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Effect of matrix cracking and interface sliding
on the thermal expansion of fibre-reinforced
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The effect of matrix cracking on the thermal expansion behaviour of brittle, unidirectional fibre-reinforced
composites is studied. Sliding along the fibre-matrix interface accompanying matrix cracking has a major
effect on the change in thermal expansion. This problem is also addressed, both with and without friction.
For the most common composite systems, whose fibres have a smaller coefficient of thermal expansion
than that of the matrix, matrix cracking and interface sliding result in a reduction of the thermal
expansion of the composite. A cylindrical cell model of a composite with uniformly spaced matrix cracks
is invoked for analysis. Shear-lag approximations, enhanced by selected finite element solutions to the
cell model, provide estimates of the functional dependence of thermal expansion on constituent proper-
ties, matrix crack density and extent of sliding. Hysteresis behaviour during thermal cycling is analysed
accounting for reverse frictional sliding along debonded portions of the fibre-matrix interface. A non-
dimensional parameter, E,AaAT/7 (where £, is the matrix modulus, A the thermal expansion mismatch
between fibre and matrix, AT the amplitude of the temperature cycle and 7 the frictional resistance to
sliding), is identified which governs the extent to which sliding reduces the effective expansion coefficient

of the composite.
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INTRODUCTION

Among the first applications under consideration for
ceramic matrix composites are components for jet
engines which will be subject to high temperatures and
temperature gradients but low mechanical loads. The
thermal expansion properties of the composites will play
an important role in determining the thermal stresses
that these components will experience. Fibre-reinforced
ceramic matrix composites are being developed to with-
stand stress levels in excess of the stresses at which matrix
cracks form. It is expected that the components in
question will experience at least limited amounts of
matrix cracking in regions of high stress concentration.
Since matrix cracking changes the effective thermal
expansion coefficients of the composite, thermal stresses
induced in the component by the high temperature envi-
ronment will be affected by matrix cracking. In other
words, a non-linear coupling exists wherein thermally
induced stresses causing matrix cracking will themselves
undergo modification due to changes in the thermal
expansion properties of the composite. Non-uniform
spatial distributions of matrix cracking can contribute to
thermal stresses, just as non-uniform temperature distri-
butions do.

The tight connection between matrix cracking and
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thermal stress loading motivates the study in this paper.
This initial study is limited to the thermal expansion
behaviour of unidirectional fibre-reinforced composites
as influenced by matrix cracking and fibre sliding. Some
earlier work on this general problem'? was not limited
to unidirectional reinforcement, but was focused on the
influence of matrix cracking unaccompanied by sliding.
It will be seen that sliding has an important and some-
times dominant effect on thermal expansion behaviour,

Most ceramic fibre/matrix systems of interest to date
have fibres whose coefficients of thermal expansion
(CTEs) are smaller than those of the matrix, in some
cases by as much as a factor of two. As a consequence,
at all temperatures below the ‘bonding’ temperature, the
matrix sustains a residual tension parallel to the fibres
and the fibre-matrix interface is subject to a residual
compression. When matrix cracking is accompanied by
fibre sliding, as it often is, the interface remains closed
and friction impedes the sliding process. For composites
whose fibres have smaller thermal expansivity than their
matrix, matrix cracking lowers the effective CTEs rela-
tive to values for the uncracked composite. In the
extreme, matrix cracking and sliding can reduce the
composite CTE in the direction parallel to the fibres to
a level characteristic of that of the fibre.

In presenting the results of this study, it will be con-
venient to focus on systems where the fibre expansivities
are less than those of the matrix, although the formulae
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listed for cases involving no sliding apply equally well to
the opposite case, assuming the matrix cracks are open.
The fibres are assumed to have transversely isotropic
elastic moduli and thermal expansivities, while the
matrix is taken to be isotropic. The effective properties
of the composite are transversely isotropic about the
fibre direction. Results for the thermal expansion behav-
iour of the composite will be presented as a function of
the spacing of the matrix cracks d, the extent of the
sliding zone / on either side of the matrix crack, and the
friction stress T acting across the fibre-matrix interface
in the sliding zone. Debonding, per se, is not addressed,
although a framework for analysing thermally driven
debonding will be presented.

The cylindrical cell shown in Figure I will be employed
to model the composite. The cell has previously been
used by a number of researchers to study the tensile
stress—strain behaviour of unidirectional fibre-reinforced
composites, both with and without matrix cracks.
Motivation for the cylindrical cell approximation is
included in Figure 1. The doubly periodic geometry of
hexagonally arranged fibres with equally spaced matrix
cracks extending across the entire composite can be
approximated by a single cylindrical cell with special
boundary conditions discussed later. This cell will be
analysed at several levels of approximation, including
shear-lag and finite element analyses. The present paper
draws heavily on earlier work on this same cell model
and should be regarded as the third in a sequence of
papers which includes those by Hutchinson and Jensen?,
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hereafter referred to as HJ, and He, Wu, Evans and
Hutchinson®*, referred to as HWEH.

