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Abstract—For crack-tip speeds which are even a modest fraction of the lowest elastic wave
speed of a material, the strain rates that are induced at material points close to the crack tip
are enormous. Experimental evidence is available which suggests that the flow stress is a fairly
strong function of plastic strain rate at the rates anticipated. An approximate analysis of the
high-strain-rate crack-growth process has been developed on the basis of this observation, which
is interpreted as implying that the elastic strain rates dominate the plastic strain rates. The
features of the approximate analysis are reviewed, and the results of more recent complete
numerical analysis of the same crack-growth model are described. Using the growth of a mac-
roscopic cleavage crack in mild steel as a vehicle for discussing the model, it is found that the
approximate model appears to capture the essence of the process for those temperatures at
which cleavage crack growth is supported. The numerical results indicate deficiencies in the
approximate analysis for higher temperatures.

1. INTRODUCTION

THE PHENOMENON under study is high-strain-rate crack growth as it occurs, for example, in
structural steels. It is well known that such materials may or may not experience rapid crack
growth in a predominantly cleavage mode, depending on the state of stress, the temperature,
and the rate of deformation. Evidence on the influence of stress state and temperature is abun-
dant in the technical literature, and data on the influence of loading rate on the variation of
fracture toughness with testing temperature for two carbon steels have been reported recently
by Wilson et al.[1]. It was found, for example, that an increase in loading rate as measured by
average stress-intensity factor rate from K, = IMPa-m'?/s to K, = 2 x 10°® MPa-m'%/s resulted
in an increase of more than 125°C in the cleavage transition temperature for a 1018 cold-rolled
steel.

The physical processes which underlie the growth of cleavage cracks in steels have been
of interest for many years. A particularly interesting qualitative discussion of the cleavage
process in metals was presented by Stroh[[2], who exhibited remarkable insight into the process
in view of the stage of development of fracture mechanics at the time.

The purpose here is to focus on the mechanics of rapid growth of a sharp macroscopic
crack in an elastic—viscoplastic material which exhibits a fairly strong variation of flow stress
with strain rate, particularly at very high strain rates. The general features of the process as
**seen’’ by a material particle on or near the fracture path are straightforward. As the edge of
a growing crack approaches a material particle, the stress magnitude tends to increase there
due to the stress-concentrating effect of the crack edge. The maternial responds by flowing at
a rate related to the stress level in order to mitigate the influence of the crack edge. It seems
that the essence of cleavage is the ability to elevate the local stress to a critical level before
plastic flow can accumulate to dilute the influence of the crack tip.

The problem was studied from this point of view by Freund and Hutchinson[3], who ex-
tracted conditions necessary for a crack to run a high velocity in terms of constitutive properties
of the material, the rate of crack growth, and the overall crack-driving force. The model de-
veloped by [3] is briefly described here and some conclusions drawn on the basis of an ap-
proximate analysis are summarized. More recently, numerical calculations based on the same
model have been carried out in order to develop some understanding of the range of validity
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of certain assumptions made in the analysis, and the results of these calculations are reported
here. In all cases, the growth of a plane-strain crack in the tensile opening mode is considered,
and the small-strain description of deformation fields is employed.

An estimate of the plastic strain rate near the crack tip may be obtained to support the
view that the actual strain rates are indeed very large. Suppose that the yield stress in shear
of the material is 7, and the elastic shear modulus is p. A representative plastic strain rate in
the active plastic zone of maximum extent R from a crack tip which is moving at speed v is
then taken to be the shear yield strain 7,/p divided by the time required for the crack tip to
travel the distance R at speed v. Furthermore, under small-scale yielding conditions with remote
energy release rate G, the maximum extent of the plastic zone is approximately R =
0.14u.G/7%. Consequently, an estimate of this representative plastic strain rate is

(YP)est = TvTI/G. (1.1)
For a pure-cleavage crack in an iron single crystal, G = 14 J/m?. Using typical values of p and
7y, and taking v to be one-tenth of the Rayleigh wave speed, the estimate (1.1) leads to values
of (y)es: between 10%s~' and 107s~*. Even for a macroscopic cleavage crack where G might
be 100 times larger than the value for pure cleavage, the estimated strain rates are still very
large. Because of the nonuniformity of crack-tip fields, of course, point values of strain rate
much larger than the estimate could be anticipated. Material rate effects, on the other hand,
would tend to lower plastic strain rates.

