (¢°)., based on this modified condition is shown in Fig. 11 for
precisely the same parameters for the initial void distribution as was used in connection
with Fig. 3. The curves from Fig. 3 are shown as solid line curves in Fig. 11, while
portions of the curves for which the condition (f),,., = f. occurs prior to condition (43)
are dashed. The results at high triaxialities are unaffected since the localization
condition (43) is attained before the level f; is reached anywhere in the cluster. At lower
triaxialities the critical void levelf; is reached first. Nevertheless, the general trend of the
curve of (¢°),, vs s is still the same and the transition cluster size is essentially
unchanged.

5. CONCLUDING REMARKS

The present model gives further information on the sensitivity of ductility to non-
uniform void distributions. The main conclusion, summarized by the results of Fig. 4, is
that the smallest size of disk-shaped cluster of voids which results in a substantial
reduction in ductility is a strong function of stress triaxiality. At low triaxialities, the
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initial cluster must have a radius of many void spacings if it is to have a deleterious
effect. At high stress triaxialities, a very small disk-like cluster can set off early
localization and cause a large drop in ductility.

Any conclusions based on the model must be tempered by the fact that it is idealized
in a number of respects. The Gurson theory itself, on which the model is based, is
simplified representation of the behavior of voided material. Although the Gurson
theory is a continuum representation, we have argued that there is some justification to
regard it as characterizing each discrete cell containing one void, so that its use to
describe the behavior of band material of one void spacing in thickness is not
inappropriate. To simplify the analysis, the incremental propertics of the material
outside the band were rendered uniform and equal to those of the remote state. This
approximation undoubtedly results in overly stiff material near the cluster where the
higher stress levels would induce relatively lower incremental moduli. Nevertheless,
this approximation may not be too significant judging from its success in an analogous
study of shear localization by ABEYARATNE and TRIANTAFYLLIDIS (1981) and in certain
nonlincar crack problems solved by HE and HutcHinsoN (1981) and ABEYARATNE
(1983). We have neglected shearing in the band and rotation of the interface between
the band and the outer material. These approximations break down when the gradients
in the radial direction in the band become large, as they do when s is as small as unity.
We cannot expect the result for the smallest clusters at high stress triaxiality to be very
reliable. The important point, however, is that the model unambiguously indicates that
small clusters are not deleterious at low triaxialities but are so at high triaxialities.

To simplify the analysis, we have restricted attention to bands orientated per-
pendicularly to the direction of maximum principal strain, Band orientations oblique
to this direction are expected to be more critical, especially in the range of low
triaxialities, and an extension of the model to deal with this more complicated situation
would be of some interest.
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APPENDIX

Solution for v* and 1i* in the semi-infinite region

ELL1OTT (1948, 1949) obtained the general representation for the solution for a transversely
isotropic elastic solid occupying the semi-infinite region z = 0 (see also GREEN, RIvLIN and
SuieLD (1952)). The representations for v* and 1i* do not follow directly from this previous work
since the moduli in the present problem do not possess diagonal symmetry (i.e. ¢;jq # Cuij)-
Nevertheless, a general representation can be obtained along similar lines, as outlined below.

First we introduce a scalar function ¢(r, z) such that
uf = % u = k%, (A1)
or Jz
where k is a scalar independent of r and z. Then the equilibrium equations (28) and (29) into which
(26) and (27) are substituted result in

1

Ly (¢,,,+ - ¢.,) + LKL+ (1 +K)LE — 31 —K)oX]d,,, =0, (A2)

1
[LE+(1+K)LE + (1 —k)af](¢,,,+ - ¢,,) +kLE ., = 0. (A3)

r

If k is required to satisfy
kLEy +(1+ KL —(1— ka2 kLZ, B Ad
L7, Le+(1+RLE+(1—ko22 P

(A2) and (A3) become identical to each other.
Eliminating k from (A4), we obtain

ap*+bu+c =0, (AS)
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where
a=Li(LE—a?/2),
b = LE[LYs + 205 + (0 +07°)/2]— L L3y + Lo +67°),
c = L{(LE —07/2).