The paper is organized in a way which presents results
in increasing order of complexity. Specifically, after a
description of the problem to be solved in the next
section, the thermal expansion coefficients of the
perfectly bonded, uncracked composite are presented
and compared with previous results, both experimental
and theoretical. These provide the reference against
which changes in behaviour due to matrix cracking and
fibre sliding can be compared. Next, results will first be
presented for the expansion coefficients for the compos-
ite with matrix cracks unaccompanied by any sliding.
These results will then be extended to account for the
effect of frictionless sliding along debonded portions of
the fibre-matrix interface. Finally, the effect of a fric-
tional sliding resistance 7 will be considered. With fric-
tion, the behaviour of the composites becomes rather
complicated, with hysteresis accompanying thermal
cycling. Tt will be necessary to focus on a few specific
aspects of the behaviour, and we have chosen to empha-
size the role of friction in either suppressing sliding in a
given thermal cycle, or, at the other extreme, in permit-
ting near-frictionless sliding. In particular, with Aa as
the measure of the thermal expansivity mismatch and AT
as the amplitude of the temperature cycle, we identify
limiting values of the non-dimensional parameter
T/(E,AaAT) which ensure that either almost no sliding
occurs or that extensive sliding occurs. Results for an
effective CTE for thermal cycling as dependent on this
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Figure1 A cylindrical cell representation of a unidirectionally reinforced fibre/matrix composite containing a uniformly distributed, parallel array
of transverse matrix cracks. The shaded areas represent the portions of the fibre-matrix interface that have debonded
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non-dimensional parameter and on the density of matrix
cracks will also be given.

STATEMENT OF THE PROBLEMS

Consider the composite in its current state at tempera-
ture T, as modelled in Figure 1. The composite has previ-
ously experienced matrix cracking and currently has a
distribution of equally spaced matrix cracks a distance
d apart. Both perfectly bonded and debonded fibre—
matrix interfaces will be treated in the analyses to follow.
Now imagine the composite undergoes a uniform tem-
perature change from 7 to T + AT. In the subsequent
sections of the paper, we shall consider the following
problems, all posed for the cylindrical cell model:

® axial and transverse CTEs of the uncracked com-
posite;

® CTEs for cracked composites with either perfect
bonding or with frictionless sliding along previously
debonded portions of the interface; and

@ overall strain changes due to A7 for cracked compos-
ites and frictional sliding along previously debonded
portions of the fibre-matrix interface, with emphasis
on hysteresis effects for the cyclic variations of AT.
Effective CTEs for thermal cycling.

Written in cylindrical polar coordinates (r, 6, z) with
the z-axis coincident with the axis of the fibre, the general
relation between strains and stresses for axisymmetric
deformations of a linear transversely isotropic fibre is

& = (o, — vmoe — v ) Er + AdtAT (la)
go = (NOg — w0, — 1o Er + AalAT (1b)
& = (0, —1v0, — yog)/Er + ofAT )
Yo = T/ Ge (1d)

where 1 = E;/E, is the ratio of the longitudinal Young’s
modulus of the fibre relative to that in the transverse
direction, A = o!/af, and where of and o are axial and
radial CTEs of the fibre. In general, G¢# E/2(1+1r). The
stress—strain law for the linearly elastic, isotropic matrix
with Young’s modulus £, and Poisson’s ratio v, is

&g = [0, — vm (g + 0)VEy + anAT (2a)
g9 = [og — vy (0, + )/ Em + anAT (2b)
& = o.— vy (0, + 09 )//En + anAT (2¢)

Yo = T2/ Gy (2d)

where ay, is the CTE of the matrix and G, = E/2(1 + vy).
Let o and o? denote the longitudinal and transverse
CTEs of the uncracked composite (which is also trans-
versely isotropic). In the presence of matrix cracking
coupled with frictionless sliding over all, or a portion of,
the interface, the effective longitudinal and transverse
CTEs of the composite, a, and «,, are defined by

g = a, AT & = o, AT (3a,b)

where g, and Z, are overall strains, defined below,
induced by temperature change AT when no mechanical
loading is applied. Analytical predictions for both a, a9,
and a,, a, based on the cylindrical cell model will be
given in the sections to follow. When frictional effects
are important, the overall strain changes are not linearly

dependent on AT. It will then be necessary to consider
histories of Ag. and Ag, as functions of temperature
changes.

The origin of the cylindrical coordinates is taken to
be at the centre of the cell, with (z = * d/2, Rr<r £ R)
representing the two crack surfaces. Debonding, if
present, is taken to occur over a cylindrical portion of
the interface, extending a distance / on either side of each
matrix crack surface. Thus, / = 0 represents the case of
no debonding, while full debonding has occurred when
[ = d/2. The debonded region of the interface is assumed
to have formed previously and is assumed to remain
closed under the conditions assumed here where the CTE
of the fibre is less than that of the matrix. If friction is
present, the resistance to sliding between fibre and matrix
will be characterized by a constant friction stress T acting
over the zone where sliding is currently taking place. The
extent of the current sliding zone on either side of the
matrix crack is denoted by L, which is necessarily embed-
ded within the debonded region (L < ).

