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ABSTRACT

A CAVITATION instability occurs when an isolated void in an infinite, remotely stressed elastic—plastic solid
grows without bound under no change of remote stress or strain. The cavilation instability can be thought
of as a process in which elastic energy stored in the remote field drives the plastic cxpansion of the void.
The paper begins with a briel review of cavitation under spherically symmectric stress states and then gocs
on to consider the problem for cavitation states under general axisymmetric stressing. It is found that the
criterion for cavilation under multiaxial axisymmetric stressinz depends on the attainment of a critical
value of the mean stress, to a reasonably good approximation. A set of recent experiments is discussed in
which cavitation instabilities appear to have occurred. The last section of the paper reviews available
theoretical results for the dilatation rates of isolated voids. The most commonly used formulac under-
estimate the dilatation rate under stress states with moderate to high triaxiality.

1. INTRODUCTION

CAVITATION instabilities can occur when stress levels are sufficiently high such that
the work made available from the field surrounding the void by its expansion is
enough to drive continued expansion. A void in an infinite body grows without bound
when a cavitation stress limit is reached. Thus, unlike normal void growth which
occurs directly in proportion to the deformation imposed on a solid, the cavitation
phenomenon addressed here is an instability which occurs at stationary remote strain.
The existence of such instabilities was recognized by BisHoP ef al. (1945) who deter-
mined cavitation limits in elastic—plastic solids under stress conditions consistent
with spherical and cylindrical symmetries. HILL (1950) presents limit states for the
equivalent problems of spherical and cylindrical cavities subject to internal pressure.
Cavitation states have received attention in recent years in the theory of nonlinear
elasticity as intrinsic material stability limits (BALL, 1982). Motivation for the present
work derives from ductile failure mechanisms under highly constrained plastic flow.
One example, to be discussed in the paper, is the cavitation failure mode in a ductile
wire reinforcing a brittle matrix observed by AsSHBY ef al. (1989). Cavitation also
appears to be a likely failure mechanism in a thin ductile metal layer used to bond
two ceramic blocks together (DALGLEISH ef al., 1989). The constraint of the ceramic
materials, which do not deform plastically, gives rise to very high levels of stress
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triaxiality in the metal layer. It is under very high stress triaxiality that cavitation
instabilities occur.

To set the stage for work in this paper on cavitation states under general axisym-
metric remote stressing, we begin by briefly reviewing the analysis and results for
cavitation of spherical voids subject to remote hydrostatic tension. Earlier treatments
for this particular loading can be found in the papers by CHADWICK (1959) and
Durean and Baruch (1976). Recent studies of the spherically symmetric problem
have included the effect of material rate-sensitivity on cavitation (ABEYARATNE and
Hou, 1989), and the effect of material inertia coupled with transient loading (ORTIZ
and MOLINARI, 1989).

2. SPHERICALLY SYMMETRIC CAVITATION STATES

We begin by considering an isotropic, incompressible elastic—plastic solid with a
uniaxial relation between true stress and logarithmic strain given by

aloy = f(¢), 2.1

where oy is some convenient choice of tensile yield stress. Let p denote the distance
of a material point from the center of the spherical cavity in the undeformed state
with R, as the radius of the cavity. Let R be the distance of the same material point
from the center of the cavity in the current state and let R, be the deformed radius of
the cavity. By incompressibility, the logarithmic radial and hoop strains of the material
element currently at R are

?nﬂ—ma—&WRﬂ. (2.2)

g = 7289 =
With or(R) and o4(R) denoting the true stress components in the current con-
figuration at R, equilibrium requires

do 2
d;+R“V””:0 (2.3)

together with the boundary conditions
or =0, R=R, and op—>0¢" as R— w. 2.4)