The two roots of (A5) are denoted by u and 4.
Thus, ¥ and u¥ are generally expressed as

0 _
T N B ) (A6)
Z
) fo

where ¢ and ¢ satisfy (A2), or (A3), for g and g:

? 10 ¢
<a—r2+ra>¢+ o =0

A7
0? L1 10 P+ 029 —0 (A7)
o ror PP
and k, k are related to p and g, respectively, by (A4):
_MLfi=Litor/2 L —Litor)2 *8)
L3+ LS +o7/2° LG+ LE +o2/2

The components of #}; are obtained by substituting (A6) into (26) and (27), with the result

(L13+a°°)<—2 >(¢+¢)+L33 e (k¢ +kep),
(A9)

Sk __ o l
i = (L3 —20

+h)¢+(1+k)}.

Using the zeroth-order Hankel transform with respect to r, we can obtain ¢(r,z) and &(r,2)
which satisfy (A7) (see ELL1OTT, 1949). The result is

$(r,2) J ¢9() CXP< é)%(ér) g

5 (A10)
9(r,2) = f E(E)exp (7;7) Jo(&r)de.
0

Then, (A6) and (A9) become

—J {G(£,2)+ G(&, 0} &2 ,(Er) d, ]
0 (A1)

*{ k E_
uf = — —173 G(&,2)+ —75 G(&, 2)} E2Jo(Er) ¢,
o u a"

n*—J {( Ly —Ly— )G(é,2)+<_L§°3ﬁLfs-vg:?)G(é,Z)}ézJo(ér)dé,
1+ (A12)
iz = (L& — m)J { iz G,z ﬁ”z G(¢, )}fle(ér)dé,

where

G(&,z) = g(&) exp( 5;) G(¢&,2) = g(&) exp( 1§ZZ>
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Numerical method to solve integral equation (41)

We approximate g(&) so that ri¥(r,0) has the step-wise variation
M
n¥(r.0 = Y p,[H(rjs,—1)—H(r;—1)], (A13)
i=0

where H(x) denotes the Heaviside step function, and ro =0 < r, < ... <rp . We now make
use of the Hankel inversion theorem (see SNEDDON, 1951): When f*(&) is the nth-order Hankel
transform of a function f(x), the reciprocal formulas are

) = jm T xE) e,

TW@:waﬂnAQndX
0

Application of this theorem to (39) together with (A13) gives

M e
a3g(8)E% = ). ﬁj.[ r[H(rjy =)= H(r;—r)1Jo(lr) dr
i=0 0
M
=&V Y pilre i ilry &) —ridi(r0)]. (A14)
j=0

Substituting (A14) into the integral equation (41) and evaluating this equation at
F=(r;+r+1)/2(0=0,1,..., M), we obtain

M
Z Aijpj = ‘1(fi), (AIS)
j=0

where

_ b o bz
A= {1 + = [L13(ri)+‘7z(ri)]}5ij
3

A b oy b oy L = =
- ;" [L35(r)— L34(F)] 7 ["j+ 1 U("j+ 17ri)_rjU(rj: )]
3 i

X 2Lg3(Fi)

Em[rj+1V(rj+I’ri)_er(rj’Fi)]’ (A16)
Ula,r) = J & Wy(ad)Jy(ré)de, (A17)
0
WMFJf”M@M@M. (A18)
0
Then, the critical condition (43) for plastic flow localization reduces to
det 4;;=0. (A19)
Use of (A14), (37) and (38) gives
% 2 & .
u}(r,0) = —— Z [’j+1U(’j+ 1> ’)“’jU(’ja ’)]Pj, (A20)
3 j=0
- a ,
u¥(r,0) = ——= z [’j+ 1 V(’j+ 1 r)_er(rja r)]Pj- (A21)

3 j=0
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The integrals (A17) and (A18) are calculated as (see WATSON, 1966)

r/(2a), az=r,
U(a,r) = {a//((Zr;, r>a (A22)
F(1/2, —1/2;1;r%/a?), ax>r,
Via,r) =< 2/m, a=r, (A23)
(a/2r)F(1/2,1/2;2;a%/r), r> a.
Here, F(a, f;v; z) denotes the hypergeometric function
FaBiy;z =y, b ? (A22)

n=0 (y)n n! ’

where (o), = a(ax+1)(x+2),...,(c+n—1), () = 1. In the case of (A23), F(x, f;y; z) converges
when |z| € 1,and F(g, f; ;1) = TNy —a— B)/{T(y —)T(y — B)} so that V(a,r) is continuous at
a=r.