It will be convenient to treat the solution to the cell
model as the sum of two parts as depicted in Figure 2.
The first part, in Figure 2b, is the perfectly bonded cell of
infinite extent in the axial direction subject to the temper-
ature change AT, measured from the reference tempera-
ture T, where all residual stresses vanish. The tractions on
the outer cylindrical surface of the cell are zero and the
cell is free to expand or contract in the axial direction.
This is a classical Lame-type problem with axial stress
component in the fibre, o, and matrix, of, given by

o= (1 - polfp = ~ aEnAAT (4a)

where throughout the paper the CTE mismatch is
defined by

Aa = ol - oy (4b)

The coefficient a, depends on the constituent parameters
of the fibre and matrix and on the fibre volume fraction
p = (R¢/R)*. Formulae for this coefficient, as well as
others which follow denoted by a;, b; and ¢;, can be found
in HJ. They will not be repeated here.

The second part of the solution to the cell model is
depicted in Figure 2¢. The matrix crack faces at z = +d/2
are subject to a normal stress —oZ,. By symmetry, the ver-
tical displacement of the fibre at z = +d/2 is uniform such
that the average axial stress in the fibre is ~o7. The shear
traction vanishes everywhere on z = +d/2. If debonding
has occurred and if there is no friction, then the interface
above z = d/2-/ (and below z = —d/2+]) is held closed with
o,, = 0. If friction is present and if the current sliding
zone is above z = d/2-L (and below z = —d/2+L), then o,.
= X7 within the sliding zones, depending on the sense of
the sliding. The condition for determining the instan-
taneous value of L, assuming L < /, is the requirement
that the magnitude of the shear stress on the interface
just outside the sliding zone be less than or equal to =
This can be expressed as a Dugdale-type condition which
will be given later. When L = [, the sliding zone is taken
to be fixed since additional debonding is not considered
in this paper. The boundary conditions on the lateral sides
of the cell in Figure 2¢ are specified by requiring the shear
traction to vanish and the radial displacement compo-
nent to be uniform over the outer surface such that the
radial stress averaged over this surface vanishes. This type
of boundary condition mimics the constraint expected for
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Figure 2 Conventions and superposition solution schematics for axisymmetric cell model

identical interacting cells and was previously used in HJ,
in Pagano and Brown’, and HWEH.

The full solution to the cell model is the linear super-
position of the two parts specified above. Note that the
full solution is characterized by the constrained outer
boundary condition just mentioned because the solution
in Figure 2b satisfies it trivially. The overall composite
strains, , and Z,, are defined using Figure 1 as the axial
displacement difference between sections at z = d/2 and
z = —d/2 divided by 4 and the radial displacement at r =
R divided by R, respectively. Approximate closed-form
solutions will be obtained for the problem in Figure 2¢
using a shear-lag analysis, which is improved upon with
the aid of some finite element results. The problem has
a large number of parameters, thereby highlighting the
importance of accurate, closed-form approximations for
assessing trends in the parametric dependences of the
composite CTEs.

CTEs OF UNCRACKED COMPOSITES

Many analytical models exist for the prediction of the
CTE:s for uncracked unidirectional composites. Some of
these are critically reviewed and compared with experi-
mental measurements by Bowles and Tompkins®. For the
most part, large discrepancies between the predicted
values of the transverse CTE and the test data are
observed, except for the model of Rosen and Hashin’,
which is identical to the present model. Bowles and
Tompkins also conducted finite element calculations
for two cell geometries, including a doubly periodic
hexagonal pattern, and showed that their results were in
good agreement with the experimental values and with
the Rosen—Hashin analysis. This solution provides the
reference for the present investigation. Presented below
1s a somewhat more compact set of equations for CTEs
predicted by the cylindrical cell model.

Using the results in HJ for the Lame problem in Figure

2b together with the results for the radial displacement
at the surface of the cell, one obtains the CTEs of the
uncracked composite from the definitions in equations
(3) as

of =pal +(1- p)ax, — pAct

x| a, E—m—l +2a, vm—va—m (5a)
Ef Ef

o =paf +(1-p)a, — pAa

x':az[vm - V; f;—m] + 20{4} lz—m ~1+v, H (5b)
f f

where new symbols are defined in the Notation and the
non-dimensional coefficients @, and a4 are given in HJ.
For isotropic fibres with A = n = 1 and for systems with
Vi = Vi = v, equations (5a) and (5b) simplify to

z m

& = o, +PE pq (62)
E

o =(1-pa, +po; — A

o PU=P)(E; — En)IVE; + Bv=2)E]  (gp)
E[E, +(1 - 2v)E]

where E = (1 - p)E, + pE; is the modulus of the un-
cracked composite in the axial direction.

The predictive capability of equations (5) is illustrated
in Figure 3, where the NASA test data for several
material systems at room temperature are also included
for comparison. The material systems considered are
T300/934 (graphite/epoxy), P75/934 (graphite/epoxy),
P100/2024  (graphite/aluminium), HMS/borosilicate
(graphite/glass) and C6000/PMR 15 (graphite/poly-
imide). The properties of the constituents are tabulated
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Figure 3 Cell model predictions and NASA test data for axial and
transverse CTEs of uncracked unidirectional composites: (a) T300/934
and P75/934; (b) P100/2024, HMS/borosilicate and C6000/PMR 15

in Bowles and Tompkins®. Table I summarizes the exper-
imentally measured values and the predicted values from
equations (5).

