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Delamination of beams under transverse shear and bending
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Abstract

Two delamination problems are studied: a straight beam of rectilinearly orthotropic material under transverse loading and
a curved beam (or C-specimen) with cylindrical material anisotropy under pure bending. Results are presented for each
problem for the dependence on the crack length of both the energy release rate and a measure of the relative amount of
mode 11 to mode . The number of nondimensional parameters in the problems is fairly large, including two dimensionless
clasticity parameters. Considerable simplification of the parametric dependence in the straight beam problem is achieved
using an orthotropic rescaling technique due to Suo. Asymptotic solutions based on elastic beam theory are also
presented. A by-product of the present analysis is the finding that frictionless contact of the crack faces near one of the
crack tips has little effect on the other tip, even in the case when the size of the contact zone is large relative to the length

of the crack.

1. Introduction

Delamination, a splitting apart into layers, is
believed to be one of the dominant failure modes in
most layered materials, such as wood and fiber re-
inforced composites. The problem of delamination is
important to composite design because it impairs not
only the strength but also leads to a substantial loss of
stiffness of structural components. Delamination speci-
men calibrations are badly needed in composite design
in order to determine delamination toughness param-
eters by experiment. They also enable assessment of
critical load conditions at which delamination failures
occur in actual components, hence establishing a data
base for delamination under a variety of complex
loadings.

Two beam-like geometries, each weakened by a pre-
existing delamination crack, are studied here using the
finite element method, in conjunction with some other
analytical tools. Depicted in Fig. 1(a) is the orthotropic
straight beam under transverse load. The axes of ortho-
tropy are aligned with beam, which contains a crack of
length 2a parallel to the beam direction. The beam,
which is long compared to the crack length, is clamped
at the left end and the downward force P per unit
width in the x;-direction is applied at the other end. In
Fig. 2(a), a curved circular beam has cylindrically
orthotropic material properties. It is bent by a moment
M per unit width (in x,-direction) applied at the ends.
A circular crack of length 2a is introduced. In both of
these problems, material homogeneity and linearly
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elastic behavior are assumed. Frictionless contact of
crack surfaces will be accounted for whenever applic-
able.

Conceptual developments related to the two prob-
lems are presented first to provide the relevant back-
ground. These are followed by a discussion of
orthotropy rescaling as applied to the straight beam.
This method helps to address the complication pre-
sented by the relatively large number of geometric and
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Fig. 1. Conventions and superposition scheme for straight beam
specimen.
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material parameters involved in the solutions to these
problems. Elastic beam theory is invoked in due course
to generate approximate solutions in limiting cases for
each problem. These serve as an independent check of
the accuracy of the full numerical solutions from the
finite element models.

2. Preliminaries related to material orthotropy

Following Suo [1], introduce two in-plane dimen-
sionless elastic parameters
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Assuming plane stress (0;;,=0), which prevails
throughout the present analysis, the elastic constants
are defined in terms of stress—strain relations which are
written in axes aligned with the local axes of orthotropy
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In what follows, the crack plane at the tip is aligned
with the local x,-axis (Fig. 1). For plane strain prob-
lems, the definition of 1 and o remains unchanged
except that the elastic constants need to be replaced
respectively by the following primed quantities:

E/=E | [(1=v;vy), E)=E,/(1-vy;vy,)
Vi = (Vi vv)/(T—visvs),
Vo = (Vo + ¥p3¥3) (1= vp3v3,)

There is, however, no need to change the transverse
shear modulus G,. This replacement carries through
all the solutions in the bodv of the text if plane strain
holds.

The beauty of the choice of 1 and p stems from its
ability to reduce a two-dimensional problem, otherwise
depending on three nondimensional parameters for
rectilinearly orthotropic materials, to a one-parameter
problem for materials with cubic in-plane symmetry,
ie. A=1. A transversely isotropic (or in-plane iso-
tropic) material with respect to the x;-axis corresponds
to A=p=1. Positive definiteness of the strain energy
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Fig. 2. Conventions and superposition scheme for curved beam
specimen.

density requires 4 >0 and —1 < p < o, Practical ranges
of A and o for representative woods and composites
are 0<p<5and 0 <A<20[1].

