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Abstract—A theoretical investigation is made of the role of non-deforming particles in reinforcing ductile
matrix materials against plastic flow and creep. The study is carried out within the framework of
continuum plasticity theory using cell models to implement most of the calculations. Systematic results
are given for the influence of particle volume fraction and shape on the overall behavior of composites
with uniformly distributed, aligned reinforcement. The stress—strain behavior of the matrix material is
characterized by elastic—perfectly plastic behavior or by power-law hardening behavior of the Ram-
berg-Osgood type. A relatively simple connection is noted between the asymptotic reference stress for the
composite with the power-law hardening matrix and the limit flow stress of the corresponding composite
with the elastic—perfectly plastic matrix. The asymptotic reference stress for the composite with the
power-law matrix is applicable to steady-state creep. A limited study is reported on the overall limit flow
stress for composites with randomly orientated disc-like or needle-like particles when the particles are
arranged in a packet-like morphology.

Résumé—Nous avons étudié théoriquement le réle des particules indéformables dans I'amélioration de la
tenue des matériaux 4 matrice ductile vis-d-vis de la déformation plastique et du fluage. Cette étude a été
menée dans le cadre de la théorie plastique des milieux continus, en utilisant des modéles de cellules pour
exécuter la plupart des calculs. Nous donnons des résultats systématiques concernant I'influence de la
fraction volumique et de la forme des particules sur le comportement général des composites d renforts
alignés et distribués de fagon uniforme. La loi contrainte-déformation de la matrice est caractérisée par
un comportement élastique—plastique parfait, ou par un comportement de consolidation en loi de
puissance du type de Ramberg et Osgood. On note une relation relativement simple entre la contrainte
de référence asymptotique correspondant au composite dont la matrice présente une consolidation en loi
de puissance, et la contrainte d’écoulement limite du composite correspondant dont la matrice est
élastique—parfaitement plastique. La contrainte asymptotique de référence du premier composite est
applicable au fluage stationnaire. Nous rapportons une étude moins détaillée sur la contrainte globale
d’écoulement limite dans le cas des composites au les particules en forme de disques ou d’aiguilles sont
orientées au hasard, alors que leur arrangement présente une morphologie en paquets.

Zusammenfassung—Die rolle sich nicht verformender Teilchen bei der Hirtung duktiler Matrixmaterialien
gegen plastiches FlieBen und Kriechen wird theoretisch untersucht. Die meisten Rechnungen werden mit
Zellmodellen im Rahmen der Kontinuums-Plastizitdtstheorie durchgefithrt. Systematische Ergebnisse
werden vorgelegt fiir den EinfluB des Teilchen-Volumanteils und der Teilchenform auf das Verhalten des
Verbundwerkstoffes bei gleichmdBig verteilten ausgerichteten Verstirkungsteilchen. Das Spannungs-
Dehnungsverhalten des Matrixmaterials ist charakterisiert durch elastisch-perfektes plastisches Verhalten
oder durch Potenzgesetz—Hirtungsverhalten vom Typ Ramberg-Osgood. Zwischen der asymptotischen
Referenzspannung des Verbundmateriales mit der potenzgesetzverfestigenden Matrix und der Grenz-
fliespannung des entsprechenden Verbundmaterials mit der elastisch—perfekt plastischen Matrix ergibt
sich ein vergleichsweise einfacher Zusammenhang. Die asymptotische Vergleichsspannung fiir den
Verbundwerkstoff mit der Potenzgesetz-Matrix 1Bt sich auf das stationdre Kriechen anwenden. Eine
kurze Untersuchung der GrenzflieBspannung von Verbundmaterialien mit willkirlich orientierten
scheibenférmigen oder nadelartigen Teilchen wird fiir den Fall dargestellt, daB die Teilchen paketartig
angeordnet sind.

1. INTRODUCTION

Composites comprised of a metal or intermetallic
matrix reinforced by particles or fibers which do not
deform plastically have properties which make them
potentially attractive for a range of applications,
including high specific stiffness materials and creep
resistant high temperature materials. This paper is
concerned with the uniaxial stress—strain behavior in
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rate-independent plastic flow or in steady-state creep
for composites with matrices reinforced by particles
which are large enough to justify a continuum plas-
ticity representation of the matrix behavior. In par-
ticular, an attempt has been made to present results
which systematically relate the overall response of the
composite to the particle volume fraction, particle
shape, and matrix strain hardening. For the most
part, attention is focussed on aligned particles, but
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some results are given for composites with randomly
orientated needle- or disc-shaped particles.

Since the theory for determining the overall elastic
properties of two-phase composites is relatively well
developed, the emphasis here is on nonlinear plastic
response. Two recent publications [1,2] complement
the present study and provide surveys of the relevant
literature. The issue of whether a continuum theory
of plasticity is appropriate to characterize the matrix
material for a given size of reinforcing particle has
received attention but remains open, as will be dis-
cussed further in the final section (the recent literature
on the subject is cited in [2]).