CTEs OF CRACKED COMPOSITES IN THE
ABSENCE OF FRICTION

Perfect bonding

For perfectly bonded fibre-matrix interfaces, the
effective CTEs of a cracked unidirectional composite
with fixed crack spacing d have been obtained in the
Appendix with the aid of the shear-lag analysis of the
cylindrical cell. These results are approximate due to the
one-dimensional nature of the shear-lag analysis.
Nonetheless, they reveal the important functional depen-
dence of the crack-affected CTEs on constituent prop-
erties and pertinent geometrical parameters. Results
obtained by the finite element method (FEM) have been
used to improve the approximations introduced in the

shear-lag analysis. Details of the numerical FEM scheme
pertaining to the present cell model are similar to those
reported in HWEH.

For well separated matrix cracks (i.e. d/Ry > 3, see
discussion below), interaction between cracks is small
and the solutions for a, and «, are given by

o. = ao + DIO _AaE—ml)a_Z& (7a)
=T A ap) d
a, = o +epp Lo A0Enpa, Ry (7b)

E. E(-ap) d

Here, £ is a non-dimensional coefficient defined by

&= P[[Vm - Vi El;—m] +b1[§f % 1 +Vmﬂ (7c)
f

The dimensionless coefficient DY is the same as that intro-
duced in HWEH to account for the increased compli-
ance of the composite under axial load due to (dilute)
matrix cracking without debonding. It was computed as
a function of p and E¢/Ey, by a finite element analysis in
HWEH and is included here in Figure 4. When the fibre
is isotropic with A= n =1 and v, = v; = v, equations
(7) can be further reduced to give

0 o _PHR;
o, =, + AaD’ 1 (8a)
SRR TRsY
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Figure 4 Numerical results for dimensionless coefficient DY

Table 1 Comparison between experimentally measured and predicted CTEs for several uncracked composite systems at room temperature

Material o (106 °C o (1076 °C) o (10 6 °C a (108 °C")
system p (measured) (measured) (predicted) (predicted)
T300/5208 0.68 -0.167 37.11 -0.135 35.93
T300/934 0.57 -0.003 42.7 0.235 43.61
P75/934 0.48 -1.546 50.77 —1.355 50.07
P75/930 0.65 -1.583 46.64 -1.660 36.80
P75/CE339 0.54 -1.501 69.72 -1.263 62.84
P100/2024 Al 0.63 -0.312 32,98 -0.274 33.19
C6000/PMR 15 0.47 -0.609 5.559 -0.478 6.584
HMS/borosilicate 0.40 2.118 38.41 2.405 39.71
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v(1+ V)P’ HR E; (E; - Ey,)

(8b)
(1- p)E 1+ V)E, + (1 - V)Eld

a, = a + AaD!

where

b = U= PE(E +E) -
E[E; +(1-2v)E]

For crack spacings smaller than about three times the
fibre radius, the dependence of the effective CTEs on the
crack density parameter, Ri/d, becomes non-linear due
to interaction between cracks, with o, approaching
(approximately) of when d — 0. The approximate analy-
sis of the Appendix gives the following formulae for a,
and a,, which are valid over the whole range of d/R;:

0 AaE  pa, R;
= + ——mF. 1 9a
%= BB ap) e
0 - Ak, pa, Ry
= + —mr e 9b
% =t ap) =

where

] D =D ?tanh[ D?

d 1
: &) (0
Here, S = (1 — a1p)(1 - p)/(pa,) is the slope of the curve
of D, versus d/R; when d/R; is small such that «, = af for
d=0. For isotropic fibres and vy = v, S = (1 — p)? Ey/
(pEH).

We note in passing that there is a close connection
between the present problem for the effect of matrix
cracking on the CTEs and the problem for the effect of
matrix cracks on the increase in compliance of the
composite under axial load. Using the above results and
the connection between the two problems detailed in
HWEH, one can obtain the following companion result
for the axial modulus of the cracked composite:

Sd
D=0 tanh[ DR

-1
E, = E(1+D1 %)

= E{l + DIO %tanh[—l% %H (11)
f

This result is reminiscent of the solution of Laws
and Dvorak® for the Young’s modulus E, of a cross-ply
laminate as a function of the transverse matrix crack
spacing d, which reads

il
— cE ¢ d
E =g+ < a
¢ "[ 2, & tanh[gcﬂ (12)

where the shear-lag parameter is { = {, (bE; + cE)/
(2bE\E,). Here, b and E; are respectively the thickness
and modulus of the 0° ply, 2¢ and E, are respectively the
thickness and modulus of the 90° ply, £, is the modulus
of the uncracked laminate and ), like DY is a semi-
empirical parameter to be determined from either exper-
iments or numerical solutions.

