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Abstract—Cracks in a brittle adhesive layer joining two substrates have been observed to propagate
in a variety of ways, including straight or wavy paths within the adhesive layer, paths along one of
the interfaces, and paths alternating from interface to interface through the layer. The effective
toughness of the joint depends on the nature of the path. An asymptotic elasticity problem is
analyzed in this paper which allows one to predict whether a straight crack path can occur within
a brittle adhesive layer. In the asymptotic problem, an adhesive layer between two semi-infinite
blocks contains a semi-infinite straight crack. The joint is loaded remotely by the first three terms
of the stress field expansion for a cracked homogeneous solid, parameterized by stress intensity
factors K and K[, and the non-singular stress acting parallel to the crack, 7%. These are the
apparent, or applied, load factors determined from the analysis of an actual specimen by neglecting
the presence of the layer. Also present is a residual stress in the adhesive layer. We calculate the
local stress intensity factors, K| and Kj;, and the non-singular stress, 7, associated with the field at
the tip of the crack in the layer in terms of the corresponding applied quantities and the residual
stress. A necessary condition for the existence of a straight path within the layer is the location of
a path with K;; = 0. Such a path will only be stable (i.e. grow in a straight, non-wavy manner) if
T < 0. Qur analysis provides the location of the crack in terms of the combination of applied
intensity factors and the mismatch in elastic moduli between the layer and the adjoining material.
Stability depends on the residual stress and 7, as well as on the moduli mismatch. For a compliant
adhesive with predominant applied mode I loading, the crack will tend to run stably within the
layer unless 7™ and the residual stress are positive and relatively large.

INTRODUCTION

The subject of the present paper is to study cracking confined to brirtle adhesive layers. In
the present context, an adhesive layer is said to be brittle if the size of the plastic zone
around a crack tip, r,, is small compared with the layer thickness, H, namely,

1 (KN H
s 3<) <35 M

where K. is the fracture toughness and g the yield stress of the bulk adhesive, respectively.
Examples of adhesives that have been used to join ceramics are given in Table 1. The layer
thickness, H, is typically of the order of 100 um. Thus, judged from eqn (1), epoxy and
glass are brittle adhesives, while aluminum is ductile.

Wang and Suo (1990) have measured the fracture energy of an epoxy layer joining
two aluminum alloy half-disks using sandwiched Brazil nut specimens. When the base
specimen 1s subjected to predominantly mode T load, they observed that the crack often
runs within the epoxy layer rather than along the epoxy—aluminum interface, although
the fracture energy for epoxy is two or more times higher than that for the particular
epoxy/aluminum interface. Such a peculiar phenomenon has also been observed by other
authors [e.g. Cao and Evans (1989) and Cao (1989)]. As a consequence, the measured
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Table 1. Plastic zone size of several adhesives

Adhesive K. (MPam'?) ay (MPa) rp (um)
epoxy 0.6 85 5
glass 0.7 =)
aluminum 30 100 3x10*

effective fracture energy of the joint G, versus the combination of remote loads has the
discontinuous characteristics of Fig. 1. For predominantly mode I loading with only a small
component of mode II, the fracture occurs within the epoxy layer, and the measured G, is
the fracture energy of the bulk epoxy, G,.. When the mode IT component is sufficiently
large, typically tan~'(K{j/K{) > 15°, the crack runs along the epoxy/aluminum interface
and the measured G, is the mode-dependent interfacial fracture energy.

The issues of crack path selection and stability can be addressed in terms of the
asymptocic stress field around the crack tip. Let (r, 8) be polar coordinates centered at the
tip of a traction-free crack in a homogeneous isotropic solid. The Williams asymptotic
expansion of stresses is

[Gxx G.xyil K, [5xx(9) 6xy(9)j|
o, 0, —\/Zr“r G, (0) dlvy(G)
K, [6.(0) &%) r o
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where K and Kj; are stress intensity factors of opening and shearing modes, respectively,
and the constant term 7T is a stress acting parallel to the crack plane. The nondimensional
f-dependent functions are normalized so that the stresses ahead of the crack tip (6 = 0) are

given by
Oxx O-Xy K[ l:l O:l K” |:0 1:| I:T O:|
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It is an experimentally established fact that a crack advancing continuously in an
isotropic homogeneous brittle solid selects a trajectory where K;; = 0. Symmetry dictates
that a crack along the centerline of a layer joining identical materials and subject to remote
pure mode I loading will be under pure mode I locally. When the base specimen carries
some mode Il in addition to mode [, the crack may find a pure mode [ path off the centerline,
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Fig. 1. Schematic of observed toughness of an epoxy layer between aluminum substrates, from tests
of Wang and Suo (1989).



Crack path selection in brittle adhesive layer 1685

According to Cotterell and Rice (1980), a straight crack advancing with Kj; = 0 is
directionally stable if T < 0 and unstable if 7' > 0. This assertion may be interpreted in the
following way. If the straight path of a mode I crack is perturbed as the crack tip advances
due to some micro-heterogeneity, a positive T-value will cause the crack to veer away from
the straight trajectory while a negative 7-value will pull the path back in line. In other
words, a straight path within the adhesive layer can only exist if a pure mode I crack path
exists and if its tip has 7 < 0., The present analysis permits this assessment to be made. In
addition, we discuss the behavior of a straight crack positioned away from the pure mode
I trajectory to evaluate whether it kinks toward the pure mode I trajectory or towards the
interface.

AN ELASTICITY PROBLEM AND ITS SOLUTION

An elasticity problem that addresses the above issues is introduced in Fig. 2. An
adhesive layer of thickness H is sandwiched between blocks of an identical solid. Each solid
is taken to be isotropic, homogeneous and elastic, with shear modulus and Poisson’s ratio
(i, v,) for the adhesive, and (s, v,) for the substrates. The plane strain problem is considered
since the out-of-plane dimension of the joint is assumed to be much larger than the layer
thickness. A crack lies parallel to the interfaces and is located within the layer at a distance
¢ above the lower interface. We consider the asymptotic problem wherein the crack is semi-
infinite and the blocks are semi-infinite as well. This is appropriate when the adhesive is
very thin compared to other in-plane lengths in a given specimen or geometry.

The non-dimensional parameters that characterize this bimaterial structure are the
relative crack depth, ¢/H, and the Dundurs (1969) elastic mismatch parameters
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Two other combinations appear frequently and are related to Dundurs’ parameters by :
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Here E = 2u/(1--v) is the plane strain tensile modulus, and ¢ is the oscillatory index
responsible for various pathological behaviors in linear elasticity solutions for bimaterial
interface cracks. Observe that f = a/4 when v, = v, = 1/3, and that values of « and f for
many bimaterials are clustered near the line f = o/4 on the (¢, 8) plane (Suga et al., 1988).
For this reason, solutions in this paper are sometimes plotted using only one elastic
mismatch constant o, with the understanding that § = «/4.