When L*® and ¢® are given, a,/a; and a,/a4 in (A16) are calculated from (AS5), (A8) and (40).
Therefore, if L°(F;) 6°(F,) are currently known too, then 4;; and 4(r;) are known and one can solve
for the dp; in terms of de™ using (A15). Then de®(7;) is obtained from (32) and (33) together with
(A20) and (A21). In turn, (20) is used with (16) to determine de®(7;). Furthermore, d/®(;) and
d&®(7;) are calculated from (4) and (5). Thus, L°(F;) and ¢°(7)) at the next step are obtained by
adding those increments to the current values of the corresponding quantities. The coordinates of
ri(i=12,...,M+1)are also changed according to

ri+dup(r) = ri+r; deg’ + du(r,, 0), (A25)

where dey” = de° and du¥*(r;,0) is given by (A20).

The incremental analysis is started with the uniform stress state 6%r) = ¢® in which the
element with the largest initial void volume fraction is subject to plastic yielding, and
subsequently & is increased under conditions of p = 6;°/67 = constant and o;° = o¢°. In the
course of the numerical analysis, the change of the sign of det A;; signifies attainment of the
critical state.

Before plastic yielding occurs at infinity, L* is used for L*. Then, (A5) gives as the roots g and
two distinct real numbers close to one. (In small strain theory when ¢ is neglected in the
coefficients in (A5), 4 = ji = 1.) On the other hand, when the material at infinity yields plastically,
u and ji become complex conjugates of one another. Consequently, k and k, g(&) and §(¢), etc.
appearing are also complex conjugates of one another, and moreover «,, &, and a, defined by (40)
are complex. However, a,; /x5 and a, /o5 in (A16) do take real values, since o, g(&), o, g(&) and a3 g(&)
arereal, as seen in (37)+39). In this case, additionally, care must be taken in the calculation of u'/?
and 3'/? since their real parts should be positive so that 4} and i} vanish at infinity—see (A11)
and (A12).

TABLE 1. Mesh of the band for calculating critical strain (M 41 = 34, 30, 25 and 25 when
p = 0.0, 0.25, 0.5 and 0.65, respectively)

i 0 1 2 3 . 13 14 15
r/(As) 0.0 0.1 0.3 0.5 .. 2.5 3.0 35
i 18 19 20 21 22 23,...,M+1

r/(As) . 5.0 6.0 8.0 12.0 20.0 20.0 x 20722
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TABLE 2. Influence of the sizes of loading step
and mesh on (¢F), (v =03, a,/E = 0.0033,
N=0.1,p=025f=A=001)

Half load Half mesh

s Basic step size size
1.0 1.811 1.801 1.809
20.0 1.401 1.395 1.407
80.0 0.715 0.711 0.716

The analysis was performed by nondimensionalizing lengths and stresses in terms of the
average void spacing length A and Young’s modulus E, respectively. Table 1 shows the mesh of
the band used to calculate the critical strain. The larger the region of non-uniform deformation in
the band, the larger must be M.

At each step, (A15) was solved first by taking de® == 1.0 (de® = — 1.0 after the critical state),
and then all increments added to the corresponding current values were multiplied by a loading
step factor so as to satisfy the conditions |do}|,,,/0, < 0.02 (i =r,8,2), (df ")y, < 0.005 and
(deb)nax < 6, where the suffix max denotes the maximum with respect to 7; (i = 0, 1,..., M) and
d = 0.01, 0.005, 0.002, 0.0002 for p = 0.0, 0.25, 0.5, and 0.65, respectively. In addition, prior to
plastic yiclding at infinity, the loading step factor was specified by (do?),,,../, < 0.005. Table 2
shows the accuracy of calculation for one particular case when p = 0.25. As discussed in Section
4.2, the evolution of void-clustering after the critical state was calculated in two cases; s = 80 and
20 under conditions of p = 025, fi = A = 0.01 and N = 0.1. Several initial attempts at these
calculations were not successful because the mesh was not sufficiently refined to reproduce the
detail at the edge of the growing cluster as seen for example in Fig. 10(b). Only when a very refined
mesh was used did the calculation proceed smoothly.