The features of the overall stress—strain behavior
which will be of concern in this study are brought out
in Fig. 1. The tensile stress—strain curve of an elastic—
perfectly plastic matrix material in Fig. 1(a) is charac-
terized by

o =04(¢/e) €€

=0, €>¢ 1)
where o, is the tensile flow stress, ¢, = 6,/E, and E is
Young’'s modulus. A composite with non-deforming,
perfectly bonded particles embedded in a perfectly-
plastic matrix will have a limit flow stress &, for
tensile stressing in any given direction. With the
exception of Sections 6 and 7 of the paper, attention
will be focussed on particles which are aligned with
respect to the tensile axis, and the limit flow stress 6,
will be with reference to that specific direction of
stressing. Sections 2, 3 and 4 deal with the relation
between &, and the volume fraction and shape of the
particles.

Section 5 is concerned with matrices which strain
harden. Because of the close connection between
power law hardening and steady-state power law
creep, the results of Section 5 are also applicable to
reinforcement against creep by rigid particles. The
tensile stress—strain behavior for the hardening
matrix used in this paper is the Ramberg—Osgood [3]
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Fig. 1. Tensile stress—strain curves for composite and matrix
defining the limit flow stress &, in (a) and the asymptotic
reference stress gy, in (b).
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where n is the stress exponent, ¢, = o,/E, and the
coefficient a is taken to be 3/7 by Ramberg and
Osgood. The overall tensile stress-strain behavior of
the composite [see Fig. 1(b)] with perfectly bonded
particles necessarily has the same stress hardening
exponent n for overall strains € which are sufficiently
large compared to ¢,. That is, the overall (or average)
tensile stress—strain curve for sufficiently large €
asymptotes to

; 5 \n = s \N
f=a(§) or-§=(i) ©)
€y On On A€y

where N = 1/n is the strain hardening exponent and
&y will be called the asymptotic reference stress. This
property is an exact consequence of the Il’yushin
Theorem for pure power law materials.

Because the Ramberg—Osgood law (2) approaches
the elastic—perfectly plastic law (1) as n - ©

lim ¢y = d,. 4)
N=0O
Thus, &, reflects the reinforcement even for a harden-
ing matrix and ¢, is the premiere quantity from a
continuum theory for assessing reinforcement. A
simple approximate formula relating y to 6, will be
quoted in Section 5.

A straightforward way to reveal the asymptotic
reference stress is to plot the composite stress &
normalized by the stress in the pure matrix material
at the same strain ¢, as depicted by the dashed curve
in Fig. 1(b). Specifically, let ¢ (¢) denote (2) and plot
G(€)/o(€).

The results of Section 5 have bearing on matrices
which undergo steady-state creep which is character-
ized in simple tension by

€/éy=a(a[ay)" ®)

where ¢ is a reference strain-rate and ¢, a reference
stress. The composite has a steady-state creep behav-
ior given by
2o = a(d /dy)" ©)
where 6y/o, has the same value as for the rate-
independent power hardening material for a given
reinforcement. The analog between power law plas-
ticity and power law creep implied by (3), (5) and (6)
is exact, following from the II’yushin Theorem cited
above. The rransition to steady-state creep, or the
transition to power-law behavior (3) for the rate-inde-
pendent material, may require strains that are as
much as 10 times ¢,. This is an important aspect of
the macroscopic response of heavily reinforced ma-
terials which will be discussed in the body of the
paper.
Most of the results in this paper are based on an
axisymmetric cell model of a uniform, aligned particle
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distribution. Axisymmetric cell models have been
widely used for this purpose [1,4, S]. The scheme
behind the cell model is illustrated in Fig. 2. Imagine,
for example, a hexagonal array of axisymmetric
particles aligned with the hexagonal cells and subject
to an overall stress ¢ parallel to the hexagonal axis.
Each hexagonal cell behaves identically. The lateral
faces remain planar with zero shear traction and zero
average normal traction. The faces perpendicular to
the direction of stressing also remain planar with zero
shear tractions and with average normal stress equal
to &. The cylindrical cell is introduced as an approxi-
mation to the hexagonal cell for computational
reasons—the stress distribution is axisymmetric if the
particle is axisymmetric. The cylindrical surface of the
cell is constrained to remain cylindrical but is free to
move out or in with zero average normal tractions.
The shear tractions on the cylindrical sides and the
ends are zero. The average normal stress on the ends
is . The volume fraction of the particles, f, is taken
as the ratio of the particle volume to the cell volume.
The cell model is an approximation to a uniform
distribution of aligned particles with an arrangement
such as that illustrated in Fig. 2. Results for
high aspect ratio particles are particularly sensitive
to other arrangements, as will be remarked on
below.

A finite element method has been used to solve the
boundary value problems for the axisymmetric cell.
The ABAQUS code was employed with 8-noded
biquadratic elements. In generating results over the
full range of volume fractions, calculations at as
many as 6 distinct values of f were made. Conver-
gence studies were conducted at representative vol-
ume fractions, both small and large, to ensure that
the element meshes were sufficiently refined. The
overall stress—strain curves discussed below were
computed incrementally using strain increments
which were equal to or less than Aé/e, = 0.25. Thus,
as many as 40 incremental steps were taken to
calculate each curve for strains up to 10 ¢,. However,
in the transition from elastic behavior to yielding,
steps as small as Aé/e; =0.03 were used to ensure
fidelity to a tolerance criterion for convergence of the
incremental solution. In any case, the fully plastic
flow which eventually develops is insensitive to the
initial transient calculation leading to it. The results
in Section 6 were obtained using a 3-D cell, and some
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Fig. 2. Motivation for axisymmetric cell model.
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details of the finite element scheme used in those
calculations will be given later.