By superposition of hydrostatic pressure, one can convert the stress state (og, 04, 6,)
to an equivalent uniaxial state op — oy Thus, (6gr—0y)/ay = f(¢r), which is on the
compression side of the uniaxial curve since ¢ is negative when the void is expanding.
It is assumed that Ry/R; increases monotonically such that by (2.2), e decreases
monotonically everywhere thereby excluding the possibility of any elastic unloading.
Using this relation in (2.3) and integrating with the limits (2.4), one finds the following
relation between 6% /oy and Ry/R,
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The cavitation limit stress ¢ = S'is obtained from (2.5) by letting R(/R; — o as
: 2 —3 |
Sjay = =2 | f{im{l-n"} |n "dy (2.6)
1 z

- ~f [ = 1]/ (=) de. @7)

The cavitation limit exists if e ~*“2f(—¢) is integrable.
Consider an elastic—perfectly plastic material with Young’s modulus E, tensile yield
stress oy, and an initial tensile yield strain ey = oy/E so that

oloy = f(e) = ¢eley  |e] <oy

=sign (&) & > &y. (2.8)
A direct evaluation of (2.7) gives
2 1
Sloy = — 3f In[l —e™ 92 d¢ (2.9)
0
2 2
==<1+In ( }—I—O(sy). (2.10)
3 3y

The approximation (2.10) is highly accurate for &y < 0.01. It is obtained from the
exact expression (2.9) using | —exp (—3ey&/2) = 3ey&/2. Values of S/oy from (2.9)
are given in Table 1 under the column for N = 0.

The radius of the plastically deformed region, Ry, satisfies

Ry 1o 1
In| - =—- — . 2.1
n(R()) 20y 3 @11

TABLE 1. Values of Sjoy(v = 1/2)

N
Ey 0 0.1 0.2 0.3
0.001 5.00 6.86 9.90 14.99
0.002 4.54 6.00 8.27 11.88
0.003 4.27 5.52 7.42 10.34

0.005 3.93 495 6.44 8.65
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F1G. 1. Remote stress vs radius ol the cavity lor spherically symmetric loading. Results are shown [or an
elastic- perfectly plastic solid and for 3 levels of strain hardening, in each case with ay/E = 0.003.

In the limiting cavitation state, by (2.10),

Ry/Ry = (Bey/2) '3, (2.12)
Formulae (2.10) and (2.12) are given by HiLr (1950). The plastic zone has a fixed
size relative to the current size of the cavity (typically 4 to 8 times the current radius
of the cavity, depending on &y). Outside the plastic zone is an elastic field in which
the strains diminish to zero as R ~°. The cavitation stress S becomes unbounded in
the limit of a rigid—perfectly plastic solid (i.e. as ¢y = 0 when £ — o0).

Next consider a power-law hardening solid with

aloy = f(e) = &fe, le] <&y

= sign(e)(Jel/ev)” o] > &y, (2.13)
where again ¢y = gy /E. Values of S/oy obtained numerically from (2.7) are included
in Table 1 for N = 0 (the elastic—perfectly plastic limit (2.9)), 0.1, 0.2 and 0.3. The
full relation of ¢ /gy versus Ry/R; from (2.5) is plotted in Fig. 1 for ¢y = 0.003 and
the same four N-values. The cavitation limit stress is approached rapidly and is
effectively attained once the void has expanded to about three times its original radius.

When the material is elastically compressible the analysis is not so simple but some
specific results can be obtained (HiLL, 1950 ; HUANG, 1989). In particular the limit
yield stress for the elastic—perfectly plastic solid with Poisson’s ratio v is

i - 2*111{] 7aef(l+v)f:y}
Oy R

2(1—\)) (T +v)ey
(I+v)ey Jo
where & = 1 —2(1 —2v)ey. With terms of order ¢y and smaller neglected, (2.14) is

S ()
o 3 I 50 S )1 (2.15)

3. AXISYMMETRIC CAVITATION STATES: ELASTIC REMOTE REGION

FI(1+v)(ef =D +2(1=2v)¢]~"dé, (2.14)

Axisymmetric stressing is considered such that the non-zero remote stresses are
ch =S8, o =0h=T. 3.1

Attention is limited to isotropic elastic-perfectly plastic solids characterized by a
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Mises yield condition in the form ¢, = gy, where o, is an effective stress invariant
defined below and oy is the tensile flow stress. In this section we investigate cavitation
under conditions where the remote field remains elastic. Specifically, the stresses in
the remote field are limited to the range

S—gy <T<S. (3.2)

Thus, one end of the range, 7 = S, corresponds to the spherically symmetric problem
of the previous section. At the other end of the range, S— T = oy, yielding occurs
remotely, and this limit will be dealt with separately in the next section.