There are four independent load-like quantities in the problem. A residual stress, ¢",
exists in the adhesive due to thermal mismatch or other sources. Let Ki°, K} and T* denote
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Fig. 2. The elasticity problem.
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the crack-tip quantities evaluated for the actual specimen or geometry neglecting the
presence of the layer. We refer to these as the applied loads determined from the homo-
geneous base specimen. They are related to the applied loads and geometries as can be
found in Tada er a/. (1985) for K values and Larsson and Carlsson (1973) for T values
The remote field in the asymptotic problem in Fig. 2 is specified by K{*, K7, T™ and o°
The solution of the elasticity problem provides the local K|, K}, and T at the crack tip W1th1n
the layer in terms of the remote load-like quantities. Note that the local quantities are
different from the remote ones because of elastic dissimilarity and the residual stress. A
general integral equation formulation for cracks in layered composites has been presented
by Erdogan and Gupta (1971). The solution procedure we adopt follows directly from Suo
and Hutchinson (1989), and is described in detail in Appendices A and B.

The local T-stress depends linearly on all four loading parameters. Dimensional and
compatibility arguments lead to

| —
7TOL+G' +C1 +C”
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where the coefficient of T* is readily evaluated and ¢° denotes the o,, component of
residual stress pre-existing in the layer. The two non-dimensional functions, ¢;(¢/H, a, ) and
cnle/H, a, ), were computed as detailed in Appendices A and B and are tabulated in
Appendix C.

Consider the local stress intensity factors next. It is seen that both ¢® and T* do not
induce a stress intensity at the crack tip by the following argument : when no crack is present
in the layer, ¢® and T cause no traction on any plane parallel to the layer. One concludes
that the local (K}, K},) depend only on the remote loads Ki°, Ki7. The two sets are connected
by the energy release rate due to conservation of the J-integral, namely

“4)
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Algebraically, eqn (5) is equivalent to

1_ 1/2
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Ki={-—1 (K sinp+KJ cos ¢) (62)
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or
. ]_a 12 o s 14
(K| +iKy) = 1+« (K" +1Kjj)e (6b)
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where ¢ can be interpreted as a phase angle shift between the remote and the local stress
intensities, ¢ = tan "' (K,;/K;)—tan" ' (K{{/K}"). Dimensional considerations and linearity
dictate that ¢ is only a function of structure, i.e. ¢ = ¢(c/H, o, ). This functional depen-
dence has also been computed and is given below.

Two solutions exist in the literature which enable us to obtain ¢ when ¢/H is sufficiently
small or sufficiently close to unity. A sub-interface crack very close to the interface has been
analyzed by Hutchinson ez al. (1987). The local K| and K|, can be expressed in terms of the
complex stress-intensity factor K for the corresponding problem where the crack lies on the
interface. The connection between the two sets of intensity factors when the crack lies just
below the interface is
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1—p?
14+«

1/2
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where the function ¢, (a, f) is given in Hutchinson e al. (1987). The complex stress intensity
factor K when the crack lies in the upper interface of the sandwich structure is solved in
Suo and Hutchinson (1989) and is given by

172
K= l)—han K> 1K % H—ic iw(a,ff) 8

1—p? (Ky* +1K77) € (8)
where the function w(a,f) is tabulated in Suo and Hutchinson (1989). Eliminating K from

the above two formulae, one obtains the connection between the local and remote stress
intensity factors which is valid when (H—¢)/H is sufficiently small

) l—d 1/2 ) H_c ie )
K["FIK“ = (ﬁa) (Kfc-i-lKﬁ') ]—T e‘(‘/’y‘#m)‘ (9(1)

The corresponding formula for ¢/H near zero is
) ] iy 1/2 ) ¢ i )
K +1K“ = m (K’iK -l"Kﬁ ﬁ e ute) (9b)

The quantity ¢ defined in (6) is antisymmetric about the center of the layer, i.e. ¢ is an odd
function of ¢/H—1/2. The following approximation to ¢ has the desired antisymmetry and
has the correct asymptotic behaviors, (9a) and (9b),

H—c¢

1
¢=c¢in <T >+2<; - §>(¢H(<¥, B+ (o, ). (10)

By comparing (10) with the computed values of ¢ we have found that this approximation
is highly accurate. A comparison between the approximation (10) and computed values is
shown in Fig. 3, where ¢ is plotted as a function of ¢/H for several values of a (with
B = a/4). The combination ¢4+ w is tabulated in Appendix C.

(B=a/4)
approximate
formula
numerical
* solution
aq= -—OB ®
104
&=-04 a=08
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Fig. 3. Phase angle ¢ = tan™' (K;,/K;) —tan™"' (K| /K[") for several « values. The full numerical
solution is compared with the asymptotic formula, eqn (10). Attention is restricted to § = a/4.
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In summary, the solution to the elasticity problem in Fig. 2 is given by (4) and (6) with
¢; and ¢, tabulated in Appendix C and ¢ given with high accuracy by (10). This solution
is now applied to several practical issues in adhesive joint fracture testing.

ELASTIC STRESS SHIELDING FOR A COMPLIANT ADHESIVE

In practice, the fracture energy G, for adhesive joints is calculated from the measured
critical loads by neglecting the presence of the adhesive layer. Provided the layer thickness
is small and the crack is long and parallel to the layer, conservation of the J-integral implies
that this measure of G, equals the actual energy released at the crack tip regardless of the
crack location (within the adhesive or along the interface). The value of the fracture energy
G, 1s Gy, for the adhesive if a straight mode I path actually occurs within the adhesive, or
is the adhesive/substrate interface fracture energy at the relevant mode of loading if the
crack propagates along the interface.

Under remote mode I loading, a crack along the centerline in the layer is locally mode
1. If this is a stable crack path and if there is no microstructural change due to the bonding
process, the adhesive fractures when the local K| attains the toughness of the bulk adhesive
K. Specialized from (5) by setting Kj; = Kif = 0, the apparent adhesive toughness is

14a\V2 E N\
KIDE = (l—a) KIL' = ET Klz" (11)

An analogous formula was obtained by Wang et al. (1978) for the double-cantilever
specimen,

In practice, adhesives are usually less rigid than substrates, so that the apparent fracture
toughness, measured by the applied stress intensity factor, K7, is higher than the toughness
of the bulk adhesive, K,.. Such an effect is due entirely to the elastic mismatch of the two
solids and may be referred to as an elastic stress shielding effect. As an example, consider
the glass/alumina system. Taking « = 0.7, eqn (11) predicts a ratio K{Z/K,. of 2.4. This is
in good agreement with the measured fracture toughness values of Zdaniewski ez al. (1987).

