MECHANICAL ANALOGS
OF COEXISTENT PHASES
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1. INTRODUCTION

Certain mechanical systems display transitions between
two nominally uniform solution states which have certain
features in common with true phase transitions. Three such
examples will be discussed here. In order, they are the
bulging of a long cylindrical balloon, neck propagation along
bars of certain polymeric materials, and buckle propagation
along externally pressurized pipes. Most of the results
presented here were taken from two earlier papers by the

authors and a colleague [1, 2].

2. STEADY-STATE INFLATION OF A CYLINDRICAL PARTY BALLOON

Imagine a long party balloon with a long uniform
cylindrical section in its mid-region. The properties of
most balloon rubbers are such that the pressure-volume
relation of a cylindrical slice undergoing a purely cylin-
drical deformation has the gqualitative features shown in

. Fig. 1. The balloon is treated as a membrane with thickness
small compared to radius. A purely cylindrical deformation
is defined as a deformation in which the slice is imagined to
undergo a uniform expansion of its radius and a uniform axial

elongation such that the circumferential and axial stresses,
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Fig. 1 p(V) for purely cylindrical deformation of a cylin-
drical segment of unit initial volume. Quasi-static,
steady-state propagation requires 3?1=9%!. (Figure
taken from [1].)

respectively, are given by oe==pR/t and OX:=pR/(2t) where

R 1s the current radius, t 1is the current thickness and ©p

is the internal pressure. The slice considered in Fig. 1 is

taken to have a unit volume in the undeformed state. For
definiteness it will be assumed that the balloon is inflated
under isothermal conditions, and the purely cylindrical
deformation in Fig. 1 should also be regarded as isothermal.
The relation of pressure to change of volume of the
entire balloon during the inflation process is depicted in

Fig. 2. As air is forced into the balloon, a localized bulge

forms somewhere along the length of the balloon, usually at

one of the ends. The pressure peaks with the initial bulge
formation. With continued inflation the pressure settles
down to a constant value, p* in Fig. 2, and during this part
of the process the transition front between the bulged and
unbulged regions simply translates down the length of the
balloon with essentially no change in radii of the regions on
either side of the transition. This is the portion of the
inflation process we will refer to as steady-state

propagation. If the balloon is inflated slowly, as is
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Fig. 2 Inflation of a cylindrical party balloon, (Figure
taken from [1].)

assumed to be the case, inertial effects are negligible and

the propagation 1is quasi-static. An example of a partially

inflated party balloon is shown in Fig. 3. When the tran-

sition front has engulfed the whole balloon the pressure

rises and the mid-region again undergoes essentially purely

¢ylindrical deformations.

Fig. 3 Party balloon showing transition between bulged and
unbulged sections. (Figure taken from [1].)
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The equation for the steady-state, quasi-static propa-
gation pressure p* is obtained by a very simple energy
balance argument. Namely, the work done by p* must equal
the change of strain energy stored in the balloon in a unit
advance of the transition front. Model the mid-region of the
balloon by an infinitely long balloon with uniform properties.
Let VD and VU denote the volumes of cylindrical sections,
each with unit undeformed volume, associated with purely
cylindrical deformation states U and D far ahead and far
behind, respectively, the transition. These states are each
associated with p* as indicated in Fig. 1. Under steady-
state conditions in which the front engulfs a new section
with unit undeformed volume, the work done by p* 1is exactly
p* (Vp=Vy
With W denoting the isothermal strain-energy per unit unde-

) since the shape of the transition does not change.

formed volume of a cylindrical section, the pressure work
must egual WD—WU since the strain energy stored in the
transition does not change under a steady-state advance of
the front.