The opening and sliding stresses a short distance r
ahead of the crack tip in an orthotropic solid are still
given by the well-known inverse square-root singular
fields for isotropic materials [2]

0y, =K(2ar)- 112 01,=K(2ar)~172 (3)

with K| and K, representing the standard mode I and
mode II stress intensity factors. The relative displace-
ments of the crack faces behind the tip associated with
the singular fields (eqn. (3)) are
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where n=[(1+ p)/2]'”%. For a self-similar increment of
crack advance, the energy release rate can be expressed
as
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where, in accordance with the composite literature,
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The measure of the relative amount of mode Il to
mode 1 is defined by the phase angle

yp=tan '(K/K)) (7a)
or, equivalently, by
p=tan |4 4Gy /G)" (7b)

The two quantities G and vy are used to characterize
conditions for a mixed mode delamination crack to
advance according to |3-6]

G=GJly) (8)

where G (y) is the mode-dependent delamination
toughness.

3. Straight beam under transverse shear load

To sce how the method of orthotropy rescaling
developed in ref. 1 can be used to extract the 4 depen-
dence of the solution explicitly, denote the Airy stress
function by ¢(x, x,) such that the compatibility
equation for rectilincarly anisotropic material is
obtained as | 7]
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Rescale the x,-axis with the elastic parameter A accord-
ing to

n=A"x, (10)
This reduces eqn. (9} to
G g I
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Now the governing equation does not depend on 4
explicitly and the traction boundary conditions are
changed accordingly to

9
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An inspection of eqns. (3) and (12) reveals that the
following combinations are independent of 4:
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Define an auxiliary phase anglec w=tan YA'"K/K))
related to y by

(14)
Noting that 8,/8,= A2 K} /K|, w can be rewritten as

tanyp=2A""tan w

p O
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Since w is independent of A, one can always make the
choice A=1, which coincides with cubic in-plane
material symmetry.

Dimensional analysis guided by the orthotropy
rescaling illustrated above dictates that the paramcters
defined in Fig. 1 must combine according to

AME G ,
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T°a H

and

=Y, (n,i‘“}%,p) (16b)

where n=h,/hy, and h +h,=2H. It is to be under-
stood that ¥ given above applies to the right-hand tip
and is defined for a positive 7. With the material
parameter A and the geometrical parameter a/H com-
bined due to orthotropy rescaling, F, and W, are func-
tions of three dimensionless variables instead of four,
As schematically depicted in Fig. 1, the stress intensity
factors and the relative crack face displacements are
identical to those of the problem in Fig. 1(c)if

3P y
=[5
All the solutions reported below are therefore for the
reduced problem of Fig. 1{c).

For very short cracks, K, = t/(sa) which, in com-
bination with eqn. (6), leads to

I+
F=n Tp’ W, =9(°

For short to intermediate length cracks in infinitely
long beams, and for =1, the dimensionless function
F, has been obtained by Fourier transform methods
[8-9] giving:

(17)

(18)
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Equation (19) is valid only for 0.4 <s<1.0. A repre-
sentation of the solution for 0 <s<0.4 can be found in
refs. 8 and 9. For very long cracks, the mathematical
problem can be solved approximately using a simple
beam analysis with the result K, = 27a//H or

ﬂl 1+p0

¥, =90°
Hy 2

(21)

In principle, one could use Fourier transform
methods to solve the straight beam problem for arbit-
rary 7. We have found it more straightforward to
generate results using the finite element method,
especially since it will carry over to the curved beam
problem. The finite element code, ABAQUS, has been
used to determine energy release rates and the corre-
sponding phase angles for a large variety of combina-
tions of material parameters and geometrical factors.
Every attempt has been made to present the results in
as comprehensive a manner as possible, given the
number of parameters involved.

Since there is no general symmetry in the problem,
the whole beam was modeled with eight-noded
quadrilateral plane stress elements. Quarter-point
elements were used to simulate the singular behavior of
stress and strain fields in the immediate adjacency of
each crack tip. The energy release rate is obtained by
numerical evaluation of the J-integral. By virtue of
eqns. (4) and (7), the values of 3 are obtained directly
from crack face displacements 8, and d, behind the
crack tip.

Convergence studies for G and y were performed
for both geometries, and the numerical solutions were
compared with the available analytic solutions for iso-
tropic materials. These studies were used to establish
the mesh used in the calculations. A special program
was developed to generate all requisite meshes for each
problem.