2. THE MATERIAL MODEL

Experiments have been reported on the high-strain-rate response of materials, usually
under more-or-less homogeneous states of deformation, and constitutive equations have been
proposed. For absolute temperatures well below the melting temperature, it appears that the
high-strain-rate response of iron may be divided into two regimes. These will be described first
for states of homogeneous shear, and then generalized for a continuum-field formulation.

For strain rates above a certain level, hearafter called the transition strain rate v, the
resistance to dislocation glide is essentially linear viscous resistance. If plastic flow is due
primarily to dislocation motion, then the plastic strain rate may depend on flow stress T ac-
cording to

VP = Y + Yol — 1)/l for r = 1, 2.1

where 7 is the value of T when y® = 5. This form is suggested by the data on mild steel reported
by Campbell and Ferguson[4], who give ¥, = 5 x 10%s 'and v, = 3 x 107s .

For plastic strain rates below the transition rate, the dependence on flow stress is not
nearly as strong. The underlying mechanism appears to be thermally activated dislocation glide,
and Frost and Ashby|35] propose a constitutive equation of the form

2 3/4\ 4/3
AF
Y = ¢, (i) exp [— kTp<1 - (%) > ] for + < 7, (2.2)

where 7 is the flow stress at 0 K. The values of all parameters appearing in (2.2) are given by
Frost and Ashby, and complete stress—strain relations for four temperatures are presented
graphically in [3]. Implicit in (2.1) and (2.2) is an assumption that plastic flow occurs predom-
inantly by dislocation glide. If dislocation multiplication/generation contributes significantly to
plastic flow, a weaker dependence of flow stress on plastic strain rate is anticipated (cf.
Clifton{6]).

To generalize the constitutive equations to provide suitable field equations for continuum
analysis, let y* = F(1) represent either (2.1) or (2.2), depending on the magnitude of 7. Then
the multiaxial plastic strain rate is taken to be

& = 4R (2.3)
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where s is the stress deviator and 7 = Vs;s,/2. In elastically deforming regions, elastic strain
rate is related to stress o; by

. 1 + v, v,
G?j = _E— O',_',' - EO—AABU (24)

where E is Young’s modulus and v is Poisson’s ratio of the (assumed elastically isotropic) ma-
terial. The relation applies when 7 = 7,. It is more convenient to view T, as the stress magnitude
when the plastic strain rate falls to 1 s~ ' rather than a yield stress in the usual sense, and it
is concluded from the analysis that the difference in viewpoint is immaterial.

3. STEADY CRACK GROWTH

Suppose that a crack has grown at speed v for a time long enough to establish a steady
mechanical state; that is, an observer travelling with the crack tip sees no variation in the
mechanical fields. Further, suppose that the active plastic zone is completely surrounded by
a well-defined elastic stress-intensity-factor field. Under these conditions, the time rate of
change of any field quantity may be replaced by a spatial gradient in the direction of crack
growth, and the influence of the applied loading i1s completely represented by the value of the
dynamic stress-intensity factor K or, equivalently, the value of the dynamic energy release rate
G. The features of the model are more fully developed in [3].

The stress state for points very far from the crack tip is given by

K
\V2nr

2,400, m) (3.1)

;=

as the radial distance r from the crack tip becomes very large, where m = v/cg, g is the elastic
Rayleigh wave speed of the material and 3 is the universal function of angle 8 measured with
respect to the crack plane (cf. Rice[7], Freund[8]). For points very close to the crack tip, it is
assumed that the relationship (2.1) holds. If the stress is singular there, it can readily be shown
that the elastic strain rates dominate the plastic strain rates, which implies immediately that

Kiip
oy = —=13,0, m) asr— 0, 3.2)
4 /—2 - J

where K, is a different, local stress-intensity factor. The fact that a material described by (2.1)
can indeed support a square-root singular stress field has been noted by L.o[9] and Brickstad[10],
and the latter used a similar result to advantage in numerical analysis of crack-growth phe-
nomena. It should be noted that the inverse square-root dependence of o; on r does not require
that the plastic strain rate depends /inearly on stress as in (2.1). The same singularity in stress
will exist for any material for which ¥P is proportional to (t — 7.)¢ with ¢ < 3. Consequently,
the conclusions drawn on the basis of the linear relationship (2.1) are actually applicable for a
range of viscoplastic material response.