The deformation states in the transition are not purely
cylindrical. Nevertheless, because the rubber is charac-
terized by an energy function, WD—WU can be calculated using
any deformation history which connects states U and D
Thus, if p(V) denotes the relation depicted in Fig. 1 for
purely cylindrical deformations, the strain energy difference
equals the work in deforming the section from U to D

through this deformation history. That is,

Vp

Wo-W =J b (V) av (2.1)
VU
The equation for p* 1is therefore

Vb

p*(VD—VU) = J p(V)yav (2.2)
\Y%

9)
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with the well-known graphical solution requiring equality of
the areas of the two lobes,.%l and 3?2 , as indicated in
Fig. 1.

The above derivation for steady-state propagation along
the infinitely long balloon obviously applies whether or not
the transition is advancing. The derivation can be reinter-

preted as the invariance with respect to an arbitrary shift

of the solution in the axial direction. In the terminology
of phase transformations [3], (2.2) is the condition for the
coexistence of two "phases", D and U , of the infinitely

long balloon. The pressure p* for coexistence is below the
peak pressure needed to first form a bulge. For the rubber
material analyzed in detail in [1], the initial bulging
pressure is about twice p* . This barrier to the formation
of a transition is typical of each analog discussed here.

Yin [4] has given a rather complete and general analysis
of the deformation of cylindrical membranes subject to
internal pressure. We will draw from his work to show how
(2.2) emerges from a direct integration of the equations
governing axisymmetric deformations of a cylindrical membrane.

Consider a uniform long circular cylindrical membrane of
an incompressible rubber-like material which is capped at its
ends. The undeformed radius of the membrane is p . Attention

is restricted to axisymmetric deformations due to internal

pressure p . Let w(Al,AZ) denote the strain energy
function of the rubber per unit undeformed area, where Al
and AZ are the meridional and azimuthal stretches. Based

on earlier work of Pipkin [5], Yin has shown that the two
equations of equilibrium can be reduced to the following two

equations governing the deflection of the membrane:

A 2w w = constant (2.3)
1 Bkl
and
- 1
tlcos w = 2Azpp (2.4)
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where tl= A;law/akl is the force per unit length of
deformed membrane in the meridional direction and w is the
angle made by the meridional tangent with the axis of
symmetry.

Using (2.4) to eliminate Bw/BAl in (2.3), one can

readily show that (2.3) can be re-expressed as

BV cos “w - W = constant (2.5)

where, as before, W is the strain energy per unit undeformed
volume of a meridional slice and V 1is the deformed volume
of the same slice.

The constant can be evaluated using state U behind the
transition for which w=0 , so that everywhere along the

membrane
-2
pvcos w-W=1pV._ -W (2.6}

In particular, on the other side of the transition in state

D where w again vanishes, (2.6) becomes

= pv, - W (2.7)

PVp - W U U

D
which 1is equivalent to (2.1) and (2.2).
3. NECK PROPAGATION ALONG CYLINDRICAL TENSILE SPECIMENS OF
CERTAIN POLYMERIC MATERIALS
Figure 4, taken from the paper by G'Sell, Aly-Helal and
Jonas [6], shows a sequence of pictures of the same tensile
specimen taken over a progression of overall elongations.
The specimen is a solid circular cylinder of high density
polyethylene which has been tested in tension in a relatively
stiff testing machine. The machine effectively imposes a
constant rate of relative separation of the specimen ends.
The load carried by the specimen is measured by a load cell
(it is not prescribed). Although it may not be noticeable
in the first picture of the sequence, a very slight reduction
in cross-section has been introduced by machining at the
central section of the specimen to induce the neck to set in

near the center of the specimen.
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Fig. 4 A sequence of pictures of a solid cylindrical tensile
specimen of high density polyethylene displaying neck
propagation. (Figure taken from [6].)