In the range of remote stressing specified by (3.2), the solution procedure couples
an outer elastic solution to a finite strain, elastic—plastic solution in an inner region
which contains the yielded material surrounding the void. As described below,
Lagrangian multipliers are used to couple an analytical representation for the outer
solution to a finite element representation of the solution in the inner region.

3.1. Outer solution : elastic field

Large strain effects are of no consequence in the outer elastic field because the
material under consideration is assumed to have an initial yield strain, &y = ¢y/E, no
greater than about 1072, Let R* be the radius of the spherical surface which separates
the inner and outer regions, such that all yielding is confined well within the domain
R < R*. The following velocities satisfy the field equations for axisymmetric defor-
mations of a linear isotropic elastic solid (LUR’E, 1964) :

1 , . 9 1
v, = E[(l—v)T—vS]Rsin ¢—ByR *singp—CyR 2|:4sin3q‘)— Z(ll— 16v) sin¢>:|,

1 . , 9 1
V. = E[S— 2vT)Rcos¢p—ByR *cos (,/)C()T2|:4COS 3o+ 1(31 —32v)cos (b].
(3.3)

Here z = xyand r = (x}+x3)"? are axial and planar-radial coordinates, and ¢ is the
azimuthal angle measured from the z-axis. The traction components acting on the
surface (R = R*) of the inner region are

T, = Tsing+ByR *T3($)+CyR *TC(¢),
T.= Scosp+ByR *T(p)+CoRPTE(P),
(T?, T8 = 4G (sin ¢, cos ),
7€ = 2G[9sin 3¢ — (1 —2v) sin §],
7€ = 2G[9 cos 3¢+ (11 —4v) cos ], (3.4)

fi

where G = E/(2(1+v)) is the shear modulus.

The origin of the lead terms in (3.3) and (3.4) is obvious. The additional terms have
free amplitude factors B, and C, which will be used to couple the outer elastic field
to the solution in the inner region. The above representation of the outer solution
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neglects terms in the velocities which decay with large R like R * and faster. The
terms with amplitude B, comprise the spherically symmetric contribution.

3.2. Numerical method for the inner region and coupling with outer solution

The analysis for the inner region is based on a Lagrangian formulation of the field
equations, using a cylindrical reference coordinate system, in which x'(= r), x*(= 0)
and x*(= z) are the radial, circumferential and axial coordinates respectively. The
Lagrangian strains are given by

n, = é(ui,;"’f‘uj,i‘Jf‘uﬁuk,j)a (3.5)

where u’ are displacement components on the reference base vectors and ( ), denotes
covariant differentiation in the reference frame. In this subsection, superscripts and
subscripts are associated with contravariant and covariant components, respectively,
according to the usual convention. The contravariant components of the Kirchhoff
stress tensor t' and the Cauchy stress tensor ¢ are related by

T = \/G/éa"-", (3.6)

where g and G are the determinants of the metric tensors g;; and G, in the reference
configuration and the current configuration, respectively. The equilibrium equations
are expressed in terms of the principle of virtual work

j ©on, dV = J T'du;dA, 3.7
14 A4

where V and A are the reference volume and surface, respectively, and T are the
nominal traction components.