The J, flow theory of plasticity is used to character-
ize the rate-independent matrix material. With s; as
the stress deviator and o, = (3 s;s;/2)"? as the effective
stress, the stress increment is related to the strain
increment by the well-known flow theory formula

E
Gy=—— é,j—f—Lékkéy
1 +v 1 -2y

3 (L4 )e sysubu o
2[1+ 31+ v)(E/E - 1)7']

where E is Young’s modulus, v is Poisson’s ratio, and
E_ is the tangent modulus of the tensile stress—strain
curve at the current value of a,. The last term in (7)
is taken to be zero for an elastic increment. In all the
calculations, v was taken to be 0.25; however, the
quantities of primary interest, &, and 6y, are indepen-
dent of v. No calculations were carried out for
steady-state creep, but the correspondence noted
between ¢y for the rate-independent theory and &y
for steady-state creep holds when (5) is generalized to
multiaxial states by

éij/é():(3/2)a(6e/60)"7] Sy/ag. (8)

The particles are taken to be rigid and the matrix
material is taken to be perfectly bonded to the
particles. The elasticity of the particles affects the
overall elastic modulus of the composite, E, and to a
minor extent affects the overall stress—strain curve of
the composite in the vicinity of overall yeield. How-
ever, as long as the particles do not yield themselves,
their elasticity has no influence on &, nor 4. Since
the emphasis in this work is on the plastic behavior
of the composites, it was expedient to take the
particles to be rigid and thereby eliminate the ratio of
the modulus of the particle to that of the matrix as
an additional parameter. Various methods for esti-
mating the overall elastic moduli of reinforced
solids are available which account for the elasticity
of the particles [6]. These estimates can be incorpor-
ated in the approximate representation of the full
stress—strain curve for composites proposed in
Section 5.

2. ELASTIC-PERFECTLY PLASTIC
MATRIX REINFORCED BY
RIGID SPHERES

Stress—strain curves for the elastic-perfectly plastic
matrix and for the matrix containing rigid spherical
particles, as calculated using the cylindrical cell
model, are shown in Fig. 3. In all cases presented in
this section the aspect ratio of the cell, R/H, is fixed
at unity. The Influence of the cell aspect ratio is
discussed in the next section. A uniform distribution
of spherical particles has surprisingly little effect on
the overall flow stress for volume fractions below 0.2.
This is remarkable considering that the distance
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Fig. 3. Uniaxial stress—strain curves for an elastic—perfectly
plastic matrix containing a uniform array of rigid spherical
particles. The aspect ratio of the cell was taken to be unity.

between particles is about the diameter of the par-
ticles when f=0.1.

The strain required for the composite to make the
transition from elastic to perfectly plastic with
dé/dé = 0 increases as the level of reinforcement
increases. At the highest levels of reinforcement in
Fig. 3, the transition strain is about 3 ¢,.

The dependence of 6,/a, on f'is shown in Fig. 4(a).
The composite flow stress becomes unbounded when
the particles come into contact, which occurs at
f = 2/3 when the cell aspect ratio is unity. Included in
Fig. 4(a) are three points from Hom and McMeeking
[7] computed using a three-dimensional cell model of
a uniform cubic array of rigid spherical particles in an
elastic—perfectly plastic matrix. The tensile axis is
aligned with an axis of the cubical cell. The coinci-
dence of the two sets of results suggests that the
composite flow stress is not very sensitive to the
precise arrangement of the spherical particles for
volume fractions up to 0.4 as long as the distribution
is uniform and arranged in a primitive manner. Also
included in Fig. 4(a) is the prediction from a self-con-
sistent model for reinforcement by rigid spherical
particles due to Duva [8]. Duva’s model will be
discussed in Section 5; in the limit of perfect plasticity
it gives

Gofay=(1—f)""*. ®
It is insightful to express the composite flow stress
as

Golog =1+ Bf. (10)
The reinforcement factor f is plotted in Fig. 4(b).
For sufficiently small f the increase in composite
flow stress must be approximately linear in f (i.e.
B — B, as f —0). This is the dilute limit. Figure 4(b)
reveals that the dilute range for spherical particles
extends to volume fractions as large as f=0.2.
Duva’s model is constructed to be exact in the dilute
limit, as discussed in Section 5; but compared to
the present predictions and those of [7] it underesti-
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mates the reinforcement at particle volume fractions
above 0.2.