STABILITY OF CRACK TRAJECTORY UNDER APPLIED MODE I LOADING (K =0)

To focus the discussion, assume that the base specimen is subject to a pure mode 1
loading (K = 0) so that the centerline of the adhesive layer is a crack trajectory satisfying
K, = 0. A necessary condition for such centerline trajectories to be observed is that 7' < 0,
as already remarked. The behavior of a straight crack displaced away from the centerline
suggests another parameter which affects the nature of the crack trajectory. Consider a pre-
existing straight crack somewhat off the centerline in the adhesive layer. As illustrated in
Fig. 4, if the crack lies above the centerline, it will kink down towards the centerline if
K > 0. A formal statement for a crack slightly off a path with K;; = 0 to kink towards that
path is 0K /éc¢ > 0. In other words, a pre-existing crack which is slightly displaced or
misaligned will only head towards the centerline (i.e. the path with K, = 0) if ¢K,,/dc > 0.

"
d substrate
H

|
)

l substrate

Fig. 4. For K{f =0, a crack above the centerline kinks towards the centerline when Xj; > 0. In
general for slightly displaced cracks, the kink will be towards the centerline if 0Ky /dc > 0.
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Fig. 5. Conjectured trajectories of crack advance when Ky = 0 for a crack displaced slightly off the
centerline, depending on the signs of 7" and JK,/dc.

These considerations suggest that there are four different patterns of fracture behaviors
depending on the signs of T and 0K),/dc, as illustrated in Fig. 5. We discuss them in turn.

Crack runs stably along the centerline (pattern A)

This is expected when ¢K|;/d¢ > 0 and T < 0. A pre-crack slightly above the centerline
will kink towards the centerline because of the positive K|, and the compressive T-stress
stabilizes the centerline path.

Crack trajectory is wavy about the centerline (pattern B)

This is expected when ¢Kj/dc > 0 and T > 0. Again a pre-crack slightly above the
centerline is driven towards the centerline because of the positive Ky, but the tensile 7-
stress destabilizes a crack along the centerline. As a consequence of the two competing
effects, the crack trajectory will either be wavy if the positive T is not too large and the
positive 0K);/dc can drive the crack back to the centerline, or the crack will diverge towards
and join the interface if the positive T is sufficiently large. Quantitative determination of
this wavy trajectory has not been performed in this work. To do so would require one to
track the wavy path by enforcing the local Kj; = 0. An analysis of this type has been
performed by Fleck (1989), where curved trajectories with Kj; = 0 for an array of micro-
cracks were determined.

Crack approaches the interface gradually (pattern C)

The negative Kj;drives a crack away from the centerline, while the compressive T-stress
ensures the crack approaches the interface at a small angle. Under remote mode I load, for
some material combinations, we find an additional straight path satisfying Ky = 0 off the
centerline near one of the interfaces (see Fig. 9).

Crack approaches the interface at a large angle (pattern D)

Figure 5 includes the situation where 0K),/dc < 0 and T > 0. The crack kinks in an
unstable fashion towards the interface.

The sign of ¢K,;/dc at the centerline can be determined from (6a). It depends only on
elastic mismatch constants o and . Plotted in Fig. 6 is the contour of éKj;/dc = 0 on the
(«, B) plane. For material combinations with a compliant adhesive layer (¢ > 0, § & 2/4),
0K, /0c is positive.

The T-stress is calculated from eqn (4), which when specialized by taking K7 = 0 and
using (11), gives

l—a Ky
:—1+aT +O' +C1\/E (12'(1)
17 ] 1;2 K
T= S T%4o%4 (_,_jﬁ) 0 —=. (12b)
1+a l—a JH
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Fig. 6. Regimes of crack path selection for a base specimen subject to mode [ loading (K7 = 0).
The contour for T = 0 must be shifted if ¢° and/or T™ are significant.
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Fig. 7. Coefficient governing contribution to T from K{ in eqn (12). ¢/H = 0.5, § = «/4.

Figure 7 presents c¢;(3,a, ) as a function of « (setting f = «/4), indicating that a negative
contribution to the local T-stress is made from the last term in (12) when the layer is
compliant. The contour ¢(3,a, ) = 0 is also plotted on Fig. 6. If the contributions of ¢°
and T* in (12) are negligible, the two contours shown in Fig. 6 divide the («, f) plane into
four regions, labeled as A, B, C, D, corresponding to the four fracture patterns discussed
above. The contour for 7= 0 in Fig. 6 shifts with finite contributions from ¢” and T*®.

CRACK DEPTH SELECTION WHEN Kjf # 0

If the remote loading is somewhat perturbed from mode I, one anticipates that the
crack will find a path off the centerline to restore Kj; = 0 locally. This can be addressed
rigorously by setting K;; = 0 and K; = K}, in eqn (6), giving

14a\/? 1+a\’? .
Ky = (l—a) K. cos ¢, Kif = —<lja> K sin ¢ (13)
where ¢(c/H, o, f) must satisfy
tan ¢ = — Kj7/K7". (14)

The location of the crack, ¢, is obtained from (14) using (10) ; note that ¢/H must be such
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Fig. 8. Crack path selected when Ky is finite. The crack finds a path off the centerline 1o restore
K, = 0locally. For a < 0 the crack paths are unstlable in the sense 0K|;/dc > 0 at a fixed K", K

that ¢ is of equal magnitude and opposite sign to the phase angle of the remote loading.
The location of the crack as a function of K{f/K{® is shown in Fig. 8 for several a-values
(setting f = a/4). For example, if the remote loading is such that K7/K{" = 0.1 and « = 0.8
(B = 0.2), the crack with Kj; = 0 is located a distance ¢ = 0.09 H above the lower interface.
The existence of a mode [ crack in the layer when K|j # 0 can only occur if there is a
moduli mismatch.

The location of the crack c¢/H for which K;; = 0 is given as a function of K[j/K{" in
Fig. 9a, for « = 0.9 and various f values. A new type of behavior is evident: for ff small
and positive, such as § = 0.1, there may exist three locations satisfying X, = 0. Consider
remote mode I loading, with o = 0.9, f = 0.1. The centerline of the layer satisfies K;; = 0
but is an unstable path in the sense dK;;/dc < 0. Two other locations exist where K;; = 0;
these are close to each interface and are stable in the sense K),/dc > 0. Cracks paralleling
close to an interface have been addressed previously by Hutchinson ez al. (1987).

The two regimes of (a, ) space for which three crack locations satisfy K, = 0 are given
in Fig. 9b. The regime in which « < 0 and the regime in which « > 0 show qualitatively

(a) /M (b) B

-02  -01
B=0

Fig. 9. (a) Location of crack satisfying K;; = 0 as a function of Ki/Ky for a compliant layer

(x = 0.9), for various values of f}. For f/ small and positive there can be three locations satisfying

K, = 0; two of these locations are near the interface and are stable in the sense 6K|,/dc > 0 at a

fixed K7, K. (b) The cross haiched region shows the regime of («, §) for which three crack locations
satisly Ky = 0.
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Fig. 10. Coefficient in eqn (135a) for 7T, for a crack located in the layer with K = 0, § = o/4.

similar ¢/H versus K{7/K}° behaviors. Few practical material combinations lie in either
regime.