The stress-intensity factor at the crack tip Ky, is different from the remote K because
processes at the crack tip are ‘‘screened’” from the remote loads by the intervening plastic
deformation. The viewpoint was adopted in [3] that crack growth is controlled by the value of
Kiip., and the objective of the analysis was to relate K, to K. It was found to be advantageous
to work in terms of energy variations. Consequently, the dynamic energy release rate G is
introduced. G 1s related to stress-intensity factor K through a generalization of Irwin’s rela-
tionship by

1 — 12

G = f(m) I

K2, (3.3)

where f(m) is a dimensionless function of crack-tip speed. G represents the energy flow into
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the crack-tip region per unit crack advance. An equivalent expression relates the near-tip stress-
intensity factor K, to the crack-tip energy release rate Gy,. The quantity Gy, represents the
energy released from the body per unit crack advance.

The matter of relating G to Gy, is pursued in [3] by enforcing an overall energy-rate balance
by means of a particular path-independent integral. The balance is included here in the form

h

|
Gup = G;L oégda — [ vrdn, (3.4)

where A is the area of the active plastic zone in the plane of deformation, f is the thickness
of the plastic wake far behind the crack tip, and U# is the residual elastic strain energy per
unit crack advance stored in the remote wake. Equation (3.4) simply states that the energy
being released from the body equals the energy flowing into the crack-tip region reduced by
the energy being dissipated through active plastic flow, and further reduced by the energy being
locked into the wake due to incompatible plastic strains. The expression in (3.4) is exact.

To make further progress analytically, it was found necessary to invoke certain assump-
tions, and these are briefly restated here. First, it can be estimated from the work of Dean and
Hutchinson[11] that the elastic energy trapped in the wake region accounts for less than 10%
of the energy flowing into the crack-tip region for steady crack growth in rate-independent
elastic—plastic materials. The percentage is expected to be less here because only relatively
small plastic strains are accumulated. For this reason, the last term in (3.4) was ignored. Next,
to estimate the work dissipated through plastic flow in the active plastic zone, it was assumed
that the stress distribution is given by (3.2) everywhere in the active plastic zone. Strictly
speaking, this distribution is correct only asymptotically as » — 0. In any case, with the stress
distribution specified, the plastic strain distribution is given by (2.3), and the integral over A
may be evaluated. Finally, if the criterion for the crack to run under steady-state conditions
is Gup = Gtip, where Gj, 1s a material specific value, then (3.4) reduces to the remarkably
simple form

G . 1 + D(m)P., (3.5)

o =
tip

where P. is the dimensionless combination of mass density p and other material parameters:

_ YoV pGsp [] N 27‘”],

P,
3¢ Yort

(3.6)

and D(m) is a function of crack-tip speed and, implicitly, of the Poisson ratio of the material.
P. appears to be a monotonically increasing function of temperature for mild steel, and its
value was estimated to be 0.6, 1.8, 3.4 and 6.4 for absolute temperatures of 0, 100, 200 and
300 K, respectively. The function D(m) varies smoothly with crack speed; it has a minimum
value of 0.109 at m = 0.55, and it is asymptotically unbounded as m — 0 or m — 1. A graph
of D(m) is shown in Fig. 1.