As mentioned earlier, attention is limited to isotropic elastic—perfectly plastic solids.
Let s = 1/ — G"1§/3 be the components of the deviator of the Kirchhoff stress, and
define an effective stress quantity as

o, = (3/257s;;) """, (3.8)
The strain rate for a plastic loading increment is taken to be

N e 124
&€= \E T—
where T is the Jaumann rate of the Kirchhoff stress and 4 is non-negative. The plastic
part of the strain rate is As/E and this vanishes if 6. < gy or if 6, < 0 when o, = ay.
We have chosen to use the Kirchhoff stress rather than the Cauchy stress in the
above formulation to gain the advantage for numerical work of a symmetric stiffness
matrix for the resulting finite element equations. The differences in predictions based
on the two formulations is expected to be very small, as is well known. Strictly
speaking, the condition for remote yielding in terms of the true stress components

S and T from (3.8) becomes S— T = \/(FG(;Y rather than S— T = g,. This small

p)
%(Zz)m Zs, (3.9)
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distinction will be ignored since g/G departs from unity only due to elastic com-
pressibility.

The multiaxial incremental stress—strain relationship is of the form #/ = L¥*4,,,
with the tensor of instantancous moduli given by

y E {1 o v 3 355
ikl e ik il il jk Pkl _ Q=% %
L l+v{2(GG +GIGM) + 5 GG 0\2{}

1 S .
- 5(G”‘r"+G’"r"+G”t”‘+Gf’r”‘ . (3.10)

Here, the value of f§ is 1 or 0 for plastic yielding or elastic unloading, respectively.
Plastic yielding continues as long as s7#,, > 0. In the numerical solution the stress
values on the yield surface are adjusted radially after each increment, so that the yield
condition remains exactly satisfied.

The void considered is taken to be spherical initially with radius R,, and the inner
region analysed numerically is a concentric spherical region with initial radius R*.
Due to symmetry about the mid-plane z = 0 only half of the inner spherical region
needs to be analysed numerically. Quadrilateral finite elements were used. These were
comprised of four triangular linear displacement elements.

The displacement increments and the nominal traction increments on the surface
of the inner region must agree with the values specified by the outer solution (3.3)
and (3.4). In the incremental form of the principle of virtual work (3.7) gcometrical
compatibility with the outer solution is enforced by using a Lagrange multiplier
method, thus adding the last two surface integrals in the following incremental vari-
ational equation

f (276, + 77 i 6u } dV — J Tiou,dA— J 8, [, —u’] dA
V A A

‘J SA [y —a1dA = 0. (3.11)
A

On the surface R = R* the expressions for T, 4 and #? specified by the outer solution
are substituted into (3.11), while the displacement fields #; in the spherical inner region
are represented in terms of the finite element approximation.

A convenient choice for the variations of the Lagrangian multipliers is

84, = 8ByR 3T2(¢) +3C,R 3 TC(¢h), (3.12)
8, = 8By R TP () +6C,RTE(). (3.13)

These expressions are substituted into (3.11), together with the outer solution
expressions for the displacement increments and traction increments on the surface
of the spherical inner region. This choice preserves the symmetry of the matrix system.
With the finite element approximation of the displacement increments in the inner
region, the variational equation (3.11) gives N+ 2 linear algebraic equations, where
the first N unknowns are the nodal displacement increments and the last two unknowns
are the integration constants By and C, in the outer solution.
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All solutions to be presented here are started from a uniform stress state equal to
that specified at infinity. Since the outer solutions rely on the assumption of small
deviations from this uniform stress state, initial equilibrium is ensured by specifying
this stress state in the inner region. Subsequently, equilibrium is enforced by the
incremental solution. To avoid drifting away from the true equilibrium path standard
equilibrium correction terms are applied at all nodal points inside the outer surface
(e.g. see TVERGAARD and NEEDLEMAN, 1984). The initial loads applied to the spherical
void surface in order to obtain the uniform stress state are subsequently stepped down
over a number of increments until the void surface is free of tractions.

Two calculation procedures were used to calculate the values of .S and T associated
with the cavitation states. The more direct procedure was the less effective of the two.
It entailed fixing the ratio 7/S and incrementing S, once the initial loads on the void
surface were stepped down to zero. The normalized growth rate of the void, V/(£V),
where ¢ is the remote axial strain rate, becomes unbounded as S approaches the
cavitation limit. This procedure had poor numerical stability as the cavitation limit
was approached and was not very useful for accurately determining the cavitation
instability limit.