For n=1, the crack is in pure mode II. The calcu-
lated dimensionless energy release rate, F|, is plotted in
Fig. 3(a) vs. the crack-length-to-beam-thickness ratio
a/H contracted by the orthotropy factor A4, In the
numerical model, to minimize possible end effects, the
beam length was taken to be 20 times that of the crack
length. Values generated by the numerical model are
shown as solid points in the figures, while the curves
are simply straight line interpolations of the numerical
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Fig. 3. (a) The normalized energy release rate as a function of
AV*a/H for 5= 1.(b) The enlarged view in the transition range.

values. One feature of the results is that the normalized
energy release rate increases continuously as the value
of the dimensionless parameter p is raised from 0 to 5;
this is most pronounced for small values of A'*a/H
(Fig. 3(b)). Observe that the calculated F, value ap-
proaches the short-crack solution (eqn. (18)) asymp-
totically as A!'*a/H—0. For larger 1'/*a/H values, it is
noteworthy that all curves straighten, The slope of the
line for p=1 (and also for o =0) is hardly distinguish-
able from 4, which is the result from the elastic beam
analysis (cf. eqn. (21)). It is interesting to note that the
curve for o= 5 falls below that for o =1 when AY*a/H
exceeds 9. Similar trends are observed for mixed-mode
situations {## 1). An obvious explanation for this trend
has not been discovered.

When #<1 (or equivalently for #>1), mixed-mode
behavior sets in such that one needs to account for the
contact of crack faces near one of the crack tips. Fric-
tionless contact was assumed and an iteration method
was adopted to identify the contact region. A contact
region of about 1/3 of the total crack length was
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assumed in the first iteration. In subsequent iterations,
the choice of contact region was checked against the
requirements that the normal traction in the region be
compressive and that the crack be open outside the
region. The contact region was adjusted accordingly.
The iteration process was continued until consistency
was finally reached. This proves to be a viable method,
at least for the prescnt problems, since the process
converges rapidly rcquiring only four to five steps to
achieve an accuracy within 1%. For the case of n=1/3
and p =1 the influence of crack face contact at the left
crack tip on energy release rate and phase angle at the
right crack tip is shown in Fig. 4 as curves of normal-
ized G and v against 2'”a/H. In all cases investigated
here, crack face contact has a minor effect on the
quantities of interest. This is evident in Fig, 4{a), where
the energy release rate, computed with and without
contact, are comparcd. The small effect on G and o
occurs even though the size of the contact zone (which
increases continuously as thc value of A'“a/H is
increased) may make up more than 1/2 of the total
crack length in its extreme. Similarly good agreement
was obtained for other combinations of # and p which
are omitted herc for the sake of brevity. A similar
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Fig. 4. The inlluence of crack face conlact on (a) energy release
rate, and (b) phase angle.
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conclusion was reached by Liechti and Chai [5] in
connection with their development of a mixed mode,
bi-material test specimen. The effect of crack face
contact has therefore been neglceted in carrying out
calculations given in the remainder of this report. It is
worthwhile mentioning, however, that since frictionless
contact was assumed in the calculations just described,
the results reported here may not apply to situations
where friction is no longer negligible.

The results for =0.2 and »=0.5 are scparately
collected in Figs. 5 and 6, in the region A'/*a/H<2.5, as
this is the range of most practical concern. It 1s also in
this region that the elastic bcam analysis fails to give
accurate results. A direct comparison of Figs. 5(a) and
6(a) with Fig. 3(a) reveals that the dimensionless elas-
ticity parameter p affects the energy releasc rate in
essentially the same way for all the mode mixities
exhibited at the crack tip. For short cracks the influence
of the geometrical factor n on F| is small. However,
since the crack tip releases less energy for longer
cracks when the crack is near the f{ree surface, F,
becomes smaller when » decreases. Intuitively one
expects that the relative amount of shear to opening
will be reduced as #n decreascs, and this is indeed
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Fig. 5. The p-dependence of (a) energy release rate, and (b)
phase angle for n=0.2.
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Fig. 6. The p-dependence of (a) energy release rate, and (b)
phase angle for n =0.5.

verified by the v vs. AY4a/H curves illustrated in Figs.
5(b) and 6(b). In passing, note also that i attains a
“steady state” when A'/*a/H approximately equals 2
which may be taken as the size of the transitional zone
linking the results for the very short cracks to the
longer cracks which can be adequately described by a
beam theory approach.