In the dilute limit the axisymmetric cell model for
rigid spherical particles gives

B =0.375. (11)
Considerable care has been exercised to validate the
accuracy of this value by various refinements of
the finite element mesh. The major uncertainty in the
value (11) arises from the fact that the circular
cylinder cell is not space-filling. If the volume of the
cell is taken to be that of the hexagonal cell which
ascribes the circular cylindrical cell, rather than that
of the cylindrical cell itself, the volume fraction f
increases by a factor 2n /(3\/§)= 1.21 and B becomes
0.310. If, on the other hand, the volume of the cell is
taken to be that of the circumscribing hexagonal cell,
S must be decreased by the factor n/\/TE = 0.907 and
B becomes 0.413. Such uncertainties are intrinsic to
an axisymmetric cell model. An independent calcu-
lation, discussed in Section 5, which is free of this
uncertainty gives f = 0.39. Thus, it appears that the
identification of the cell volume with that of the
circular cylinder is an appropriate choice to deter-
mine f, at least when f'is small, and we shall continue
to make this identification throughout the paper.
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Fig. 4. Limit flow stress as a function of volume fraction for
an elastic—perfectly plastic matrix containing rigid spherical
particles. The aspect ratio of the cell was taken to be unity.
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3. ELASTIC-PERFECTLY PLASTIC
MATRIX REINFORCED BY ALIGNED
ELLIPSOIDAL PARTICLES

The effect of particle aspect ratio on the composite
stress—strain curve is shown in Fig. 5. The rigid
particles are ellipsoids of revolution with radius a and
half-height b with the axis of revolution aligned with
the axis of the cylindrical cell. The particle volume
fraction for each curve displayed in Fig. 5 is ' = 0.2.
The cell aspect ratio in each of these calculations is
taken to be the same as that of the particle, i.c.
R/H = a/b. High aspect ratio needles (a/b<«]1) or
discs (a/b>1) are far more effective reinforcements
than spheres, as is well known. At a given aspect
ratio, aligned needles are somewhat more effective
than aligned discs. Figure 5 reveals a general trend:
the more effective the reinforcement in elevating the
matrix flow stress, the larger the strain range associ-
ated with the transition.

The normalized limit flow stress, 6,/d,, is shown as
a function of particle volume fraction in Fig. 6(a) for
several values of particle aspect ratio. The f-factor
defined in (10) is shown in Fig. 6(b), where the strong
dependence of this factor on the particle aspect ratio
is evident. At low fractions, aligned needle-shaped
particles with an aspect ratio a/b = 0.1 are more than
ten times as effective as spheres. The range of validity
of the dilute approximation [i.e. (10) with B fixed at
its value for f=0] diminishes as the aspect ratio
becomes either large or small. A simple expression for
B which accurately reproduces the results of Fig. 6(b)
at f=0.11s

b a
B=0.69-+044-—-0.75. (12)
a b
The use of this formula for # in conjunction with (10)
gives a reasonable approximation for &,/c, for
aligned ellipsoidal particles for f < 0.2.

The effect of the cell aspect ratio R/H on 6,/d, at

a fixed particle volume fraction (/' = 0.05) is shown in

T ™ T T T

53F 5l E

Oy [ & 2H q
- i ab = R/H= 01 |
L YL-A =
o F
=3 o
2F ]
1F
F N Matrix ]
0 I T DS R SRR
0 2 4 6 8 10

€/€,

Fig. 5. Uniaxial stress—strain curves for an elastic—perfectly

plastic matrix containing aligned ellipsoidal particles of

various aspect ratios ranging from needles to spheres to

discs. The volume fraction in each case is /= 0.2, and the

cell aspect ratio was taken to be the same as the particle
aspect ratio.
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Fig. 6. Limit flow stress as a function of volume fraction for
an elastic—perfectly plastic matrix reinforced by aligned
ellipsoidal particles.

Fig. 7 for a spherical particle, a needle-shaped particle
(a/b =0.2), and a disc-shaped particle (a/b =5).
Particularly for the sphere and disc-shaped particles,
the composite flow stress remains virtually un-
changed over a fairly wide range of the cell aspect
ratio. Only as the distance between the particle and
the side or ends of the cylindrical cell becomes small
does 6,/0, increase rapidly. In the limit when the
side or ends of the cell touch the particle, &,/0, is
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Fig. 7. Effect of cell aspect ratio on the limit flow stress of

an elastic-perfectly plastic matrix reinforced by aligned

needles (a /b = 0.2), discs (a/b = 5) and spheres (a/b = 1), in
each case for = 0.05.
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Fig. 8. Synopsis of Drucker's 2D model [9] of a uniform
array of rigid hexagonal particles separated by an elas-
tic—perfectly plastic matrix.

unbounded. High stress triaxiality develops in the
narrow zones where particles are closed together, as
described by Drucker [9] and as emphasized by
Christman et al. [1].

Drucker’s [9] plane strain model of a perfectly
plastic matrix reinforced by a high volume fraction of
uniformly distributed, rigid hexagonal particles is
summarized in Fig. 8. In the limit state, steep gradi-
ents of stress develop in the matrix which are in-
versely proportional to the separation between the
particles. This leads to mean stress levels which can
be many times the matrix flow stress ¢,. The limit
flow stress of the composite is also inversely pro-
portional to the separation between the particles
when that distance is small compared to the particle
size. The high mean stress which develops in a heavily
reinforced composite when overall flow takes place
has clear implications for the susceptibility of these
materials to various fracture mechanisms.