The effective procedure capitalized on the nature of the cavitation limit as an
eigenstate. Now, values of S and T are prescribed to be fixed throughout the com-
putation. The loads on the void surface are taken to be proportional to a load
parameter A which was an initial value A = 1 in the uniform initial state. The nor-
malized growth rate of the void, V/4, is monitored as 4 is reduced. If V/4 becomes
unbounded before A reaches zero, the remote stresses lie outside the cavitation limit.
Then in the next computation S and 7 must be scaled down. If, on the other hand,
V/1 only becomes unbounded when 4 is negative (corresponding to loads pushing out
on the void surface), the remote stresses lie within the cavitation limit and must be
scaled up in the next computation. In this way, the instability limit can be narrowed
down by a sequence of computations. In carrying out the above procedure it proved
to be expedient to use the displacement of the equatorial radius as the prescribed
quantity which is incremented in the computation with 1 as a calculated quantity.
This is simply an exchange in the roles of these two quantities in the system of linear
algebraic equations for the incremental quantities.

3.3. Numerical results : remote stressing in the elastic range

The computed cavitation states are presented in Fig. 2 in the form of curves of S/gy
and o,/6y versus (S—T)/oy for &y = oy/E = 0.003 and v = 0.3. Here 0,,/0y is the
measure of the triaxiality of the remote stress where the mean stress is

The nonlinear scale for variation with 775 is also shown on the abscissa. The value
of S/oy only varies from 4.06 when S = T (the spherically symmetric limit) to 4.54 as
(S—T)oy — 1. The corresponding variation of the mean stress is even smaller. Thus
in this range cavitation is approximately controlled by a critical value of either the
mean stress or the maximum principal stress S.
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F1G. 2. Cavitation limits for a void in an elastic- perfectly plastic material subject to remote axisymmetric
stressing. Shown are the critical values of the remote mean stress, ,,/0y, and the remote maximum principal
stress, S/ay, as a functlion of the combination of S and T.

The cavitation state S/ay = 4.06 in the spherically symmetric limit (S = T') was cal-
culated independently using the numerical procedure described above giving agreement
with the analytical result (2.15) to within a small fraction of a per cent. This close agree-
ment provides a check on the numerical procedure, including the coupling of the numeri-
cal solution for the inner region with the closed form solution for the outer region.

Most of the numerical computations leading to Fig. 2 were carried out with a ratio
of the initial coupling boundary radius R* to void radius R; of R*/R, = 100. At the
onset of the cavitation instability the void has grown so the current value of this radius
has decreased. Nevertheless, except when S— T is nearly o, the choice R*/R; = 100
is more than adequate to ensure that the plastic region is contained well within the
inner region. In fact, when (S — T')/oy is relatively small, calculations carried out with
R*/R; = 10 were in close agreement with those obtained using R*/R; = 100. The largest
value of (§— T)/ay for which calculations were made with the elastic outer solution
was approximately 0.98. In this instance R*/R; = 1000 was used, and the maximum
radius of the plastic zone had grown to about 30 times the current average void radius
in the cavitation state.

The shape of the void in the cavitation state departs only slightly from spherical.
For example, with (S—T)/ay = 0.75 the void in the cavitation state is slightly oblate
with an aspect ratio of approximately 0.97. Oblate shapes under high triaxiality
were documented in earlier studies of asymptotic void shapes in rigid—plastic solids
(Bupiansky and HUTCHINSON, 1980). Although we have not attempted any cal-
culations with initial void shapes other than spherical, it seems unlikely that the
cavitation limit should depend significantly on the starting shape, at least for shapes
which do not differ drastically from being spherical. In any case, in the range of
remote stress states represented in Fig. 2 the shape used at the start of the calculation
is very close to that attained in the cavitation state.