4. Curved beam under pure bending

A curved beam under pure bending in the sense
shown in Fig. 2(b) develops a tensile radial stress
component. For the case of cylindrical material aniso-
tropy, this stress ¢ acting normal to the prospective
crack faces is related to the bending moment M by eqn.
(A-6) in the Appendix. This solution is a function of 1
but not p. The uncracked beam in Fig. 2(b) exhibits no
stress singularity so that the problems in Figs. 2(a) and
2(c) have the same stress intensity factors. On the other
hand, as the governing equation (eqn. (A-2)) for the
cracked curved beam clearly shows, orthotropy re-
scaling cannot be exploited for the cylindrical geom-
etry, and, therefore, the effect of both material
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parameters 4 and o must be separately investigated.
Or, formally, the normalized energy release rate and
the mode mixity should take the form

HG :
EI ZOzFZ(ﬂ’ ia l’ /{,/0
M H’ R, (22)
a R,
=w(n, =, A
w 2(77’ H R0 o

where R, and R, denote inner and outer radii of the
beam respectively, n=h,/h, and h, +h, =H (Fig. 2).
As remarked on earlier, the parameter set for this
problem is fairly large.

For very short cracks, the crack is approximately in
pure mode I with K, = ¢,/(wa). A companion solution
to that of eqn. (18) is thus obtained as

Am&G=n 1+p
o'a 2

(23)
or, in terms of the bending moment M,
EH'G yulallol’) |1+
]MZ L= 3/4(5) (07) T/O (24)

As a first approximation and also as a guide for
subsequent finite element method (FEM) calculations,
the dimensionless functions F, and W, were evaluated
using an elastic curved beam analysis along lines which
have been popular in the composite materials com-
munity [10, 11]. The core of this approach is to com-
pute the elastic energy per unit length stored in the two
curved beams separated by the crack far behind the
crack tip. Since only the elastic modulus in the direc-
tion of the local beam axis is involved in the analysis,
the results apply to the most general cylindrically
orthotropic materials considered here. The approach,
which is similar to that used for straight cracked beams,
uses the curved beam theory of ref. 12 with the coup-
ling between the bending and stretching neglected in
the constitutive law for the beam. In the interests of
brevity, details of this analysis are not recorded here.
For the thin curved beam analysis, the roles of 4, and
h, may be interchanged. Figure 7 depicts F| as a
function of the angle # subtended by half of the crack
length for R;/R,=4/5, 2/3 and n<1. When € exceeds
a certain value, &, the crack extension behavior ap-
proaches a steady state. As seen in Fig. 7, 6, increases
monotonically with increases in the magnitudes of # or
R/R,.

A finite element model similar to the one discussed
in the last section was used to solve the mechanics
problem in Fig. 2(c). The finite element discretization
was made only for one half of the specimen due to the
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Fig. 7. Nondimensional energy release rate for delamination of
the curved beam in bending from elastic curved beam theory:
(a) R/R,=4/5, and (b) R, /R, =2/3.

symmetry of the problem, with a total of approximately
600 i1soparametric elements and 1000 nodes. In
general, the finite clement mesh was arranged in such a
way that it accommodated both the high stress gradient
region close to the crack tip and the large dimensions
of the remainder of the specimen.

To use the J-integral to extract (, an approximation
was made by replacing a tiny scction of the curved
crack at the tip by a straight line segment. A conver-
gence study was conducted to ensure the high accuracy
of the numerical results reported below.

The normalized mixed-mode energy release rate
and phase angle for the two cases R;/R,=4/5 and
R;/R,=2/3 are plotted in Figs. 8 and 9 respectively, as
functions of 6 and 7. In these figures, the material is
taken to be isotropic {A=p=1). A remarkable feature
of the results for the case of the crack at the center of
the beam (7= 1) is that the relative amount of mode 11
to mode | increascs nearly linearly with the angle 6.
The opening mode which dominates for small values of
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Fig. 8. The p-dependence of {a) energy release rate, and (b)
phase angle for R /R,=4/5and A=p=1.

6 shifts steadily towards modc Il which is attained at
90°, As the relative amount of mode 1l to mode 1 is
increased, energy release rate increases sharply, peaks
and then decreases gradually to a plateau. Similar
trends are observed for cracks lying off the centerline
of the beam (n#1). A crack in the curved beam is
clearly going to experience unstable growth under
prescribed bending moment if 6 is sufficiently small.
The growth of larger cracks may be stable or unstable
depending on the mode-dependence of the toughness
(egn. (8)). (This is supported by limited cxperimental
evidence showing that fast interlaminar fracture “pops
in” at both tips of the pre-crack and arrests at approxi-
mately 6 =407 It has also been reported that second-
ary cracks then emerge between the first crack and the
free surfaces of the specimen.) In the cases of Figs. 8
and 9 for the crack near the top surfacc of thc bcam
(n=1/3), the crack tip becomes pure mode 11 at a value
of @ well below 90° and is closed for larger values of 6.
Results have not been presented in this range. For a
crack near the lower free surface of the beam {n=73),
the loading generates a relatively small negative mode
IT component for small values of @ but the mode I1
component becomes positive at roughly 10°. The
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trends of the thin beam analysis for the energy release
rate fairly faithfully reproduce the results from the
finite element calculation. In particular, note that for
the thinner of the two curved beams in Fig. 8 the
energy release rates for the two cases, n=1/3 and 3,
which are predicted to be the same by thin beam
theory, are indeed close. However, it should also be
noted that the phase angle in Figs. 8 and 9 depends
very strongly on whether the crack lies inside or
outside the center of the beam.