Selected predictions from equations (9) are shown in

Figure 5, together with results from a detailed FEM
analysis of the cell model. In this figure, both fibre and
matrix are taken to be isotropic with A=n =1, p = 0.3,
Vi = Vi = 0.3, Et/Ey = 2 and o/, = 0.5, representative
of some ceramic matrix composites. Several features seen
in Figure 5 deserve comment, in addition to the general
agreement between the predictions of the approximate
formulae (9) and the FEM results. First, matrix crack-
ing has little effect on the radial CTE. Second, there is
little difference between the dilute prediction for the axial
CTE, «,, from equation (7a) and the prediction from
equation (9a) as long as d/R¢ > 3. The two predictions
diverge significantly for d/R; < 2. Dilute results will often
be adequate since crack spacings in a unidirectional
composite seldom fall below 3R;. When the crack spacing
d approaches zero, equation (9a) has been constructed
such that «, approaches the CTE of the fibre, a!f, and
this limit is noted in the figure. This limit is slightly in
error due to a Poisson interaction in the radial direction
between the fibre and matrix which still persists even
when the crack density becomes large, and whch is not
accounted for by the approximate formula (9a). This
effect can be seen in the difference between the predic-
tions of equation (9a) and the FEM results in Figure 5.
The axial CTE is slightly larger than «f as the crack
density becomes large. Lastly, it can be noted that d/R¢
can be regarded as a ‘large’ crack density when d = Ry
in the sense that any higher density produces relatively
little further change in the CTEs. Thus, the transition
range of crack densities, from dilute to effectively fully
cracked, is roughly 1/3 < Rgd < 1.

Figure 6 shows how the axial CTE of the composite
discussed above depends on E¢/E,, (Figure 6a) and on p
(Figure 6b). In these plots @, is normalized by the axial
CTE of the uncracked composite &, which is a function
of both E/E, and p. The comments made above about

. the departure from the dilute predictions and the tran-

sition to the CTE of the fibre remain pertinent.

Partially or fully debonded interface with frictionless
sliding

Frictionless sliding over debonded portions of the
fibre-matrix interface further relaxes the constraint of

a/a (Eq. (4.3))

- a/al(Ba 43—,

al/al

=)

I

LIIALIALI|4LI

iq. (4,1), P ‘,, ................. _—
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Figure 5 Cell model predictions and FEM results for normalized axial
and transverse CTEs, o/a2 and o,/a%, as functions of normalized crack
density Ry/d. The constitutive parameters used are A =nm = 1, p = 0.3,
Vi = vp = 0.3, E/E, = 2 and ol/o, = 0.5
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(b) |\

Figure 6 Predicted axial CTE as a function of crack density for
varying values of: (a) E/E, and (b) fibre volume fraction p. The consti-
tutive parameters are the same as those listed in Figure 5

the matrix on the fibres under a temperature change. For
a given matrix crack spacing 4 and a fixed debond length
l, the effective CTEs of the composite, «. and «,, are still
formally given by equations (9) (relevant background is
given in HWEH). Now, however, there are extra contri-
butions to D, and D] arising from frictionless sliding:

sl B} L

d E. R
. 21 E S(d -2]) 2(1 — ap)EIl
=D’|1-= | =L tanh + L
Dl Dl ( d ] Em an [ DIORf J Empr
(14)

The first terms in ¢ach of these equations correspond to
the contribution from matrix cracking alone, as in equa-
tions (10), but modified to be zero when the interface
becomes fully debonded at / = d/2. The second term in
each expression is the contribution from the debonded
region of the interface. This contribution is obtained
from the HJ solutions (see also HWEH). The coefficient
¢) in expression (13) is given in HJ for two sets of bound-
ary conditions, termed type I and II, and was derived
for the limiting case / << d, or, effectively, d = . Type
I models a cell with zero radial stress everywhere on the
outer surface of the cell (i.e. on r = R). Type Il condi-
tions enforce the same uniform radial displacement on
the outer surface of the cell that occurs in the unbonded
region. When / << d, this is equivalent to requiring that
the average radial stress on the outer surface of the cell
is zero, just as posed for the cell in Figure 1. Within the
level of approximation employed in the present paper,

type I1 conditions for ¢; should be used when / << d and
type I conditions used when / = d/2. Neither of the two
conditions applies strictly for a partially bonded inter-
face when / is of the order of d/2. In any case, the differ-
ence between the two values of ¢ is generally quite small,
with the difference vanishing altogether when there is no
elastic mismatch between the fibre and the matrix. It is
felt that the extra complication involved in more accu-
rately characterizing this aspect of the partially debonded
regime is not worth the effort.

If the fibre is isotropic (A=n=Dand if vi= v, =V,
a useful intermediate level of approximation to equations
(13) and (14) is obtained under the assumption that the
matrix crack interaction is small (i.e. d > 3Ry) such that
tanh() = 1. Then, as a further approximation, using type
I conditions in HJ to evaluate ¢, in equation (13), one
obtains from equations (9)

(04 =a0+Aa£}£RLi:DlO(1 ] (1- P)E 211]
z z 7

(1-p)d pE:x* R
(152)
_ v(1 + VIP*HE{(E; — E)R;
O = A D En L+ V)E, +(1- VEN
of, 20) . (-p) 21

x[z), [1- d}+-——p RJ (15b)

where
:\/ (1+ V)E; +(1-V)E
(1+ V[E; +(1-2V)E] (150)

When the interface is fully debonded with / = &2, the
first terms in equations (13) and (14) vanish altogether.
Then, equations (9) predict that the effective CTEs of
the composite with free-sliding interfaces are indepen-
dent of the matrix crack density according to

a, = o +da,p’c a, = o +&a,Aa (16a,b)