Next, we examine the T-stress local to the crack tip, for a crack on a straight path with
K, = 0and K| = K,.. The position of the crack path is fixed by the ratio K7 /K{". Combining
(4), (13) and (14), we get

l—o K

TZT*’&TOC+0'O+(CI—CU tand’)ﬁ (152)
1 | 172 K.

T = JTOO-*-O'O-F (ﬂ) (c1 oS ¢ — ¢y, 8in ) —= . (15b)
14+a l—u \/;I

The last contribution in (15a) is plotted in Fig. 10 as a function of K[i/K{* for various
values of the elastic mismatch «. As in the case when Kjf = 0, a straight crack with K, = 0
in a compliant layer will have T < 0 unless T* and/or ¢° are positive and sufficiently large.

CASE STUDIES

Two technically important adhesive systems, epoxy joining metals or ceramics and
glass joining ceramics, will be examined in this section using the concepts and numerical
results developed above. The relevant mechanical properties used in our discussion are
given in Tables 1 and 2. For simplicity, we only consider the situation where the base
specimen is under remote mode I loading so that the centerline in the adhesive layer is a
pure mode I path (X; = 0).

The calculated elastic mismatch constant « is 0.9 for aluminum/epoxy, and 0.7 for
alumina/glass, with § = a/4 in each case. Observe that for both cases dK,,/dc > 0 (Fig. 6),
indicating that a straight crack off the centerline kinks towards the centerline. Whether the
crack is stable depends on the sign of the local 7-stress.

Focus on the first term in eqn (12). For common base specimens, there is only one

Table 2. Mechanical properties

Thermal expansion  Young’s modulus  Poisson’s

Material coefficient (MK)™! (GPa) ratio
epoxy 70 4 0.34
aluminum 24 71 0.35
glass-7059 5 68 0.24
glass-7570 9 55 0.24

alumina 7 350 0.25
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independent applied external load acting on the specimen, implying that 7% is linearly
connected to K[, namely

T = gK?/\/a (16)

where g is a dimensionless function of the geometry of the homogeneous base specimen,
and a 1s the crack size. Finite element calculations by Larsson and Carlsson (1973) show
that g is somewhere between —0.6 and + 0.2 for several commonly used homogeneous base
specimens. For a typical adhesive joint fracture specimen, the crack size is larger than the
adhesive thickness by several orders of magnitude, i.e. a/H » 1. If the adhesive is more
compliant than the substrates, say « > 0.3, the first term in (12a) is negligible compared
with the third. Hence for systems with compliant adhesives, such as aluminum/epoxy and
alumina/glass, it is adequate to consider the competition of the last two terms in (12) only.
Note that both are independent of the base specimen geometry, so the conclusions we draw
below are independent of specimen type.

The last term in (12) is always negative for compliant adhesive layers; thus the total
T-stress is necessarily negative if the residual stress is negative. For alumina/glass-7059, the
thermally-induced residual stress in the glass layer is negative ; see Zdaniewski ef al. (1987).
Our theory therefore predicts that the crack will run stably within the glass layer under
remote mode I loading (pattern A in Fig. 5). This is observed experimentally by Zdaniewski
et al. (1987).

When the residual stress is positive, a numerical estimate is needed to identify which
term in (12) is dominant. For the alumina/glass-7570 system, the difference between room
temperature and the softening temperature of the glass is 343 K and the residual stress is
estimated to be 50 MPa, while the third term in (12) is approximately —37 MPa (H = 50
um is taken). The total T-stress is thus positive. A wavy fracture trajectory (pattern B in
Fig. 5b) is therefore expected and was observed in experiments by Zdaniewski ez al. (1987).

The residual stress in an epoxy layer joining two ceramics or metals is usually positive
due to thermal and/or cure shrinkage. However, our estimates indicate that the magnitude
of the residual tensile stress is often less than the third term in (12), resulting in a negative
T-stress. This is due to the low Young’s modulus of epoxy compared to the substrate
materials. For example, if two aluminum substrates are glued together by an epoxy layer
of thickness H = 0.1 mm at 350 K, the thermal tensile stress is about 15 MPa, but the third
term in (12) is —40 MPa. Pattern A in Fig. 5a is anticipated : the crack runs stably within
the epoxy layer instead of along the interfaces under predominantly remote mode I loading,
as confirmed experimentally by Wang and Suo (1990) and Cao and Evans (1989).

Chai (1987) has observed a wavy crack path in an epoxy layer between aluminum
substrates. The crack jumps periodically from one interface to the other across the epoxy
layer. The difference in response between the tests performed by Chai and the tests of Wang
and Suo (1990) and of Cao and Evans (1989) may be explained in terms of a different sign
of the local T-stress. Chai used a heat-setting epoxy of thickness H = 0.25 mm ; the estimated
thermal stress is ¢° = 60 MPa while the component of T-stress from the remote loading
[the third term in eqn (12a)] is —25 MPa. Hence the total local T-stress is positive in Chai’s
experiments and the crack is unable to run stably within the epoxy layer. In the work of
Wang and Suo and of Cao and Evans the local T-stress is negative and the crack runs
stably within the epoxy layer.

Next, we mention some recent fracture tests by Thouless (1990) using double cantilever
beam specimens with a model interface consisting of wax/soda lime glass. Thouless observed
the crack to run stably along the centerline of the wax layer, in a double cantilever beam
sandwich specimen under remote | loading. We expect that the crack will adopt this path,
based on the following evaluation of the local T-stress. From values provided by Thouless
(1990) and by a private communication, the first term in eqn (]12a) is negligible compared
to the other two terms, the second term (residual thermal stress) equals 3 MPa and the
third term equals —6 MPa. Thus the net 7T-stress is negative and we predict a stable crack
path along the centerline of the wax layer. This result can be contrasted with the double
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cantilever specimen of a homogeneous material for which only the first term in (12a) is non-
zero and positive, leading to the well-known unstable cracking behavior of this specimen.

SUMMARY OF RESULTS

Consider the typical combination of an adhesive layer which is more compliant than
the substrates, with « > 0, f ~ «/4. Analysis shows that, provided the residual stress in
layer ¢° is not large and positive, a pre-existing crack in the layer remains trapped in the
layer for substantial deviations from pure remote mode I loading. The location of the crack
in the layer depends upon the ratio K¥/K{° for any given « and f. If ¢° is large and tensile,
the crack may escape from the layer or may grow along an oscillatory path within the layer.

Now consider a crack in a layer which is stiffer than the substrate, with « < 0, f &~ a/4.
A K, = 0 path can be found in the layer under remote mixed mode loading. However, the
crack will propagate into the interface as 0K;;/dc < 0, regardless of the sign of T. Unless ¢°
is large and negative, T'is positive and the crack is destabilized further.
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APPENDIX A: INTEGRAL EQUATION FORMULATION AND SOLUTION

In this Appendix, we set up and solve the integral equation for the plane elasticity problem specified in
Fig. 2.