4. AXISYMMETRIC CAVITATION STATES: PLASTIC REMOTE REGION

Now consider the elastic—perfectly plastic solid characterized in the previous section
remotely stress to yield with
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S—T = ay, (4.1)
and, as before, let

w S+2T

On 2T (4.2)

Oy 3()'y

be the measure of stress triaxiality, where o, is the remote mean stress. Plastic flow
now occurs in the remote field with the strain rates approaching

§o= —28 = —26, = ¢, (4.3)

as R — w.

At high triaxiality a void with an initially spherical shape rapidly evolves to an
asymptotic shape which is slightly oblate. The normalized dilatation rate of the void,
V/(éV), where V is the current volume of the void, depends on ay/E, 6,,/0y and v, i.e.

VI(EV) = F(oy/E,0,/0y, V). (4.4)

For reference we recall the RICE-TRACEY (1969) high triaxiality approximation to the
normalized dilatation rate for a spherical void in an incompressible, rigid-perfectly
plastic solid (oy/E = 0)

[V/(EV)]o = 0.850exp [3/2(c,,/ay)]. (4.5)

No cavitation limit exists for a rigid—plastic solid, but (4.5) displays the extremely
strong dependence of the dilatation rate on stress triaxiality.

In this section we present results for the normalized dilatation rate for elastic—
perfectly plastic solids. We show that this rate becomes unbounded as g,/oy
approaches the cavitation limit and we calculate this cavitation limit for specific values
of ay/E. The numerical solution procedure parallels those described in the previous
section except that the outer region must be modified to represent the field of a solid
which is remotely at yield. The representation of the solution in the inner region is
still taken to be that in Section 3.2.

4.1. Outer solution : plastic field
In the limit R — oo the stresses approach
0.,=8, o,=0,=T (4.6)

together with the yield condition (4.1). The remote strain rate & is prescribed with
(4.3) holding as R — o0. The approximation of the solution in the outer region uses
the lowest order perturbation of the stress increments and velocities in the remote
field. The perturbation is developed as a rigorous expansion of the equations of the
finite deformation formulation in Section 3.2. It is outlined in the Appendix. Because
the remote stresses approach uniform values, the lowest order perturbation problem
for the increments of stress and velocities reduces to a problem for a solid with
homogenecous, transversely isotropic instantaneous moduli. The form of the velocities
in the outer field is
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Fi. 3. Influence of cavitation limit on the normalized dilatation rale for an clastic-perfectly plastic solid
which is remotely yielded (S— T = oy, v = 0.3). Here ¢ is the remote strain-rate and [V/(£})], Is the high
triaxiality approximation (4.5).

&
Il

— 1R sin p+ By R 2B ($) + CoR™H0C (),
ERcos g+ ByR 208 () + CoR 205 (), 4.7)

where R and ¢ are spherical coordinates in the current configuration. The v(¢)s depend
onoy/E, 6,/0y and v as well as ¢, as specified in the Appendix. The contribution with
amplitude B, is no longer spherically symmetric. The associated nominal traction
rates on the spherical surface with radius R = R* have the form

T, = éT0(@) + BoR THP) + CoR T (). (4.8)

(2

4.2. Dilatation rates and cavitation states

The normalized dilatation rates presented in Fig. 3 were computed using the coupled
inner and outer representations. The calculations were initiated with uniform tractions
specified over the initially spherical void surface consistent with (4.6). These tractions
are stepped down to zero simultaneously with the imposition of increments of remote
strain £. The normalized dilatation rate, V/(éV), is calculated using the current
volume ¥V somewhat after the point where the tractions on the void surface have been
eliminated when the void is still nominally spherical. The rate in Fig. 3 has been scaled
by the rigid—plastic approximation (4.5) to reveal the cavitation limit, independently
of its strong dependence on mean stress. Included in Fig. 3 is the result of a direct
calculation of the cavitation limit of oy/E = 0.003 and v = 0.3 which will be described
below and which gave o,,/0y = 3.78 (S/oy = 4.45).