The initial stages of neck formation shown in Fig. 4 are
very similar to those observed in metal specimens. Signifi-
cant necking becomes noticeable just following the peak in
the overall load-elongation record, and the neck deepens and
remains localized as the load continues to fall. In metals,
this process continues with monotonically decreasing load
until fracture processes interrupt the necking and the
specimen fails. Certain polymer specimens, such as that in
Fig. 4, propagate the neck once it has become fully localized.
It is this aspect which we focus on here. G'Sell et al. [6]
have published overall load-elongation records for their
tests. These records are qualitatively similar to the
overall pressure-volume curve for the cylindrical balloon
previously discussed in Fig. 2. After a brief "transient"
the neck transition attains a fixed shape and moves along the
specimen at a constant velocity, assuming the overall
elongation-rate is held constant. Under these steady-state

propagation conditions the load is constant, and the radii of
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the uniform sections of the specimen on either side of the
transition do not change. The transition itself extends over
an axial distance which is roughly equal to one diameter of
the unnecked section.

Constitutive behavior of polymeric materials is not
simple. Compared to metals, they have stronger thermal-
mechanical coupling and a relatively stronger dependence on
the rate of deformation. Moreover, like metals, their multi-
axial stress-strain behavior is strongly path-dependent, even
when rate-dependency is ignored. Nevertheless, it is very
useful to consider a model rubber-like material (i.e., an
incompressible, Green-elastic material) whose uniaxial
stress-strain curve coincides with that displayed by the
polymer at the representative rate of straining. The reason
for this is that neck propagation is primarily a consequence
of the qualitative shape of the uniaxial stress-strain curve
of the material, as will be seen below. The analog between
neck propagation in polymers and phase transitions was
apparently noted as early as the late 1950's by Thompson and
Tuckett (cf. discussion of the paper by Barenblatt [7]).
Conditions for the coexistence of necked and unnecked states
in a bar subject to uniaxial tension have been considered
more recently by Ericksen [8] and James [3]. Here we will
review the condition for steady-state propagation assuming
the material is nonlinearly elastic and then discuss
departures from such ideal behavior when the material is not
elastic using results drawn from [2].

Consider a model incompressible, nonlinearly elastic
material whose stress-strain behavior in uniaxial tension
under isothermal conditions has the features shown in Fig. 5.
Here two pairs of work conjugate variables have been used to
display the tensile response. While the true stress-log
strain curve may be monotonically increasing, the curve of
nominal stress (force/original area) versus stretch is
assumed to have a local maximum, a local minimum, and then

increase monotonicaly to nominal stress levels well above
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Fig. 5 Stress-strain data in uniaxial tension. True stress
versus logarithmic strain on the left and nominal stress
(load/original area) versus stretch on the right.

that at the local maximum. The idealized problem is con-

sidered for isothermal, steady-state neck propagation along

an infinite uniform bar of this material. In the steady-
state problem the transition between necked and unnecked
regions translates with no shape change towards the unnecked
region. An energy balance argument identical to that for the
balloon leads to the equation

* — = -
n* (A AU) = Wy - Wy (3.1)

connecting the nominal stress for quasi-static propagation
n* (i.e., the load per original cross-sectional area) with
the stretches in the necked (XD) and unnecked (AU)
regions. Here W 1is the (isothermal) strain energy density
of the material and WD and WU denote its values in the
uniaxial states far ahead and far behind the transition.

The states of stress in the transition are not uniaxial.
Nevertheless, the existence of the strain energy density

function W permits us to evaluate W using the uni~

™"y
axial history n(iA) to deform from state U to state D .

Since the energy density difference is the work in deforming
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from U to D , it follows that

>\D
Wy = Wy = J n(X)da (3.2)

>\U
The graphical Maxwell-line solution based on (3.1) and (3.2)
is indicated in Fig. 5. It has been tacitly assumed that the
solution in the transition is smooth and consistent with
quasi-static deformation. This places certain restrictions
on W which have not been fully documented. Some polymeric

materials whose true stress-strain data in tension has a

sharp local maximum exhibit nonsmooth behavior in the form
of shear bands, analogous to Luders bands. But polymeric
materials whose true stress-strain curve is monotonically
increasing do not appear to give rise to any purely material
instabilities, such as shear bands, in neck propagation and
the neck transition is smooth.