Calculations show that variations of the two dimen-
sionless elasticity parameters o and A affect sig-
nificantly the level of energy released by the crack,
indicating the importance of material anisotropy in
accurate characterization of mixed mode delamination
fracture. Nearly a twofold increase in G is observed
as p varies from 0 to 5 (Fig. 10 for A=n=1 and
R;/R,=4/5). Moreover, there is also a very strong
influence of the modulus E, governing stiffness per-
pendicular to the beam centerline as can be seen from
the A-dependence of the results in Fig. 11. The
dependencies of the energy release rate on the material
orthotropy displayed in Figs. 10 and 11 is missed
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Fig. 10. The p-dependence of (a) energy release rate, and (b)
phase angle for R,/R,=4/5and A=n=1.

entirely from a thin beam approach. On the other hand,
the phase angle of loading is only slightly affected by
changes in elasticity parameters 4 and p, in contrast
with the role played by the geometrical parameter 7.

5. Conclusions

A numerical study has been conducted to provide
relatively complete solutions to two beam delamination
problems, a straight beam under transverse load and a
curved beam under constant moment. Presentation of
results for the problems is complicated by the fact that
there are a multitude of geometric and material param-
eters. The results for the straight beam of orthotropic
material are simplified by making use of the ortho-
tropic rescaling technique so that numerical solution to
the problem requires three nondimensional variables:
a/H, n=h,[h, and the orthotropy parameter o. The
curved beam problem depends on five nondimensional
parameters. Nevertheless, it has been possible to
provide a reasonably complete characterization of the
solution. The thin beam theory solution to the curved
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Fig. 11. The A-dependence of (a) energy release rate, and (b)
phase angle for R, /R,=4/5and p=n=1.

beam problem involves only three parameters,
n="h,/h,, a/H and H/R. While this solution loses
accuracy for thicker beams, it does capture the main
trends of the solution. The results provided in the
paper should be useful for the purpose of calibrating
specimens and for applications to predict delamina-
tion.
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Appendix A: Pure bending of a curved beam with
cylindrical anisotropy

The problem to be solved is that of the uncracked
beam in Fig. 2(b). The notation used in this Appendix
is shown in Fig. A(1). In polar coordinates, the equa-
tions of equilibrium are satisfied by introducing a stress
function ¢(r, 8) such that

_ldg 103
" rOr r06°
az
Uf,:ar{? (Al)

0 (10¢
o= "5 |,

or\r 0f
For the pure bending problem in consideration, the
distribution of stress components does not depend on

6 and, in addition, t,,= 0. For the cylindrical material
anisotropy, the equation of compatibility simplifies to

d'g 2d'¢ 4 d2¢+i@:

e Y 3
rodr

0 (A-2)

dr'  rdr o ar
which is independent of p. The general solution to this
ordinary differential equation is

g=c, toyr’ teyr! T (A-3)
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0

Fig. Al. Pure bending of a curved beam with cylindrical
anisotropy.

from which
0,=2c, +(1+J1)C3rJ1—l+<1_M)C3r—wl (Acd)
0y=20,+(1+ JA)cyr? 1 = (1= [A)cyr 31
The boundary conditions are
0,=0 for r=R, and r=R,
(A-5)

R, R,
J g,dr=0, Jae rdr=-M
R R
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The constants c¢,, ¢3, ¢4 are readily obtained from the
boundary conditions. The final result for g, is

=2ﬂ 14 el=JAy_el+ /i _ _Riliﬁ
o ARiz[(C &)= 1)(r)

1+ 4
e

,
where = R,/R, and

R AUt VS S Z Attt Vs
1+ ¢ T1—ga gt

For the transverse isotropic material (A=p=1), the
solution for o, has the limit given in ref. Al:

AaM | RJR? R.
0= | =2 nE+R In—+ R In—| (A7)
A r R, r

with
A'=R*M1-8?P—-4R’RXIn ¢y
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