Well below the cavitation limit (e.g. o,,/oy < 2) the dilatation rate is only weakly
dependent on oy/E and scales with the rigid-plastic approximation (4.5). In this range
our results do exceed the widely used high triaxiality approximation (4.5) by more
than 50%. This discrepancy is a consequence of inaccuracy in the approximate formula
(4.5). This matter is addressed separately from the issue of cavitation instabilities in
Section 6.
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undeformed radius of the wire, u is the displacement across the crack faces, o is the
nominal stress (the load carried by the specimen divided by the cross-sectional area
of the undeformed wire, naj), and oy = 5.3 MPa is a measure of the initial tensile
yield stress of the unconstrained wire.

Little or no debonding between the lead wire and the glass was observed to occur
in the specimens whose load—deflection behavior is shown in Fig. 5. Consequently,
the constraint imposed by the glass cylinder on the wire was fully maintained as 1s
reflected by the very large values of ¢/ achieved in the test. These specimens failed
by the enlargement of a single void in the wire somewhere on or near the plane of the
crack. An example of the final failure surface from ASHBY et a/. (1989) is shown in
Fig. 6 where it can be seen that the void grew to encompass about one half the cross-
sectional area of the wire. The remaining annular ligament failed by shearing off. The
initial size of the void, or the size of the particle from which it nucleated, is not known
but is presumably on the scale of microns. Its final size is a fraction of a millimeter,
and thus its volume has increased by a factor of more than 10°.

ASHBY ¢t al. (1989) present uniaxial stress—strain curves for the unconstrained lead
wire material. The material displayed fairly high strain hardening and considerable
variation from one uniaxial curve to another. Using representations for their uniaxial
curves in the form ¢/oy = f(¢), we have evaluated the cavitation limit for spherically
symmetric stressing from (2.7). (The piecewise power-law (2.13) does not adequately
fit the stress—strain curves. We have used a more complicated representation which
more closely reproduces the measured data.) The computed spherically symmetric
cavitation limit ranged from S/oy = 6 to S/oy = 7.5, depending on which set of
uniaxial tensile data was used. The state of stress in the wire where cavitation occurred
was almost certainly at yield and not spherically symmetric. Nevertheless, the results
of the previous section suggest that the cavitation stress predicted for the spherically
symmetric state should be a reasonable estimate for the present application. The high
constraint and exceptionally high values of g/¢y ensure that ¢ = ¢,,. The peak values
of ¢/oy recorded experimentally in Fig. 5 do fall within, or a little below, the predicted
range for the cavitation limit for most of the specimens.

6. DILATATION RATES

It was noted in connection with the results in Fig. 3 that the widely used high
triaxiality approximation (4.5) of Rice and TrRacgy (1969) underestimates the dila-
tation rate by more than 50% c¢ven well below the cavitation limit. The curves of Fig.
3 are reproduced 1n Fig. 7 along with results for the normalized dilatation rate of a
spherical void in a rigid-perfectly plastic solid.

The results shown in Fig. 7 for the dilatation rate of a spherical void in a rigid—
perfectly plastic solid have been recomputed (HUANG, 1989) along the lines originally
detailed in R1cE and TRACEY (1969) and BUDIANSKY ez al. (1982). Considerable effort
has been taken in recomputing the rigid—perfectly plastic results to ensure that the
number of functions used to represent the velocity field leads to a converged result
for the dilatation rate. Details of these calculations will be published elsewhere. The
main finding, seen in Fig. 7, is that the widely used high triaxiality approximation




FiG. 6. A photograph from AsHBY et al. (1989) showing the failure mode of the well bonded wires. A
single void grows until it occupies almost one half the cross-section of the wire and the remaining ligament
shears off.

237







Cavitation instabilities in elastic—plastic solids 239

2.2

2.0F

1.4k \Rigid ~Perfectly Plastic

ui
~0 1 2 3 4 Om
Ty

FIG. 7. Effect of clasticity on the dilatation rale of nominally spherical voids. The high triaxiality
approximation, [V/(¢V)],, in (4.5) is used as a normalizing reference.