A.1. Formulation of integral equation

A layer of material 2 is sandwiched in an infinite medium of material 1. Each material is taken to be isotropic
and lincar ¢lastic, A semi-infinite crack lies a distance ¢ above the lower interface, in the adhesive layer. The
thickness H of the layer is taken to be unity since the H dependence of the solution is known. A Cartesian
coordinate system is centered on the crack tip, with the x, axis coincident with the crack.

We preseribe loading in the far field as the standard crack tip field of a crack in a homogeneous body,
characterized by the remote stress intensity factors Ki° and K. [The next higher order term 7 is explicitly
incorporated in the solution (12b) already.] The asymptotic problem of the cracked adhesive layer is solved in
terms of K" and K|} by the method of distributed dislocations. The crack is modeled by a distribution of
dislocations such that the tractions on the crack line vanish. Plane strain deformations are assumed; for plane
stress, replace v by v/(1 +v).
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Let b;(£) be the x; component of an edge dislocation located on the crack line at x, = £, x, = 0. The stresses
at point x, = x, x, = 0 on the crack line induced by the dislocation are given by

o b.()
5a) = g <2x;7: +/i(x=9b,(©) (A1)
where the repeated suffix j, here and elsewhere, refers to a sum over j = 1,2. The kernels f;;(x — ) are constructed

in Appendix B. They are well behaved in the whole range — a0 < ¢ < oo, with asymptotes

ﬁ/.(&:):O(é) as | = oo (A2)

A semi-infinite crack is represented by a distribution of dislocations lying along the negative x, axis, such
that the tractions vanish for x, < 0. Thus, the distribution b,({) for & < 0 is governed by

Jf 2:"—_(? Hx—Ob(HAE=0, x<0, i=12 (A3)

-

where the first integral is the Cauchy Principal Value integral.
The crack face displacements 9, are related to the dislocation distribution by

5,(x)=rb,.(g)de:, x<0, i=12 (Ad)

The form of b,(£) must be such that the crack displacements approach the remote field specified by K™ as ¢ — oo,
and must be consistent with the near-tip field with unknown intensity K as £ — 0. Thus,

2 7(1_‘,')1(" as (o —w (A5)

\/~2n5 H '

b(d) ~

and
b ~——— UM as eno (A6)
—2n¢ M2

where K, denotes the mode IT stress intensity factor Kj;, and K, denotes the mode I stress intensity factor K.
In order to reduce the range of the integral equation to a finite interval, we make the changes of variables

u—1
x= , —l<u<xl
u+1
=l i< (A7)
C=ir Thers
which gives
2u—1)
=x—f=—"7 | A8
L= X=C=GxDas)) (A8)
Then, with ¢;(f) = b,(¢), the linear system of two integral equations becomes
] 1
(u+1) : de
_WMTY ind (O () s = 1 A9
Jf_ Tyt | L0060 =0 < (A9)

where { denotes the Cauchy Principal Value integral.
Based on the asymptotic behavior of b,(¢) as ¢ —» 0 and ¢ - — o, a complete representation for ¢;(¢) is

141

c,(z)=<m>‘ Aiﬂa,ka(t), i=1,2 (A10)

where T,(¢) is the Chebyshev polynomial of the first kind of degree & and a, are a doubly infinite set of real
coefficients which must be determined by the solution process.

From the asymptotic behavior of b,(£), eqns (A5) and (A6), the remote stress intensity factors X and the
crack tip stress intensity factors K; may be expressed in terms of a,,

. ACEIT AN .
K; 7<§> -(_l_;—vzj(ml;(_l) ay (All)

and
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n? &
o=(5) i de A

where a is defined in eqn (3).
Equation (All) represents two equations for the as in terms of the specified X*s, and (A12) are the two
equations for evaluating the Ks.

A.2. Solution of integral equation
When the representation for ¢,(f) = 5,(), eqn (A10) is substituted into the integral eqn (A9), the first term
of (A9) maybe integrated exactly to give

1 1 bl
f_l#(’il)ci(t)dt = —n(l+w) ¥ @l @ (A13)

where U,(u) is the Chebyshev polynomial of the second kind of degree .

The factor of (1+1)? in the second term of eqn (A9) presents a problem in evaluation of the integral near
t = —1. Recalling the asymptotic behavior for f;,({), eqn (A2), we proceed by introducing a function F;({) in
order to extract a factor of (t+1) from f,,({) :

AR
EyQ) = [0 /0ra = 255 s (A14)

where

pie. = T DA D2 -

The function p(¢, u) is well behaved for [#| < 1, |u| <1
Substitution of (A14) and (A10) into the second term of (A9) then gives

.I. FA(OLA0 s )z Z Laay, |ul <1 (Al3)

(1 +t
where

p(t u)

Equation (A16) can be integrated numerically without further problems. However, to reduce computer time we
express the functions F;;({) by a Chebyshev series approximation. Noting that f;;({) and F,;({) are either odd or
even in {, we write

Ip(u) = F,(OT (1) de (A16)

—1
F 0 = Zd,,kn ()= 4,1, c=jﬁ (A17)

where s ranges from —1 to 1, as { varies from — oo to 0. The coefficients d, are found from the known kernel
functions F;;({), and the number of terms M is usually taken to be M = 40.

We can now rewrite the integral equation (A9) as a linear system of equations in a;;, via eqns (A13) and
(Al5):

N N
(+w) Y @U@+ Y Lpwa, =0, [ul <1, i=1,2 (AL8)
k=] k=0

where the infinite sums have been replaced by a finite sum in N+ 1 terms.
The truncated form of (All) provides the additional equations

d A S R Y A T2 Y
§ om0 (e o

We solve for the 2(N+ 1) unknowns a; (: = 1,2;k =0, ..., N) by satisfying (A18) at N Gauss-Legendre points
for uin the interval —1 < u < |, and also by satisfying (A19). A convergence study showed that an accuracy of
0.1% is achievable for N = 20. Once the coefficients g,; have been found for any remote loading K*, geometry
¢/H and elastic constants «, #, the local stress intensity factors at the crack tip in the adhesive layer are computed
from eqn (A12). The formula for the energy release rate, (5), forms a consistency check and provides a measure
of the accuracy of the solution procedure.