For a given value of P., the curve in Fig. 1 represents the variation of G/G¥, with m,
Assuming that the steady-state solutions are approximately valid under nonsteady conditions,
the result suggests that a running crack nucleated under combinations of G and m lying below
the contour will decelerate until either a solution state is reached or the crack arrests. Likewise,
if nucleated with a combination lying above the contour, the crack will accelerate toward a
solution on the branch of the curve with m > 0.55. The result in Fig. 1 is shown in [3] as a
family of curves, each for a different value of P.. The results may also be restated in terms of
an applied energy release rate G, which has a more direct relationship to the applied loads
than does G. The two quantities are related by G = (I — m)G, for a half-plane crack in an
otherwise unbounded solid, and this relationship appears to have broader applicability unless
stress-wave effects are significant.

Two dimensionless parameters arise naturally in the analysis; these are denoted by « and
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Fig. 1. A graph of the function D in (3.5) vs crack-tip speed normalized by the Rayleigh wave
speed for a Poisson ratio of 0.29.

B, and they are defined by

G Yo G
o = —F, B =

VTzv

(3.7)

VTt

The parameter « is a measure of the plastic-strain-rate magnitude compared to a material time
constant. In this sense, it is an absolute measure of strain rate for the process, which can be
viewed as a high-rate process only if «a is sufficiently small. The parameter 8, on the other
hand, is essentially a measure of plastic strain rate compared to the elastic strain rate. It is a
relative measure of strain rate, and the approximate solution in [3]is valid only if 8 is sufficiently
small. Indeed, it is shown in [3] that not only is the estimate of energy release rate G exact as
B — 0, but the rate of change dG/dp is also exact as B — 0.

To gain further insight into the range of validity of the approximate solution in [3], a full
numerical analysis of the same steady growth problem was undertaken. The features of the
computational procedure and the principal results are summarized next.

4. COMPUTATIONAL PROCEDURE

A finite-element mesh is fixed with respect to the moving crack tip and the governing
equations are solved numerically with reference to this mesh. The geometry of the mesh, the
relative sizes of the elements, the type of elements, and so on are the same as were used by
Lam and Freund[12] in a study of steady growth of a tensile crack in a rate-independent elastic—
plastic material. It i1s important that the outer boundary of the mesh be far from the crack tip
compared to the maximum extent of the active plastic zone so that the use of the elastodynamic
crack-tip solution as a boundary condition is legitimate. Some focussing of the mesh at the
crack tip is also required so that the smallest elements at the tip are much smaller than the extent
of the active plastic zone.

A rectangular coordinate system (x,, x,, x3) is introduced so that the x; axis coincides with
the crack edge and the x; direction is the direction of crack growth. The deformation is plane
strain, and is independent of x;. It was found to be convenient to rescale the physical coordinates
by the length parameter [ = wG/17. The normalized coordinates are then denoted by superposed
carets; that is, £; = x;/[. Normalized components of stress, strain and displacement are also
introduced; these too are denoted by superposed carets and are defined by

6'(,' = O',",'/‘Tl, é,J = }L€,:,'/Tt, L?,' = }LLI,'/T([. (41)
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The global equation which underlies the finite-element formulation is obtained by forming
the inner product of a kinematically admissible, but otherwise arbitrary, displacement field du;
with the momentum equation, which in nondimensional form is

o ¥
Wy _ e M (4.2)

aa2?
0x1

8X/'

where m, = v/c,, and then integrating over the region of the body, say R, covered with the
element array. The result is

. L 081 ol R 4 .. 0, oA .
f Bé,'/C,','/\[é/\[ — My "'A—l ‘(—j[‘ dR = f Sl,l,'()','jnj — My Bll,' ] dF + f BE,_','C,_','/\-/EQ/ dR,
R st ax) af, I ' 9% R

(4.3)

T" is the boundary of R, n; i1s the outward normal to I', and C:_‘jk[ 1s the positive definite elasticity
tensor normalized by the shear modulus w. It is assumed in writing (4.3) that the total strain
is the sum of the elastic strain and the plastic strain.