(4.5) underestimates the dilatation rate of the void by more than 50% at all levels of
triaxiality above a,,/0, = 1. Moreover, elasticity comes into play at triaxialities in the
range of 6,,/ay from 1 to 2. As is evident from Fig. 7, the existence of the cavitation
instability for the elastic—perfectly plastic solid manifests itself even in the lower
triaxiality range. For ay/E = 0.003 (a typical value), the dilatation rate is more than
60% higher than the high triaxiality approximation when a,/gy exceeds unity. At
triaxiality levels above o,,/oy = 2, the influence of the cavitation instability begins to
dominate and the formula is even more in error.

Researchers have noted that the high triaxiality formula (4.5) tends to underestimate
experimentally measured growth rates by amounts comparable to those seen in Fig.
7 (BEREMIN, 1981). Recently in a numerical study of the growth rate of a spherical
void near the tip of a crack, Hom and MCMEEKING (1989) found that the void grew
at roughly twice the rate expected from the high triaxiality formula (4.5). This was
attributed to interaction with the crack tip, but is likely to be due, in part, to inaccuracy
inherent in the formula.
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APPENDIX

Outer solution : plastic field

Let r and z be radial and axial coordinates of a material point in the current configuration
and let R = (r>42%)"? be the distance from the origin. Write the vclocilies in the outer field as

v=vr 49, (A1)

where

£ x*

vy = —ér/2 and v} =éz (A2)
with ¥ as the lowest order perturbation from the uniform field which decays to zero as R — .
Since the remotc stresses approach uniform values, 6*, given by (3.1), the relation between the
stress rates and the strain rates in the remote field is given by the constitutive relation of Section
3.2 where L in (3.10) is cvaluated using 7. Let #,, be incremental components of the nominal
stress with respect to fixed Cartesian axes so that incremental equilibrium is specified by

A, = 0. (A3)
With the aid of well-known connections betwecn the several stress rates, one can use the
constitutive relation to obtain
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Ry = Cijailiks (A4)

where explicit cxpressions for the ¢s are readily identified which depend on E, v, S and T.
These instantaneous moduli arc homogeneous and transversely isotropic with respeet to the
Z-aXis.

Following a procedure laid out by ELLioTT (1948), onc can represent the axisymmetric
velocity field ¥ by two velocity potentials @ (r, £)(i = 1, 2) such that in cylindrical coordinates

J 0
b= (@+®;) and =5 (K@ k), (AS)

wherc k|, and k, arc specified below. The potentials satisfy
oD, 100, 6, i
o T m,-'ah;y =0 (i=12), (A6)
where m | and m, arc the roots of
m {(C ) — THCas—(S=T)/2)} +m{(C 3+ Cys— (S+ T)/2)*
~(Ci =T)(Cayy =8) = CoL+((S=T)/2)*} +(C33 = S)Cas +(S—T)/2) = 0 (A7)
and
C,,=K+G, C,=K-G,
C;=Cy=K, Cuy=0G
with G = E/(2(1 +v)) and K = E/(3(1 —2v)). The ks arc given by
ki ={(C\, =Ty —(Cau +HS=TY/(C s+ Cas— (S+T)/2). (A8)
The two roots m; arc complex conjugates of one another, as are the k,. The general solution
for @, leading to velocities which decay at infinity, is

¢, = Z ARy VP, (cos ), (A9)
0

n=

wherc the A4, are complex, P,(x) is the nth order Legendre Polynomial and
R, = (2 +2Im)"?, cosd, =z/(R,\/m,). (A10)

The general solution for @, is the complex conjugate of @, so that the velocities from (A5)
are real. Only the first term, # = 0, in (A9) is uscd in the representation for the outer field. The
terms with n = 1 give rise to velocitics contributions which decay faster than R ? for large R.
The free amplitudes B, and C, introduced in Scction 4 enter (A9) as 4, = B,—iC,.