A.3. Evaluation of the T-stress
The stress ¢,,(x) at point x, = x, x, = 0 on the crack line induced by a dislocation b,(x, = &) is obtained
from the dislocation solution given in Appendix B:




Crack path selection in brittle adhesive layer 1697

2b,
P (T(? +9,(s=b, (é)) (A20)

a(x) =

where we continue with the summation convention for a repeated suffix i over 1 and 2. The non-singular kernel
gi(x—¢&) is given in Appendix B,

When we represent the semi-infinite crack under a remote K* field by a distribution of dislocations along
the negative x, axis, the stress ¢, (x) induced by the dislocations is

Ha ° 25,
dn(l—vy) Jo x=¢

+9:{(x—{)b;(£) d¢ (Az1)

a(x) =

where the first integral is the Cauchy Principal Value integral.
Using the change of variables (A7) and (A8), and the representation ¢,(r) = 5,(¢) given by (A10), the Cauchy
part of (A21) may be integrated analytically for x < 0 to give

:[: 2b2(é)dé =2z i ax(l+wl; (), —1<u<l. (A22)

—x x_f k=1

In the limit x - 07, ¥ —> 1, ¢,,(x) equals 7 and eqn (A22) reduces to

0 a0
J[ 26:(8) di=—4n Y kay, x—0". (A23)
- x—f k=0

Now consider the second term on the right-hand side of eqn (A21). With the change of variable ¢ — ¢ specified
by eqn (A7), { given by eqn (A8) and ¢;(1) = b,(£), we derive

dt

a0t (A24)

0 1
I(x) = J gilx—5)b(§) df = J gi)ci(n)
4] -1
In the limit x — 0, the above integral 7(0~) exists and provides a further contribution to the 7-stress. In this

limit { = —¢& and (141 = 2/(1+{). The troublesome (1 +1)? factor in the denominator of the right-hand side of
eqn (A24) is removed by using representation (A10) for ¢;(¢) and by separating out a factor (1+¢) from g,({):

1 h
6.0 =hQ) (%) - (a29)

The well-behaved function #,({), defined via (A25), is represented by a Chebyshev-series approximation in
M terms:

h() = Z dy T (D — idy, —{=——. (A26)
k=1

The coefficients ¢, are found from the known kernel functions #,({), and M is usually taken to be M = 40.
A particularly simple expression for the integral 7(0~) in (A24) is now obtained by substituting eqns (A10),
(A25) and (A26) into (A24), and by integrating analytically

M
I1(07) = 2 Z Ay dy (A27)
k=1

where the upper limit of the sum is taken to be the smaller of terms N used in the representation for ¢;(¢), and the
number of terms M used in the representation for k;({). As elsewhere, the repeated suffix / denotes a sum over
i=1,2.

The T-stress is given by substituting eqns (A23) and (A27) into eqn (A20):

N lN,M 2
T=0,(x=0")= (l ﬁ2v2) (_kZokaZk-'- 3 ¥y aikdik). (A28)

k=11i=1

Tabulated values for T are given in Appendix C, where representation (4) is used for 7.

APPENDIX B: A DISLOCATION IN THE ADHESIVE LAYER

The dislocation solution used as the kernel in the integral eqn (A1) and in the expression for the T-stress,
eqn (A20), is summarized here.
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X3 Ry, material #1

H X

R,. material #2

Ry, material 1

Fig. B1l. Edge dislocation in adhesive layer.

The plane elasticity problem is specified in Fig. Bl. An edge dislocation with components b, and b, lies at
the origin a distance ¢ above the lower interface of the bonded sandwich structure. This dislocation lies a
distance ¢ below the upper interface, and the thickness of the layer is H = ¢+d. The solution is obtained by
superimposing the solutions to two problems:

(1) An isolated dislocation at the origin in a full plane, made from material 2. The material in the half-plane
x, > d and in the half-plane x, < —¢ is then allowed to transform from material 2 to material 1. We shall
allow the transformation to occur in a manner which generates a displacement mismatch Au(x) at y = d and
v = —c¢, but does not alter the stresses anywhere.

(2) A strip of material 2 of thickness H = c¢+d, sandwiched between two half-planes of material 1, with a
displacement mismatch of —Au(x) from Problem 1 at the boundaries between the two materials.

Problem |
The solution to an isolated dislocation at the origin in a full plane made from material 2 is given compactly
by the Muskhelishvili potentials

¢p=Alnz, Q=Ainz (B1)
where
=X ki, A= TS (hmib), 0440 = 2D+ E)
02— 0, +120,; = 2[(Z—2)¢"(2) + Q' (2) +¢'(2)] (B2)

and the displacements u,, u, are given for plane strain by
2uo(u +iug) = 3—4v,)(2) + (F—2)¢'(2) —Q(2). (B3)
The stresses at ({,0) induced by the dislocation are

H2 _2&
dn(l—vy) ¢

H2 2b,

dn(l=v)) ¢’ (B4)

a.() = g () =

We now let material 2 transform to material 1 for x, > d and x, < —¢, but keep the Muskhelishvili potentials
fixed. The stresses given by (B3) and (B4) remain unaltered but displacements change in region R, where x; > d,
and in region R, where x, < —¢. Define the displacement jump at these boundaries Au by

Au = ug —ug,

where @ refers to material | and @ refers to material 2. The jump in displacement gradient

0Au, 08w
Bx, ! 0x,
is derived from (B3) as
2u;  (0Auy L dAuy)  [fatBy =\ =
=y (Txl +1 ax, ) = _<1+a)¢ (ﬂ-(m)[(Z—ZW (2) - (2)] (B3)

which upon substitution for ¢, Q from (B1) and separation of real and imaginary parts gives

oAU, b, 2 ; b, 1 X3
- [m—ﬂ)%—z(a—ﬂ)%} [—ﬂf—z+2(d—ﬂ)xrf}

ox,  n(l+a) n(l+a)
0Au, b, X, x,x3 b, x5 x3
'5;'27?1—;?)[11;? +2@-p— :|+m[ﬂr—g+2(a—ﬁ)r—4:|

(B6)

where r* = x}+x3.
We superpose the solution to Problem 2 in order to cancel the displacement gradient mismatch given by (B6).
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Problem 2. Dislocation-free strip problem

Consider a dislocation-free strip of thickness / made from material 2, sandwiched between two half-planes
of material 1. A displacement gradient jump of equal magnitude and opposite sign to that specified by (B6) is
applied on x, = dand x, = —¢. This displacement mismatch gives rise to stresses which are bounded everywhere.
Such a multilayer problem is solved conveniently using Fourier transforms with two real potentials U(x, x,) and
X(x,,x,);see Coker and Filon (1931). These potentials satisfy

4 2 (72/‘/ lyg2

ViU=0, V'X=0, —;:-=;VU (B7)

dx, 0x,
The stresses and displacements can be derived from
_ U _ *U B U
alli(?x%‘ aniﬁxf’ 712 = ax, 6x,
86U ox ou ax
Quu, = -—&;+4(1~—v)a, 2uu, = -E+4(l—v)a—x|. (B8)

The general approach to the multilayer problem is as follows. For each layer, the solution of U(x, y) and
X(x, y) can be separaled into two parts ; one is symmetric in changing x to —x, and the other is antisymmetric.
A dislocation of strength b, in Problem ! induces a field in Problem 2 which can be represented by a symmetric
U, termed U*(x,, x,) and an antisymmetric X, termed X*(x, x,). Conversely, a dislocation of strength b, gives
rise to an antisymmetric U, which we denote by U*(x, y) and a symmetric X, which we denote by X*(x, y). We
shall consider the solution associated with b, and b, in turn.

b, solution. The potentials U*(x, y) and X*(x, y), upon satisfying (B7), can be represented by Fourier integrals

) “[la, A, \ . (4, A, \ .
U'(.)(,y):b,J‘0 [(?+7y)e »+(?+7y e* [cos Ax dA
X"‘(x,y):h,j
0

where the four coefficients 4, are functions of A.