The basic idea of the numerical algorithm for integrating the equations of motion stems
from the work of Dean and Hutchison[1]] and Parks, Lam and McMeeking[13]. The unknown
plastic strain appears as a body force term on the right side of (4.3). Consequently, the procedure
starts with €% = 0 and with a known elastic-stress distribution. The plastic strain at any point
1s estimated by integrating the incremental stress—strain relations along the forward pathline
of the point, and (4.3) is solved by the finite-element method to obtain a new estimate of stress.
These steps are repeated iteratively until a convergence criterion is satistied. Because earlier
work dealt with rate-independent material models, it was necessary to derive a finite-difference
integration formula which was suitable for the constitutive equation used to model the rate-
sensitive material. This derivation was based on the tangent modulus method of Peirce, Shih
and Needleman[14].

The constitutive equations (2.3, 4) can be inverted to yield the deviatoric stress rate §; in
terms of the deviatoric stress and the deviatoric strain rate ¢;:

. . | S
Sy = 21 |:e,-j — EF(T)?']:I, (4.4)

If the incremental form of (4.4) is incorporated directly into a finite-element formulation, it
leads to an explicit Euler time-integration scheme in which the finite-element stiffness matrix
is derived from the elastic stiffnesses. In some circumstances this approach requires extremely
small time steps in order to ensure numerical stability. Peirce, Shih and Needleman|14] intro-
duced an estimate of the change in the second term in (4.4) during the current time increment
to yield a tangent stiffness which depends on the magnitude of the time step and on the material
properties. The modified tangent stiffness is considerably reduced from the elastic stiffness,
and it leads to improved numerical stability[14].

For the steady-growth problem at hand, eqn (3.8) of [14] reduces to the nondimensional
form

A A & A 1 § Eran j,:-
Ab‘,:,' =2 I:AF,:,' — 1+ gni/nk/Ae,\, — Emgi ;j . (45)
where
£ Ag e Q Q,%V“p
' Ean my N (4.6)
a(r/w) /0
tan — .o Escg = -_—.
a(yPlyo) YIvo
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Here A§; and A é; are the incremental changes in deviatoric stress and strain for an incremental
change in position Ax£, along a pathline, and ¢ is a linear-interpolation parameter with value
between 0 and 1 (cf. Peirce et al.[14]). The parameter Q arises naturally in the course of
normalization. It is a combination of material parameters and the overall dynamic energy release
rate G. Like the parameter P used in [3], Q can be interpreted as a measure of load intensity
and it plays a central role in characterizing the steady-crack-growth process.

It 1s noted that the integration formula (4.5) reduces to the standard Euler formula when
¢ = 0, and that it corresponds to elastic material response when @ = 0 but ¢ # 0. As Q
approaches infinity, the response represented by (4.5) approaches the case of rate-independent,
elastic-perfectly plastic material response.

Equation (4.5) applies to regions in which the response is represented by either of the two
forms of the plastic-strain-rate equation, that is, either (2.1) or (2.2). It must be kept in mind
that for a given Aé;, the change in state of stress at a material point resulting from application
of (4.5) may result in a change of operative constitutive equation at that point. This matter is
handled by incorporating the ideas of Rice and Tracey|15]. For each increment A£,, a check
is made to see if a strain increment MAé; with 0 << M < 1 will carry the stress state to a
boundary of the current response regime, e.g. to 7 or 7,. If not, (4.5) is applied directly.
Otherwise, the final stress state is computed as resulting from separate strain increments MAé;;
and (1 — M)Aé;, with each based on the appropriate form of F(7) in (4.5).

5. RESULTS

A typical result showing the boundaries of the different regimes of rate-dependent plastic
flow is shown in Fig. 2 for v = 0.3¢s, Q = 20, v = 0.3 and temperature of 300 K. The inner
contour is the locus of points for which the effective plastic-shear-strain rate is 4., and the
outer contour is the locus of points for which the effective plastic strain rate is 1 s~'. The inner
contour is determined almost completely by the value of QO but the outer boundary depends
on the prevailing temperature.