Some sense of how accurately neck propagation in the
nonlinearly elastic model material mimics necking of a more
complicated polymeric material was obtained in [2]. 1In that
paper the steady-state problem was formulated and solved
approximately for an initially uniform, solid circular
cylindrical bar. Two aspects of constitutive behavior
departing from nonlinear elasticity were addressed: inherent
path-dependence under multiaxial stressing histories, and
rate-dependence. Each of these features invalidates the
assumptions leading to (3.1) and (3.2) since the strain
energy density function W no longer exists. Egquation (3.1)
continues to hold precisely if WD—WU is interpreted as the
stress work experienced by a transverse slice of unit volume
as it is engulfed by the transition and if n* is the
nominal axial stress averaged across the cross-section (i.e.,
load/original area, P/AO). But this stress work difference
can no longer be evaluated in terms of the uniaxial history.

Now, even to determine quantities such as XD P XU and
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P/A0
and behind the transition, it is necessary to solve the

assoclated with the steady-state solution far ahead

entire problem, including the behavior in the transition.

In [2] the steady-state problem for a solid circular
cylindrical bar was formulated as an axisymmetric 3-D flow
problem in which the free-surface of the bar was determined
as part of the solution process. Approximate solutions were
generated using a variational principle together with a
numerically implemented Galerkin-Ritz procedure. Here we
will comment only on the results obtained for the history

dependent constitutive model, the J., flow theory of plastic

deformation (i.e., Prandtl-Reuss chory based on the Mises
invariant). This is a rate-independent constitutive law
which is fully specified after it has been made to coincide
with data specifying material behavior in uniaxial tension.
Calculations were performed for materials with specific
uniaxial stress-strain curves chosen to approximate those
measured for actual polymeric materials. The results were
compared with the predictions based on (3.1) and (3.2) for
the nonlinearly elastic model with precisely the same
uniaxial stress-strain curve.

Characteristic of the plastic material is a considerably
increased resistance to deformation in multiaxial deformation
histories which are nonproportional, compared to the response
of the corresponding nonlinearly elastic material. Since
deformation histories of material elements passing through
the neck are decidedly nonproportional, the plastic material
offers more resistance to neck propagation than its non-
linearly elastic counterpart. For the examples investigated
in [2] the nominal load associated with steady-state propa-
gation was between 10 and 20 percent larger for the plastic
bar than the elastic bar. The reduction in cross-section
from U to D was generally somewhat greater for the
plastic material. The work absorbed per slice of unit volume

of material as it passes from far ahead to far behind the
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transition, WD—WU , 1s about 30% greater for the plastic bar
than the elastic bar. The solution indicates that the shape
of the transition is not too different for the two bar
materials. The transition is fairly sharp. 1Its axial extent
is approximately one diameter of the unnecked bar.
4. BUCKLE PROPAGATION ALONG PIPES SUBJECT TO EXTERNAL
PRESSURE
This phenomena is of some importance in the design of
undersea pipelines against collapse [9, 10], and it is this
application which provides the background for the work [1]
summarized briefly below.
The buckling pressure of a long thin, circular cylin-
drical shell (pipe) subject to external pressure p 1is
3
b, = Lz[%] (4.1)
4(1-v7)
assuming the shell buckles in the linearly elastic range.
Here E and v are Young's modulus and Poisson's ratio of
the material, which is assumed to be isotropic; t 1is the
pipe thickness; and R 1is its radius. The buckling mode
associated with (4.1) is a ring-like deformation in which
each cross-section of the pipe undergoes the same ovalization,
i.e., a plane strain ring deformation. An undersea pipeline
usually has a ratio of t to R in the range 1/15 to 1/50
and is made of a steel with a yield stress which is
sufficiently high such that a perfectly (or nearly perfect)
circular pipe does undergo bifurcation from the circular
state (i.e., does start to buckle) when the stresses are
still in the elastic range. Thus, as long as the pipe is
not unduly imperfect or damaged, (4.1l) provides a good
estimate of the maximum pressure the pipe can safely support.
If, however, the pipe suffers a substantial dent at some
point along its length or if it buckles locally due to
bending in the laying process, then a propagating buckle can
be set into motion which spreads over the entire length of
the pipe. A short section of a long pipe which has
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experienced buckle propagation is shown in Fig, 6. The
section was selected to show the plastically collapsed
section and the transition to the unbuckled circular section.
In a manner very similar to the two phenomena discussed
earlier, the buckle propagation quickly settles down to a
steady-state in which the transition remains fixed in shape
and translates along the pipe at constant velocity, assuming
the pressure is held constant [10]. The lowest pressure p*
at which steady-state propagation can occur is that
associated with low-velocity, quasi-static propagation corres-
ponding to negligible inertial effects. Moreover, the quasi-
static propagation pressure p* can be as little as .2 or
even .1 of the "classical" buckling pressure P, for typical
pipe dimensions and materials. Thus a pipe which has
suffered severe local damage is susceptible to collapse over
its entire length at pressures well below what would normally