The limit flow stress ¢, of a heavily reinforced
matrix is a strong function of the arrangement of the
particles, especially when they are aligned. The results
for the needle-shaped particles (@/b =0.2) in Fig. 7
already suggest such a sensitivity. A number of
investigators [1, 2, 4, 5] have shown that the arrange-
ment of needle-shaped particles modeled by the cell
used here has a higher flow stress &, than arrange-
ments where the needles are still aligned but overlap
one another. The results for high aspect ratio needles
or discs are also much more sensitive to the cell aspect
ratio than are the results for spherical particles.
Effects of arrangement and distribution are import-

tThe result for the circumscribing spherical particle must be
an upper bound to &, for the unit cylinder since the
velocity field for the spherical particle is admissible for
the unit cylinder.

PARTICLE REINFORCEMENT OF DUCTILE MATRICES

ant features of the subject which are not yet well
understood, as will be emphasized again in the final
discussion.

4. ELASTIC-PERFECTLY PLASTIC MATRIX
WITH ALIGNED CYLINDRICAL PARTICLES

The work of Christman et al. [1] has revealed a
strong dependence of the composite flow stress on
details of particle shape other than just the aspect
ratio. Specifically, they have shown that a uniform
distribution of aligned cylindrical particles, whose
diameter equals their height, are far more effective
reinforcing agents than spherical particles. The re-
sults of Fig. 9 compared with those of Fig. 6 for
ellipsoidal particles drive this point home. The results
for rigid circular cylindrical particles in Fig. 9 have
been computed using a cylindrical cell with aspect
ratio, R/H, equal to the radius to half-height ratio,
a /b, of the particle. At low volume fractions the unit
cylindrical particles (a/b =1) are approximately
twice as effective as spherical particles at the same
volume fraction (i.e. f = 0.70 vs § = 0.38). The vol-
ume of the smallest sphere which circumscribes the
unit cylinder is 1.89 times that of the unit cylinder,
and this factor corresponds very closely to the differ-
ence in the f-factors. In other words, the unit cylinder
has almost the same effect as a spherical particle
whose surface just circumscribes the cylinder.t
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Fig. 9. Limit flow stress as a function of volume fraction for
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cylindrical particles. Compare with the corresponding
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At higher aspect ratios, corresponding to needles
or discs, the difference between the effect of cylindri-
cal-shaped particles and the ellipsoidal particles is less
dramatic but, nevertheless, still appreciable. At
S =0.1, the following provides an accurate approxi-
mation to f for the aligned cylindrical particles in
Fig. 9(b)

B=1062+064%_095. 13)

a b
This result in (10) provides an approximation to 6,/a,
for aligned cylindrical particles in the range f < 0.2.

5. REINFORCEMENT OF MATRICES
WHICH UNDERGO POWER-LAW STRAIN
HARDENING OR POWER-LAW CREEP

In this section attention is directed to matrices
which undergo isotropic hardening in accord with a
Ramberg—Osgood tensile stress—strain curve (2). The
asymptotic reference stress §y in (3) applies to the
rate-independent flow problem and to the steady-
state power-law creep problem, as discussed in con-
nection with (5) and (6).

The effect of strain hardening on the full uniaxial
stress—strain curve of the composite is shown in
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Fig. 10. Tensile stress—strain curve for a matrix material with
a Ramberg—Osgood stress—strain curve (see Fig. 11) re-
inforced by cylindrical particles with unit aspect ratio and
S =0.2. The approximation is given by (14). The lower plot
shows the overall stress normalized by the stress in the
unreinforced matrix at the same strain. N = 1/n,
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Fig. 11. Tensile stress—strain curve for a matrix material with

a Ramberg-Osgood stress—strain curve reinforced by

aligned cylindrical discs (a/b = 5) with / = 0.2. The approxi-

mation is given by (14). The lower plot shows the overall

stress normalized by the stress in the unreinforced matrix at
the same strain. N = 1/n.

Figs 10, 11 and 12. These curves were computed for
rigid cylindrical particles within a cell whose aspect
ratio, R/H, is taken to be equal to that of the particle,
a/b. Curves for three aspect ratios are shown, in each
case for f =0.2 and N =0, 0.1 and 0.2. The value of
a in (2) has been taken to be 3/7, as recommended in
[3]; the matrix curves are shown in Fig. 11.

In part (b) of each of the three figures, the stress
has been normalized by the stress of the unreinforced
matrix material at the same strain, ¢ (€). As discussed
in connection with Fig. 1, the normalized composite
stress—strain curve is useful in revealing the asymp-
totic reference stress &y for the power-law material.
These normalized plots also give an indication of the
length of the rransition to pure power-law behavior.
The transition strain is a function of the level of
reinforcement and the degree of strain hardening. It
has already been noted that the transition strain for
a composite with an elastic—perfectly plastic matrix is
typically about 3¢,, for moderately high levels of
reinforcement. Strain hardening increases the tran-
sition to as much as 10 ¢, at high levels of reinforce-
ment with N =0.2 (see Fig. 12).