The energy dissipated in each portion of the active plastic zone was determined from the
finite-element solution by means of numerical integration of the area integral term in (3.4). It
was found that the energy dissipated per unit crack advance in the inner (high-strain-rate) part
of the active plastic zone is usually greater than 90% of G. For the situation depicted in Fig.
2, the percentage is actually 94% of G. This observation provides justification for the approx-
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Fig. 2. The active crack-tip plastic zone for the particular case of m. = 0.3, 0 = 20 and v =
0.3, showing the inner high-strain-rate region and the outer low-to-moderate strain-rate region.
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imation made in [3], according to which the energy dissipated in the outer part of the active
plastic zone was simply neglected in estimating the total energy dissipated through plastic flow.
It also supports the suggestion made above that the precise definition of 7, is immaterial.

Particular insight into the phenomenon of high-strain-rate crack growth was gained in [3]
by examining the dependence of the ratio G,,/G on Q (in [3], a parameter called P which is
proportional to Q was used). Consequently, the same dependence has been examined for the
finite-element solution as well. For purposes of direct comparison, the portion of the energy
locked in the wake as residual elastic energy has also been ignored in the interpretation of the
numerical results. The results of the comparison are shown in Fig. 3, where the continuous
curves represent the expression in egn (6.3) in [3] with Q set equal to 3P. It is evident that the
agreement diminishes in quality as () increases, for any given value of m. This matter was
pursued by examining the computed stress fields around the crack tip, rather than considering
only the global energy quantities. While space does not permit graphical representation of these
stress distributions here, the general observation is that the departure of the approximate so-
lution of [3] and the numerical finite solution corresponds to substantial deviations of the near-
tip stress distribution from the elastic distribution. Recall that it was assumed in [3] that the
near-tip distribution was exactly the elastic stress distribution, and the ratio Gy;,/G was esti-
mated on this basis.

The energy rate balance (3.4) was deduced in |3] by application of a path-independent
integral introduced by Hutchinson[16] for steady quasistatic crack growth and by Willis[17] for
steady dynamic growth, namely

I = f (U + Tny — oynu; ] dC, 5.1
¢

where U is the stress work density, T is the kinetic energy density, and C is a path encircling
the tip of a crack growing steadily in the x; direction. The value of [ is the same for all crack-
tip contours C which start on one traction-free crack face and end on the opposite traction-
free crack face. If it is recognized that I = Gy, and if the normalization of field quantities in
(4.1) is introduced, then it can be shown that

Gip _

G fc[(U + 1) ny — ynidica] dC. (5.2)

The value of the integral (5.2) was considered for 12 integration paths around the crack tip for

Gyp /G

0 10 20 30 40

Fig. 3. The ratio of the crack-tip energy release rate G, to the rate of energy flow into the

crack-tip region G vs Q, for several values of crack-tip speed. The curves are the result of the

approximate analysis in [3] whereas the discrete points are the result of numerical computation
based on the same model.
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each numerical solution. The innermost path passed through the centers of just the 8 finite
elements nearest the tip, and each successive path was formed by moving the previous path
outward from the tip one element spacing. It was found that the average value of Gy,/G for
the 12 paths for each numerical solution differed from the value plotted in Fig. 3 by only 1-
2% in most cases, and the difference was never greater than 4%. The difference may be due
in part to the elastic energy stored in the wake of the active plastic zone, which is included in
(5.2) but not in the estimate appearing in Fig. 3. In any case, the general consistency contributed
to confidence in the adequacy of the numerical procedure.

Finally, the application of the theory in [3] to the growth of a macroscopic cleavage crack
in mild steel is reviewed in light of the computational results. Suppose that the criterion for
the crack to run under steady-state conditions is

Gin = G, (5.3)

The critical energy release rate Gf, represents the energy per unit crack extension absorbed
by the fracture processes and not otherwise accounted for by the continuum analysis. For
simplicity, G¥, is viewed as a material constant, independent of crack speed v or temperature.
If the definition of Q is recalled from (4.6), the growth criterion (5.3) may be rewritten as

i Qe
kd

G 0

where Q. = 90V ppGiip/72. Note from (3.6) that Q. = 3P., with the difference being slightly
temperature dependent due to the second term in brackets in (3.6). On the basis of material
properties data given by Frost and Ashby[5] and Campbell and Ferguson[4], the estimate

tp = 1.73 x 10° N/m was deduced in [3]. Typical values of Q. were found to be 4.84, 9.57
and 18.56 for temperatures of 100, 200 and 300 K, respectively.