- ap

As discussed above, the value of ¢; for type I boundary
conditions is now applicable. Specializing further to the
case of an isotropic fibre (A= n= 1) and v = v,= v, one
finds from equations (15)

a, -a + Ao

(17a)
Efx

v(l+ v)pHE(E; — E)
(- pEL[1+VE +(1-VE] (17

a, =a +Aa

The predictions based on equations (9), Sl 3) and (16)
are illustrated in Figure 7 as plots of a./a, versus R¢/d
for five values of normalized debond length //R;.
Corresponding curves for o,/0 will not be shown since
there is relatively little change in the radial component
of the CTE from the value for the uncracked compos-
ite. These predictions are for the same choices of para-
meters used in the earher examples, i.c. EyE, =2, p =
0.3, vr= vm—03 a/am—OSandA n = 1. The hori-
zontal line in Figure 7 is the result for the fully debonded
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composite and is independent of the density of matrix
cracks. Note that the fully debonded, free-sliding
composite has a CTE which is slightly /ess than that of
the fibre itself, az/a 0.88 in the present case. This scem-
ingly anomalous result is a consequence of the Poisson
interaction between the fibre and the matrix, together
with the fact that the fibre-matrix interface remains
closed due to residual stresses. It is brought out most
clearly when equation (17a) is further specialized to the
case with no elastic mismatch (E; = Ep) g1v1ng a, = a,

+ VA(1 — p)Aa, which is clearly less than a since Aa is
negative, Under a temperature decrease, for example the
resulting increase in the radial stress component acting
across the fibre-matrix interface produces an axial
Poisson contraction in the fibre, slightly decreasing its
axial expansion. This small contribution would be absent
if the interface lost contact.

A curve in Figure 7 for a given value of normalized
debond length intersects the horizontal line when the
fibre becomes fully debonded, i.e. / = 4/2. Using the result
for the perfectly bonded case (//R; = 0) as reference, one
can see that debonding with frictionless sliding has a
significant effect on reducing the axial CTE of the
composite to values comparable to that of the fibre.
Without sliding, a relatively high density of matrix cracks
is needed to produce a substantial drop in the CTE. The
combination of matrix cracking and sliding has a
substantially larger effect. In the next section, the role of
frictional sliding resistance will be considered.

THERMAL EXPANSION BEHAVIOUR OF
CRACKED COMPOSITES WITH FRICTIONAL
SLIDING

Frictional sliding complicates the thermal expansion
behaviour of a cracked composite. When frictional
sliding is important, the composite strain no longer varies
linearly with changes in temperature. The zone of fric-
tional sliding varies with temperature, and hysteresis
effects will occur under cyclic thermal historics. In the
absence of friction, the axial CTE is bracketed by the
value of that for the uncracked composite, a and a
value which, at its lowest, is only slightly less than that
of the fibre, a The extent of matrix cracking and sliding
determines where between these brackets the CTE lies.

T T T T l T T T T
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0 5 R d 1 1.5
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Figure 7 Effect of frictionless debonding on the axial CTE of a
cracked unidirectional composite. The constitutive parameters are the
same as those listed in Figure 5

The sliding contribution to strain increments will be
reduced by friction. It is this effect which is quantified
in this section. Results obtained here will emphasize
cyclic thermal loading, but a framework for analysing
strain changes under general thermal histories will be
presented.

For completeness, consider a temperature history
such as that shown in Figure 8a, where T starts at the
‘bonding’ temperature Ty, with the composite in a state
with no residual stress. Then the temperature drops to
T4, and thereafter cycles ‘steadily’ between T, and Tp
with T, < Ty < T;. Assume that there is a fixed matrix
crack spacing 4, that the debonding energy of the fibre
can be neglected, and that the friction stress 7 is inde-
pendent of T and undiminished by repeated reversed
sliding. Starting at Ty, as in Figure 8a, simplifies the
discussion, but is not essential. For a given spacing of
matrix cracks d and interface debonding length /, it can
be shown that, once a full cycle of such a steady-cycle
history has taken place, there is no influence of the prior
thermal history on the subsequent incremental behaviour
of the composite. The axial strain of the composite and
the length L of the current zone of sliding varies with
time as sketched qualitatively in parts b and ¢ of Figure
8. The example illustrated applies to a case where the
sliding zone does not engulf the full interface (i.e. L <
di2). A cross-plot of axial strain versus temperature is
shown in Figure 8d, showing the fact that the strain cycles
in a hysteresis loop as soon as the ‘steady’ thermal cycle
1s in effect. Three reference slopes are indicated in Figure
8d: that of the uncracked composite, that of the cracked
composite with no sliding, and that of the cracked, freely-
sliding composite. As T increases from T4, the initial
slope coincides with that of the cracked composite with
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e : ime
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© | ‘
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@ P
|
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Figure 8 Schematic behaviour due to thermal cycling in the presence
of frictional sliding
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no sliding; but as 7T increases, the sliding region grows
and the slope drops. The slope attains that of the freely-
sliding composite if L reaches d/2. After T reverses at Tj
and starts to drop, the instantaneous slope again starts
as that of the cracked composite with no sliding and
progressively drops towards that of the freely-sliding
composite. The average strain change associated with the
closed hysteresis loop can be characterized by an effec-
tive CTE, a*, defined such that &g — &4 = a* (Tg — Ta),
as indicated in Figure 8d. This effective CTE will
approach that of the cracked, non-sliding composite if
friction effects are large, and will approach that of the
cracked, free-sliding composite if friction effects are
small.