By similar reasoning, one expects the transi-
ent response in creep prior to the attainment of
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Fig. 12. Tensile stress-strain curve for a matrix material with
a Ramberg-Osgood stress—strain curve reinforced by
aligned cylindrical needles (a/b =0.2) with /=0.2.

steady-state to involve a transition strain typical of
that for the rate-independent composite. The signifi-
cance of the extended transition for highly reinforced
materials with appreciable hardening (or values of N
as large as 0.2 in power-law creep applications) is that
the transition may constitute a substantial portion of
the useable strain range of the composite. Concomi-
tantly, the composite may appear to harden with a
different N-value than the matrix if the strain range
sampled falls within the transition. An illustration of
this point is provided in §4 of [1] where a difference
between the matrix and composite N-values was
found. We believe this difference is due to the fact
that most of the strain measured (and computed) for
the composite considered fell within the transition.

The dashed curves in Figs 10-12 are a Ramberg—
Osgood representation for the composite specified as
follows. With £ and &y as the modulus and asymp-
totic reference stress for the composite, consider the
counterpart to (2a) for the composite,

0. i\
€ =—=T0€| — .
E T'\6y

This approximation has the correct behavior in the
linear range and has the correct asymptotic pure
power-law behavior noted in (3). It can be seen in
Figs 1012 that this approximation is a fairly success-
ful representation for the entire stress—strain curve,
although it overestimates the proportional limit and

(14)
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the stress in the transition region. The effect of
the elasticity of the particles can be accounted for in
Ein (14).

The details of the composite stress—strain curve in
the transition will depend on the details of the matrix
stress—strain curve in the vicinity of ¢,. The calcula-
tions of Figs 10~12 have all been repeated for a piece-
wise power-law governing the matrix behavior, i.e.

e=0/E 0 <a,

= €(a/ay)" (15)

where, again, ¢, = 6,/E. The values of the asymptotic
reference stress gy coincide with those calculated
using the Ramberg-Osgood curve, as they must.
Moreover, the piecewise power-law representation
for the composite

E=6/E

o >0

<4,
=6(0/on)" (16)

where &, =&y (G/dx)""~Y, provides a reasonable
approximation to the computed results over the
entire strain range. This representation is not quite as
successful as the Ramberg-Osgood representation
since it has a discontinuity in slope at &, which is not
present in the computed results for the composite. As
in the other case, it overestimates the stress in the
transition.

The asymptotic reference stress gy of the composite
with a hardening matrix is larger than the corre-
sponding quantity, &,, for the composite with an
elastic—perfectly plastic matrix, as can be seen in
lower halves of Figs 10-12. A plot of gy — ¢, normal-
ized by 6, — g, as a function of N is shown in Fig. 13.
Included in this figure are results for aligned cylindri-
cal particles ranging from discs to spheres to needles
at two volume fractions. Also included are predic-
tions of the Duva model for spherical particle re-
inforcement which is given below. The increase in 6y
above &, is nearly linear in N. For the more heavily
reinforced materials (containing disc- or needle-
shaped particles), the approximation, (&y - d,)/
(69— 64)=2.5 N, holds, so that

6N =Gy + 2.5 N(G, — 0,).

G>0,

a7

aN_ (_IO
Gy~ Gy 2

1ok DUVA MODEL*
spherical
particles

’/“1=.1,%-,1

Br Cylindrical
pariicles

Fig. 13. Increase of asymptotic reference stress &, above &,
as a function of N for various reinforcements.
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The details of the structure of the composite (i.e. f,
aspect ratio, etc.) are all contained in 6, — g, in this
approximate formula. For equiaxed particles the
coeflicient in (17) is closer to 3.5 than 2.5.

Duva’s [8] differential self-consistent result for the
reference stress of a composite with a random distri-
bution of rigid spherical particles perfectly bonded in
a pure power-law matrix is

Gy =0y (1 —f)~H

(18)

where
19

The function of the hardening exponent, A(N), has
been obtained from the solution to the problem of an
isolated spherical particle in an infinite pure power-
law matrix. Duva’s numerical solution gave
h(N)=0.48 (1 — N)+3 N. The result quoted in (19)
and used in (9) was recomputed in the present study
using a more accurate numerical procedure. The
recomputation was carried out for the elastic-
perfectly plastic limit, N =0, using the procedure
described in [10] which employs a series of functions
to represent the velocity field in the matrix. The
calculations in [8] and [10] used only two free ampli-
tude factors in the calculation procedure. The calcu-
lations were repeated in the present study by
systematically increasing the number of amplitudes of
the functions to 35, giving #(0)=0.39. The approxi-
mately linear dependence of # on N was suggested by
the results in [8] and was retained in (19).

The Duva model is formulated such that the dilute
limit is exact. From (18)

onfoy=1+h(N)Sf

for sufficiently small f. From the plots in Fig. 4, it can
be seen that Duva’s model significantly underesti-
mates strengthening at non-dilute concentrations of
particles.

h(N)=0.39(1 — N)+3N.

(20)

6. LIMIT YIELD SURFACE OF COMPOSITES
WITH ALIGNED PARTICLES SUBJECT
TO MULTIAXIAL STRESS STATES

A study has been conducted to determine the limit
yield surface of the elastic-perfectly plastic matrix
reinforced by aligned disc-shaped particles. A three
dimensional cell has been used as shown in the insert
in Fig. 14. the rectangular box-shaped cell contains a
centered, rigid particle in the form of an ellipsoid of
revolution. As in Fig. 2, the cell is imagined to be one
unit of an array of identical units repeated in all three
directions. Under overall stressing in the 1- and
2-directions, the sides of the cell remain planar and
do not rotate. Shear stresses vanish on the cell sides
and the average normal tractions equal 6,;, ., and
@4, = 0, respectively.