In the coordinates of Fig. 3, the relationship (5.4) represents a hyperbola. If this hyperbola
is superimposed onto Fig. 3, then the intersection of this hyperbola for a particular value of
Q. or temperature with the corresponding curve on that figure yields a combination of the
quantities G5,/G, @, and m for which the steady-growth condition (5.3) is satisfied. This result
of the computational procedure may then be compared to the result (3.5) based on the ap-
proximate analysis of [3]. This comparison is made in Fig. 4, which shows three curves of G,/

(5.4)
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Fig. 4. The ratio of remote crack-driving force G, to the crack-tip energy release rate Gip vs

crack-tip speed for steady growth for three values of the characterizing parameter P.. The

curves are from [3] whereas the discrete points are the result of numerical computations based

on the same model. Material parameters typical of mild steel were selected, as described in the
text.
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Grip vs m for three values of Q. (or, equivalently, three values of temperature of about 100,
200 and 300 K). The curves correspond to data in Fig. 7 of [3]. The discrete points of Fig. 4
are the values extracted from the numerical procedure. The lower point of each pair follows
from the assumption that Q. = 3P., while the upper point of each pair follows from independent
calculations of P. and Q. for the noted temperatures. It is evident that the results of the com-
putational procedure support the earlier results based on an approximate analysis for low tem-
peratures (or low values of Q.). The data show, however, that as the value of Q. increases to
about 20 (or the temperature increases to about 300 K) the approximate analysis of [3] signif-
icantly underestimates the amount of plastic dissipation and, consequently, underestimates the
level of applied driving force G required to sustain steady growth of the crack.

6. CONCLUSIONS

The parameter Q, which depends on material parameters and the remote crack-driving
force, arises naturally in the formulation of the computational problem in terms of nondimen-
sional quantities. As was suggested in [3], this parameter can be used to characterize the high-
strain-rate crack-growth process. Temperature dependence is incorporated entirely through the
temperature influence on the various elements of Q.

The results of detailed numerical computation support the assumptions underlying the
approximate analysis reported in [3] when Q is sufficiently small. In this case, the plastic strains
are small compared to the elastic strains and the asymptotic near-tip stress distribution provides
a reasonable approximation to the actual stress distribution throughout the entire portion of
the active plastic zone in which the strain rates are very high. When Q becomes relatively
large, the numerical results diverge from the results of the approximation analysis, particularly
at very high and very low crack-tip speeds. At the high crack speeds, the divergence seems
to be due to the fact that the plastic zone becomes too large for the asymptotic crack-tip field
to provide an acceptable approximation to the stress distribution throughout the plastic zone,
and the plastic dissipation calculated on the basis of this assumption underestimates the actual
dissipation as shown in Fig. 3. At low crack speeds, on the other hand, the divergence seems
to be due to the fact that a material particle near the crack tip i1s subjected to high stress levels
for a long enough time for substantial plastic flow to accumulate, thus invalidating the basic
assumption of an underlying elastodynamic stress distribution near the crack tip. From ex-
perience with crack growth in rate-independent elastic—plastic solids, it is anticipated that the
range of validity of the Ky;,-dominated near-tip field vanishes completely as the crack-tip speed
m approaches zero.

A nondimensional parameter B, defined in (3.7) above, was introduced in [3] to provide a
measure of whether or not a crack-growth process was indeed a high-strain-rate process. In
the present formulation, the parameter is exactly equal to Q/m.. From the data in Fig. 3, it is
clear that the approximate analysis, which is based on several assumptions consistent with
high-strain-rate response, is accurate for values of B = Q/m. up to about 20 for any crack-tip
speed. For values of § which exceed 20, the numerical results and the approximate analytical
results diverge, especially at the high and low crack speeds. It is noteworthy that the main
qualitative feature deduced in [3], namely the elimination of accessible propagation states as
(. increases, is preserved in the more detailed numerical simulation.
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