Conditions for determination of length L of current
sliding zone and incremental strain changes due to
temperature increment

To limit the complexity of this study, assume that the
matrix crack spacing d is fixed and that either: (1) the
fibre-matrix interface has been fully debonded at a prior
time in the loading history, or (2) the fibre-matrix inter-
face debond toughness can be neglected. Determination
of the length L of the current sliding zone requires infor-
mation from the cell model in Figure 2 about the mode
II stress intensity factor Kp at the end of the sliding
region, If the interface just ahead of the sliding zone were
not debonded, Kj; would have to attain the debond inten-
sity toughness if the zone were to increase in size. For
either prior debonding or negligible debond toughness,
the condition for determining the instantaneous position
of the end of the sliding region is Kj; = 0. Given T acting
over the portion of the interface undergoing sliding, this
condition ensures that the shear stress on the interface
ahead of the sliding zone falls off continuously from 7.

The analysis of straining due to cyclic thermal hist-
ories is best carried out using formulae for incremental
quantities. The approach is similar in many respects to
that which accounts for frictional sliding in the analysis
of matrix cracking due to fatigue crack growth in
composites under cyclic mechanical loads®. Let 8T and
6z, denote increments of temperature and overall longi-
tudinal strain measured from the last point of tempera-
ture reversal, such as O, A or B in Figure 8. Consider
the first temperature excursion in Figure 8 starting from
T, with the composite in the unstressed state. As 7 drops,
L increases from zero with 7 acting over the sliding zone
in the sense shown in Figure 2. With 6T = T — Ty, the
cell model of Figure 2 gives Kp at the end of the sliding
zone and 8z, and 8g, measured relative to the strain at
Ty as

AQSTE, pa,+ R; b L

Ky =D,

(1-ap) ‘TR ¥
2
8. = o6T + D, pa, ReE AaST D, L (19)
E(1-ap)d ER.d
R.E_ AadT 75
8, = 6T + &y L2l Em _&D! 20
0T +oIf E(1-ap)d D3 ER.d 20

The non-dimensional coefficients in these expressions not
listed previously are taken from the cell analysis given
by HWEH. They are:

D = Eicl 1)

m
1/2

2
2
32 2 peE (R ] (2Eb,
e[ 5] 2
" " E 2 1/4
T
D4 = [Tf] +[(b2 +b3)[zl] (23)

where the modulus quantity Eis given by

1 1 2f1=vE 1-v}
- ==(1- —n gy —
772 (1-8 ){ E E, (24)
and B is the second plane strain moduli mismatch para-
meter of Dundurs.

Imposition of Kj; = 0 on equation (18) gives the sliding
length as T drops from Ty as the solution to

L _ D pg [EmAa6T]
R D,(L) (1- pa) T

(25)

where 8T = T — T,. This relation applies as long as L <
d/2. The current sliding zone engulfs the entire interface
when L attains d/2, and then L remains fixed at d/2 until
the temperature reverses at 7. The zone length L™ at
the end of the first temperature excursion in Figure 8c
is given by the smaller of d/2 and the value given by equa-
tion (25) with 8T = T, — T,. The strain changes occur-
ring in the drop from T; to T, are given by equations
(19) and (20) with L = L"" and 8T = T — To.

Straining behaviour under cyclic thermal loading

Next consider the rise in T from T to Tg, and now
let 8T = T — T4 and measure 8z, from the state at A.
Equations (18)-(20) continue to apply to increments
measured from A if 7 is replaced by —27 and as long as
the length of the current sliding zone does not exceed the
length (L’") of the sliding zone prior to reversal. This
replacement accounts for the change in the sense in which
the friction stress acts, and for the fact that 27 represents
the magnitude of the change in the shear stress in the
sliding zone from its value prior to reversal. Thus, as T
increases from T

L _ D  pa (EmAa6TJ

R Dy(L) (I-pay\ -2t (26)
and
R.E_AqéT 212
8. = a°6T + p, P2 2Em + 27
o O E(1-ap)d = ER.d 7

The sliding zone length L as T attains T will be given
by equation (26) with 8T = Ty — Ta, unless L = d/2 at
some T less than Ty in which case L° = d/2. That is,
L’ is the smaller of d/2 or the solution to

L _ D pa (EmAa(TA 7;3]
R, Dy(L) (1-pay) 2 (28)
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(Note that it is obvious from comparing equation (28)
with equation (25) that L’ will never exceed L' as long
as Tg < Ty). The axial strain change occurring from A
to B, 82, = &g — &, is given by equation (27) with L =
L and 6T = TB— TA.