Plots of the limit yield stress as a function of
particle volume fraction are shown in Fig. 14
for uniaxial tension in the 1-direction and in the
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Fig. 14. Limit flow stress for uniaxial stressing in two
directions for aligned ellipsoidal discs (a/b = 10) in an
elastic—perfectly plastic matrix.

2-direction. The particles are discs (ellipsoids with
a/b = 10). The aspect ratio of the box cell was chosen
such that the area of the cross-section of the cell
perpendicular to the x,-direction was the same as that
used in the corresponding axisymmetric cell model,
i.e. 4L?=nR?. Thus, since R/H = 10 was used for
the axisymmetric cell, L/H = 8.862 was chosen for
the 3D box cell. With this choice, the limit yield stress
for stress in the x;-direction calculated using the 3D
formulation agreed to within 1% of the values calcu-
lated using the axisymmetric cell for the range /' < 0.4.
The 3D calculations were carried out using a 20-node
quadratic brick element. For a typical 3D mesh, 688
elements were used. The strain increment was taken
to be Ae/e, =0.125 and thus 80 increments were
needed to complete a typical stress—strain curve for
overall strains up to 10¢,.

The tensile flow stress enhancement in the direction
of alignment substantially exceeds that in the trans-
verse direction. For stressing in the 1-direction the
overall strain rates necessarily satisfy €, =&, =
—1¢,,. For stressing in the 2-direction with /' 0.2,
the overall straining in the limit state is almost
entirely in the (2, 3) plane (i.e. ¢, @0 and &3 = — &),
reflecting the anisotropy associated with the re-
inforcement.

The limit yield surface of the composite for all
combinations of &, and &, with d3; =0 has been
computed using the 3D box cell for the same disc-like
reinforcements (a/b = 10) for f = 0.2. This computed
surface is shown in Fig. 15 along with the prediction
from a phenomenological yield surface which is
chosen to reproduce the intercepts at 6, =0 and
G2, = 0. The phenomenological yield surface is now
introduced.

With x;-axes defined as in the insert in Fig. 14, we
will require the phenomenological limit yield surface
of the composite to be transversely isotropic with
respect to the x,-axis. It is required to be independent
of &, . For uniaxial tension in the 1-direction require
Gy, = A, 6y, and for uniaxial tension in the 2-direction
require 6,, =4, g,. In addition, it will be assumed
that the disc-like reinforcements have no effect on the
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overall yield stress under a pure shear stress 4, (or
G,3). Thus in pure shear §,, = ao/\/a

The limit yield surface which is a quadratic func-
tion of the stress components and which satisfies the
above requirements is

(611141 +(Gn/Aa Y + (6332, )
+ (A2 =242 6,63 — 4726, (6 + G3)

+3(6%2-}-&13)-}-(4}_2‘2—/11‘2)623:0'%, (21

This reduces to the Mises surface when 4, =4,=1.
The quadratic yield surface (21) can also be used to
approximate the yield surface of the composite when
the reinforcements are needle-like particles aligned
with the x,-axis, since the requirements stipulated
above continue to apply. Now, 4, and A, must be
obtained from calculations for the needle-like par-
ticles. It is again true that yield under pure shear 4,
is hardly influenced by the reinforcement. Dvorak
and Bahei-El-Din [11] have discussed features of the
overall yield surface of fiber reinforced composites
which are analogous to those seen in Fig. 15.

7. ESTIMATES OF THE TENSILE FLOW STRESS
OF AN ELASTIC-PERFECTLY PLASTIC
MATRIX REINFORCED BY RANDOMLY
ORIENTATED PACKETS OF DISC-LIKE

OR NEEDLE-LIKE PARTICLES

In this section the approximate yield surface (21)
for aligned particles is exploited to obtain an estimate
for the limit tensile flow stress of a composite with
randomly orientated particles. Specifically, mor-
phologies are considered for relatively high density,
high aspect ratio reinforcements wherein particles are
aligned in grain-like “packets” as depicted in Fig. 16.
High aspect ratio, mono-sized disc-like particles must
be in a packet morphology if they are packed to even
modest volume fractions. Needles need not have such
a morphology, but the packet morphology does occur
for certain systems [13].

We consider a composite with randomly oriented
packets where the yield behavior of each packet is
controlled by (21). A uniform strain rate upper bound
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Fig. 15. Limit yield surface for combinations of &,, and ¢y,
for an elastic—perfectly plastic matrix reinforced by aligned
ellipsoidal discs (a/b = 10) with f = 0.2. The quadratic yield
surface is specified by (21).
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Fig. 16. Uniaxial limit flow stress for aligned and randomly
oriented ellipsoidal needles (a/b = 0.1) and discs (a/b = 10)
in an elastic-perfectly plastic matrix. The randomly oriented
particles are assumed to possess a packet-like morphology.

to the limit tensile flow stress of this composite is
readily computed. The calculation is directly
analogous to the Taylor/Bishop—Hill [12] upper
bound to the tensile flow stress of polycrystals with
randomly oriented single crystals. In what follows, a
brief description of the calculation procedure is given
along with one set of results for disc- and needle-
shaped particles. A more detailed description and
study will be reported in a subsequent publication.