be considered the buckling pressure.

Fig. 6 Section of a pipe showing the transition between the
buckled and unbuckled regions of the pipe (pipe section
supplied by S. Kyriakides).

The approach put forward in [1] for predicting p* made
use of the buckling and post-buckling solution for a pipe

undergoing plane strain ring deformations. The key
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assumption, or approximation, in developing the model of the
pipe is the representation of the pipe material by a non-
linearly elastic material (the deformation theory of
plasticity) whose uniaxial stress-strain curve coincides
with that of the actual material. This step, which ignores
the path-dependence inherent to plastic flow, is analogous
(but less drastic) to modeling a polymer by a nonlinearly
elastic material, as discussed in the previous section.
Invoking a nonlinearly elastic material permits us to connect
the ring deformation states far ahead and far behind the
transition using the same argument employed in the other two
examples. 1In this way the extremely difficult problem
governing behavior in the transition can be side-stepped.

A schematic plot of external pressure p as a function
of cross-sectional area decrease AA 1is shown in Fig. 7 for
an infinitely long circular cylindrical thin shell undergoing
plane strain ring deformation. The yield stress of the
material is such that bifurcation (the start of buckling)
from the circular state occurs within the elastic range, as
already discussed. As ovalization proceeds under slightly
increasing pressure, plastic yielding (i.e., nonlinear
elastic effects for the nonlinearly elastic material model)
begins and a dramatic drop in pressure carrying capacity
accompanies further ovalization. When the area decrease AA
attains approximately 3/4 of the original cross-sectional
area, opposite sides of the shell touch and provide an
immediate bracing effect. Thereafter, the pressure rises
steeply with relatively small additional area decrease.

The state U of the pipe well ahead of the transition
is circular and well within the linear elastic range. The
collapsed state D far behind the transition is a collapsed
ring state. The energy balance argument for propagation of
the buckle in the pipe of nonlinearly elastic material under

quasi-static, steady-state conditions leads to
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BA
p* (AR ~0A ) =J p(4R) dAA (4.2)

AAU

Here p(AA) denotes relation between pressure and change of
area for plane strain ring deformations so that the Maxwell-

line construction for p* applies, as indicated in Fig. 7.

elastic buckling

. plastic yielding O

oo
1
-

AAU OAp OA
FPig. 7 Buckling and post-buckling of a ring of deformation
theory material undergoing plane strain deformation.

Schematic curve taken from [1].

Curves of p(AA) calculated using actual uniaxial
stress~strain data are given in [1] along with the calculated
values of p* . Comparisons of the predicted values of p*
with experimentally measured quasi-static propagation
pressures by Kyriakides are also given in [1] and generally
excellent agreement was found. In every case, the theoretical
estimate of p* underestimated the actual propagation
pressure, although in most instances only by a few percent.
Qualitative arguments involving technical details of plas-
ticity theory can be made to explain why the present simple
theory should underestimate measured values of p* and,
additionally, why path-dependent flow effects in the

transition area are not of major importance.
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