Potentials U*(x, y) and X*(x, y) exist for each of the three layers R|, R, and R, shown in Fig. B]. The Fourier
coefficients A4, are designated C;in R, D,in R, and E; in R;. Since U® and X* remain bounded as x, = oo in Ry,
C, = C, =0 by eqgn (B9). Similarly, £, = E, = 0in R,. The stresses and displacements in each layer are given by

1 . .
oYEl [4;e "+ A, e ]sin Ax dA (B9)

eqns (B8).
The problem is to determine the coefficients D, in the strip R,, and thence the stresses in R,, from the known
displacement gradient mismatch at x, = 4, and x, = —¢ given by the b, solution in (B6). To proceed, we take

the appropriate Fourier transforms Ad, , and A#, | of the displacement gradient mismatch dAu, /dx, and 0Awu,/dx |,
respectively :

2(*é
Aﬁl,](i,xz):;J‘ O(iculcos Ax dx
0 |

2 (= 9A
Aity (A x3) = ;j 0x”2 sin Ax dx. (B10)
0 1

Substitution of the b, part of (B6) into (B10) and evaluation of the integrals gives

. by fa(l=Ad)+BAd\ _
Al (4, d) = _71_ (__(H——a)_“
. b (B —Ad)+ard) _,
Aid, ((4,d) = - ( U+a) ¢ \
o, b fa(l=2c)+BAcy | (B11)
Aty (A, —c) = — - ( (+a) e
.. b (=) +ade) .
Auz‘l(A, —C) 7?((1—}—7@ [+ J
We determine D, by matching tractions and displacement gradients at the strip boundaries x, = d and x, = —¢,
in the transformed variable A. Hence, in matrix form,
M D+M,E =v,
M;D+M,C=v, (BI2)

where
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—1 2 —2ic 2ie

Aic —e - ice”
=1 (I4+4) e  (I—dgye ¥

DI
M, = e 0 32 0 —5¢
.
0 32 0 rz—e_l“
1 —Ac
—1 (le—1)

a—f a—f)\ . .
a—p AV
*(H) *(T;a)“‘“)—f

—e M —Jde ¥ —1 —d
—em (l—id)ye" 3 1 (1+4d)

a—fBY . x—f D2 Y a—fi a—f z
M, —e _(1-a>e l (M<T:E>M+5>e l 7<'1—a> _(1—“>ld*5
t A VY x—p ) o x—p a—fi z
(1—&)6 ((lffx>(ld—1)+5)e *(1_[1) ‘(m)“d“)*z

1 Ad
1 id-1
— a—AMH+d)
M,=¢ * 0 -1
0o -3
D,
D
l+a C, 2 E,
= = = E=
z T C (C)’ D D, |- <E4
D,
0 0
LT T30y b, Ady (A, —c) | - V2 20—vy) &, Al (4. d)
Aﬁz_ 1 (/L “C') A'Zz, 1 (/{, d)

Equations (B12) can be combined to a single matrix equation

M, M, 0N\
M, o wm/J1EITL (B13)
C
which is solved by Gaussian elimination in order to determine D.

b, solution. In similar manner, we can solve for the stresses and displacements in a strip of material 2 sandwiched
between two half-planes of material 1, due to displacement mismatches on x, = d and x, = —¢. The displacement
mismatch is —Au(x) where Au is the displacement mismatch due to a dislocation of strength 4, in Problem 1,
specified by eqn (B6). The stresses and displacements are derived from U*(x, y) and X*(x, y) which, upon satisfying
(B7), can be represented by the Fourier integral

“|{(B, B . B, B .
Ut(x,y) = sz [(—21 + 22 y)e”‘v‘?l- (—; + —4y> e’"-’} sin Ax dx
0 A A A A

X 1 X .
Xi(x,y) = —b, L o [32 e~ + B, e] cos Ax dA (B14)

where the four coefficients B,, like the coefficients A4, are functions of 4. We designate the Fourier coefficients B
by Fiin Ry, G,;in R, and H;in R;. The stresses and displacements in each layer are given by (B8) as before.

The problem is to determine the coefficients G, in the strip R, from the known displacement gradient mismatch
at x, = d and x, = —c, given by the b, solution in (B6). To proceed, we take the Fourier transforms A#, ; and
Ad,

i
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2 [ 0A
Aﬂl,l(i,xz) Z*J. ul sin Ax dx
nle Ox,
2 [* oA
Ay (A x,) = —J. “2 cos Ax dx. (B15)
nlo Ox,

We now substitute the b, part of (B6) into (B15) and evaluate the integrals, giving

. by (=Bl +id) +add) )
Au,_l(i,d) = - (w— €
N by fa(l+Ad)—pAd\ _,,
Ad, (4, d) = - (W €
. by (=B +A)+ade | (B16)
Au“(i, C) = - (m’“-—- [+]
. by f—a(l+A0)+Phcy _,,
Auz‘l(i’_c)-;'(_-(li——a) € )
After matching the tractions and the displacement gradients at the strip boundaries x, = d and x, = —c¢, we
obtain
G
R A (B17)
M, 0 M, F W,
where
G,
G
F, : H,
P=(5) e o] m- (i)
G,
0 0
LT e HHO 0 I et 0
Wi= Ty TR (A= | 0 W2 T Ty T, | ()
Al (4, —¢) Al ((4,d)

and M, M,, M,, M, are given by (B12), and Ad#;, are given by (B16). Equation (B17) is solved by Gaussian
elimination.