To obtain an upper bound to the limit tensile flow
stress g, of the composite, impose the same uniform
strain rate on all packets where in the specimen axes

P [ S
€1SE, ép=¢éy= —3&, €p=€3=€x=0. (22)

With ¢/, denoting the strain rate components in the
axes of transverse isotropy of a given packet (say,
with the 1’-axis aligned with the axis of transverse
isotropy), let 57, be the deviator stress associated with
¢/, by normality to (21). That is, with f(¢")=0}
denoting (21), s;; is obtained by solving

., _ . of(e)
€U=#T

i

(1 >0) (23)
subject to (21) itself. The solution s;; can be obtained
explicitly but will not be displayed.

The upper bound &, is obtained from

Go=1(¢)~! J.sueu

where the integral represents an equally weighted
average over all orientations of the packet axes
relative to the specimen axes. Because the packet has
transverse isotropy, the integration in (24) can be
reduced to a single integral over the Euler angle
between the 1’-axis of the packet and the specimen
tensile axis. This integration has been carried out
using straight forward numerical procedures. The
final result has the form

Gy=0yF(4,2;).

@4

25)
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The results of the calculations are shown in Fig. 16
for composites with packets of discs (ellipsoids with
a/b = 10) and needles (¢/b = 1/10). For comparison,
the limit flow stresses for the composites with the
same aligned discs or needles are also shown. For
the disc-shaped particles the values of A, and 4,
are those given in Fig. 14. For the needle-shaped
particles, 4, is obtained as &,/0, from Fig. 6(a). (This
is the same curve plotted for the aligned needles
in Fig. 16.) Three dimensional calculations for 4,
have not yet been carried out for the needle-shaped
particles. The rough estimate A,=1+40.5f has
been used based on 2D plane strain results which
are available. Repeating the calculation with 4, =1
gives only slightly lower results for the needle-shaped
particles. The appreciable advantage of aligned
needle-shaped particles over aligned disc-shaped par-
ticles seen in Fig. 16 is lost when the particles
are randomly distributed in the packet morphology
because 4, for the discs is much larger than for the
needles.

The randomly oriented discs have a very similar
reinforcing effect on the elastic—perfectly plastic
matrix as the needles in the packet morphology. Note
from Fig. 9 that the aligned unit cylinders also have
a comparable reinforcing effect to the randomly
oriented discs and needs in Fig. 16. Presumably the
transverse limit yield stress for the aligned unit cylin-
ders is not too different from the results in Fig. 9.
Thus it appears that a fairly wide range of particle
shapes has roughly the same effect on the elastic—
perfectly plastic matrix when the particles have ran-
dom orientation. A similar conclusion concerning the
initial yield behavior was reached by Brown and
Clark [16].

8. CONCLUDING DISCUSSION

The assumption underlying the use of continuum
plasticity to predict particle strengthening of ductile
matrix materials is the existence of a very small length
characterizing the dislocation structure compared
with the size and spacing of the particles. A clear cut
rule for when these conditions can be expected is not
available, and no doubt may be a strong function of
the matrix material itself and possibly on whether the
application is to rate-independent plastic flow or to
high temperature creep. The continuum theory re-
sults presented in the body of this paper do not
depend on the absolute size of the particles. The
absence of a significant size effect is consistent with
some stress—strain data on SiC particle reinforced
aluminum matrix composites [13, 14] with particles
ranging in size from 10 to 165 pm but apparently not
with other data [15] for particles in the same size
range. Literature related to the current status of the
issue is cited in [2].

The arrangement of aligned fibers in a uniform
array has been shown to be important in [1, 2, 4, 5].
The strengthening resulting from overlapping fibers is
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less than that achieved by non-overlapping fibers
modeled by the cell configuration employed in this
paper. In general, arrangement appears to play a
more important role in the nonlinear response of
composites than in the linear behavior, but the
subject is relatively unexplored. Even less studied are
the plastic properties of composites with randomly
oriented fibers or discs. The bounding method of
Section 7 has potential when a packet morphology
allows the use of results from aligned particles to be
used to characterize yield within sub-regions of the
composite. The two examples in Fig. 16 emphasize
that the high strengthening due to aligned high aspect
ratio particles is not achieved when the orientation of
the particles is randomly distributed. Whether this
holds true for other morphologies of randomly ori-
ented fibers remains to be seen.

Given a matrix with either a Ramberg-Osgood
tensile curve or a piecewise power-law curve,
equation (14) or (16) provides an approximation to
the uniaxial stress—strain curve of the composite in
terms of just two quantities, the overall elastic modu-
lus, £ and dy. Strain hardening of the matrix is
magnified by the particulate reinforcements. This is
evident in Figs 10-12 and is perhaps most transparent
in the approximate relation (17) between the asymp-
totic reference stress &y and the strain hardening
exponent N. The greater is the reinforcement of
the elastic—perfectly plastic matrix as measured by
a, — a,, the greater is 6y — &,.
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