Superposition of the solutions to Problems | and 2
The stresses a distance { ahead of a dislocation are given by the superposition of the solutions to Problems
[ and 2

ol) = —A (ibl +, (C)bj)

4r(l—va) \ ¢
H2 2b,
¢, () = an(i—vy (T +gi(C)b,-)

where, from (B8), (B9) and (B14)
S =WJ.: (=D +D;+D;+Dy)sin AL dA
fu® =%:””J.: (=Dy— Dy cos & di
fial®) = %:”J': (61~ G163~ Gy cos 2 ¢

J2@) = @Jﬁ (—G,—Gy)sin AL d¢

and

SAs 27:13-G
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4r(l—v =
9.1 :—(#,2)-[ (D, —2D,+D,+2D,)cos AL d}
2 i
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¢

dn(l—-v,) [~ .
g:(0) = P Z‘-[ (G, —2G,+ G, +2G ) sin i{ dA. (B18)
2 0
The integrals in (B18) are evaluated numerically.
APPENDIX C: RESULTS FOR c¢(c/H, o, ), cy(c/H, 2, f)
c(0.5,0, ) Accuracy = 0.1% [c;;(0.5,2, ) = 0]
o
B -09 -08 -06 —-04 -02 0 0.2 0.4 0.6 0.8 0.9
—-04 520 278 127
—03 49 260 IL16 0622 0.357
—02 459 241 1.04  0.531 0.277  0.140  0.070
—0.1 426 220 0916 0.437 0.199 0070 0.002 —0.025 —0.020
0 391 200 0784 0.336 0.118 0 —0.061 —0.086 --0.082 —0.050 —0.021
0.1 0.634  0.228 0.031 —0.072 —-0.123 —0.141 —0.132 —0.096 —0.064
0.2 —0.063 —0.150 —0.139 —0.196 —0.179 -—0.134 —0.095
0.3 —0.260 —-0.255 —0.227 —0.170 —0.123
0.4 —0.278 —0.207 —0.150
¢,(0.6,a, By Accuracy = 0.1%
o
B -09 —-08 —-06 —-04 —02 0 0.2 0.4 0.6 0.8 0.9
—04 531 284  1.30
-0.3 500 265 1.18  0.633 0.363
—02 468 245 106  0.540 0.282  0.143  0.071
—0.1 4.35 224 0933 0444 0.202 0071  0.002 —0.026 —0.022
0 399 202 0.795 0.342 0119 0 —0.062 —0.087 —0.083 —0.051 -0.023
0.1 0.644  0.231 0.031 —0.073 —0.125 —0.143 —0.133 —0.098 —0.066
0.2 —0.065 —0.152 —0.191 —0.199 —0.181 —0.136 —0.097
0.3 —0.263 —0.258 —0.229 —0.172 —0.125
0.4 —0.281 -0.209 —0.152
on{0.6,0, f)  Accuracy = 0.5%
o
B -09 —-08 —-06 —04 02 0 0.2 0.4 0.6 0.8 0.9
—04 —0.212 —0.098
-03 —0.245 —0.113 —0.054 —0.020
—0.2 —0.275 —0.126 —0.060 —0.023 —-0.001 0.012
—0.1 —0.301 —0.138 —0.066 —0.025 —0.001 0.013  0.021  0.023
0 —0.325 —0.147 —0.070 —0.026 0 0.0l16 0024 0.026 0.022 0.017
0.1 —0.155 —0.072 —0.026  0.002 0.019  0.028  0.030 0.026  0.020
0.2 —0.024  0.005 0.023  0.032 0.035 0.030 0.023
0.3 0.029 0038  0.040 0.034  0.026
0.4 0.047  0.040  0.030
¢(0.7,0, ) Accuracy = 0.1%
o
p -09 08 —-06 —-04 02 0 0.2 0.4 0.6 0.8 0.9
-04 567 3.03  1.38
-03 534 283 126 0671 0.383
—-02 500 261 113 0.572 0.298  0.150  0.072
—0.1 464 239 0988 0.469 0213 0.074 0.001 -0.031 —0.029
0 4.25 214 0.839 0.360 0125 0 —0.065 —0.092 —0.090 —0.060 —0.031
0.1 0.677 0.242 0.032 —0.077 —-0.131 —0.150 —0.141 —-0.105 —0.072
0.2 —0.070 —0.160 —0.200 —0.207 —0.189 —0.143 —0.103
0.3 —0.274 —0.268 —0.238 —0.179 —0.130
0.4 —0.290 —0.216 —0.156
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¢ (0.7,a,8)  Accuracy = 0.5%
a
B -09 -08 -06 —-04 —0.2 0 0.2 0.4 0.6 0.8 0.9
-04 —0.448 —0.210
—-0.3 —0.521 —0.243 —-0.116 —0.044
—-0.2 —0.585 —0.272 —0.130 —0.050 —0.002 —0.026
—0.1 —0.643 —0.297 —0.142 —0.055 —0.002 —0.030 0.046  0.050
0 —0.695 —0.317 —0.150 —0.057 0 0.034 0.053 0.058 0.049 0.037
0.1 —0.332 —0.155 —0.056 0.004 0.041  0.060 0.066 0.056 0.043
0.2 —0.051 0.012 0.050 0.070 0.076 0.065 0.049
0.3 0.063 0.083 0.087 0.074 0.057
0.4 0.102 0.086 0.066
(08,2, ) Accuracy = 0.1%
a
B -09 —-08 —-06 —04 —0.2 0 0.2 0.4 0.6 0.8 0.9
—-04
—0.3 0.757 0.429
—-0.2 0.643 0.334 0.165 0.074
—0.1 0.525 0.238 0.083 —0.002 —0.041 —0.046
0 0.399 0.139 0 —0.073 —0.105 —0.106 —0.078 —0.049
0.1 0.033 —0.086 —0.145 —0.165 —0.157 —0.120 —0.086
0.2 —-0.082 —0.177 —0.219 —0.226 —0.207 —0.157 —=0.115
0.3 —0.299 —0291 —0.257 —0.193 -0.141
0.4 —0.310 —0.230 —-0.167
(08,2, )  Accuracy = 0.5%
o4
B -09 -—-08 —-06 —-04 —0.2 0 0.2 0.4 0.6 0.8 0.9
—-0.4 —0.351
—0.3 —0.410 —0.200 —0.075
—-0.2 —0.478 —0.230 —~0.088 —0.002 0.050
—0.1 —0.505 —0.250 —0.097 —0.003 0.054 0.084 0.093
0 —0.542 —0.265 —0.100 0 0.061 0.094 0.104 0.088 0.066
0.1 —0.570 —0.271 —-0.097 0.008 0.073 0.107 0.117 0.100 0.076
0.2 —0.087 0.023  0.089 0.125 0.134 0.114 0.087
0.3 0.113  0.148  0.155  0.131 0.100
0.4 0.182 0.152 0.116
¢, )+ w(a, B) (in radians)
a
B -08 —-06 —04 —-0.2 0 0.2 0.4 0.6 0.8
—-04 —0.082 —0.019
—0.2 —0.119 —0.045 —0.011 0.000 —0.011 —0.038
—0.1 —-0.136 —-0.057 —0.019 —0.002 —0.003 —0.017 —0.049 —0.121
0 —0.150 —0.071 —0.028 —0.001 0 —0.007 —0.027 —0.070 —0.153
0.1 —0.038 —0.011 —0.001 —0.001 —-0.012 —0.039 —0.091
0.2 —0.004  0.000 —0.004 —0.021 —0.055
04 —0.017