Now consider reversal at B with T dropping from T,
The arguments just made continue to pertain for the
incremental problem. In particular, equations (18)-(20)
apply if 7 is replaced by 27, if 8T = T - T, and if 8z,
is measured from B. Specifically, equations (26) and (27)
apply with only a sign change on 7. It immediately
follows that the sliding zone length equals L’ as T attains
Ta, where L is the length given above. Moreover, the
axial strain change occurring in the temperature drop
from B to A is equal in magnitude and opposite in
sign to that occurring on the leg of the cycle from A
to B. Thus, the cycle of strain is closed, as depicted in
Figure §.

The effective axial CTE for the cycle, which is indi-
cated in Figure 8d, is given by

o = Eg — €4 pa, R E, Ac

E(L- a,p)d

0
[
"2
L M- @9)
ER:d(T; ~T,)
where L’ is given by the smaller of d/2 or the solution
to equation (28). A closed-form expression for o, which
is accurate for crack spacings satisfying & > 3R; and for
all but the smallest values of E,Ac(Tx — Tg)/7, 1s
obtained with the aid of the following approximations.
As before, the tanh() term in D; is set to 1, and the terms
involving R¢L in Dj; in equation (22) and in Dy in equa-
tion (23) are neglected. Then when L’ is eliminated from
equation (29), one obtains

0 (1]
a: :a?.*.AaH& p_D‘_.*.H,M
: d [1-p 2d(1-p)

[Em QE, - E)J-‘EmAa(TA - TB)}
* 7 (30a)

for L” < d/2 or (equivalently) for E ATy — Tp)/1T <
[2d/(HRp)], and

a =o +Aa—§m—{ _ii——f—}mb)
E x’ R E; E Aa(T, - T)

for L” = d/2 or (equivalently) for E,AcdTa — Ts)/T 2

[2d/(HRy)).

Figure 9a displays plots of L'/R; versus EnAc(Ta —
Tp)/t from equation (28) for three values of E¢/E, with
Vi= vy = 0.3, p= 03 and A = n = 1. (Again, note that
Aqa is negative so that E Aa (Tx — T)/T is positive.) A
companion plot based on equations (30) for the effective
axial CTE is shown in Figure 9b for d/R; = 8. The trends
in o described earlier are evident in this plot. Small
values of E Aa(Ta — Tg)/7 are associated with values of
o, which are close to the axial CTE of the cracked, non-
sliding composite, while large values of this parameter
result in an effective axial CTE which is close to that of
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Figure 9 (a) Sliding zone length L’ as a function of E,A0(Ts — Tp)/t
for three values of E¢/E,. The constitutive parameters used are A = 1
=1, p=0.3and v; = v, = 0.3. (b) Effective axial CTE of a cracked
unidirectional composite under cyclic thermal loading as a function of
EoAa(Ta — Tp)/t for three values of EyEy,. The constitutive parameters
used are A=n=1,p =03, d/Rr = 8 and vy = v, = 0.3

the fibre. The half way point between these two limiting
behaviours is roughly given by the condition that L’ =
a2, ie.



Effects of thermal expansion: T.J. Lu and J.W. Hutchinson

E AT, -T3) _ 2 d 31)
T H R;

Thus, if E,Ac(T, — Tg)/7 is significantly less than
2d/(HRy), sliding will be negligible, while if this para-
meter is comparable 1o or greater than 2d/(HRy), sliding
will be important.

SUMMARY REMARKS

The work here has been directed at the combined effects
of matrix cracking and fibre sliding on the thermal
expansion behaviour of unidirectionally reinforced
fibre/matrix composites. The focus is on systems where
the CTE of the fibre is smaller than that of the matrix,
such that matrix cracking and fibre sliding reduce the
axial CTE of the composite and sliding will be resisted
by friction. Combinations of cracking and sliding can
reduce the axial CTE of the composite to a value close
to that of the fibre. The radial component of the CTE is
relatively unaffected.

When matrix cracking is unaccompanied by sliding,
a fairly high density of cracks must be present to cause
a significant reduction in the axial CTE of the compos-
ite. Typically, the matrix cracks must have a spacing d
as small as about three times the fibre radius if the axial
CTE is to be reduced half way to the fibre CTE. This is
a relatively high crack density which is only rarely
observed. A related observation emerging from the
present work is that matrix crack interaction is not
strong as long as d > 3Ry, and, consequently, the simpler
analytical approximations based on the assumption of
dilute matrix cracking are usually adequate. Sliding
accompanying matrix cracking contributes significantly
to the reduction in the axial CTE of the composite. If
the debond toughness of the interface is relatively low,
or if debonding has occurred earlier in the composite’s
loading history, the essential parameter for assessing the
extent to which sliding reduces the axial CTE is
E,AcAT/T. In particular, for repetitive thermal cycling
between T and Ty, the conditions listed in connection
with equation (31) can be used to gauge where the effec-
tive axial CTE lies between those of the undamaged
composite and the fibre.

Similar considerations should apply to fibre-rein-
forced laminates such as cross-plies. Matrix cracking
accompanied by fibre sliding will bring about a reduc-
tion in the CTE in the direction, or directions, perpen-
dicular to the cracks. The parameter E,AcAT/T will
continue to be relevant.

A number of overly simplistic assumptions have been
made in developing the model. The model does not
account for effects of non-uniform matrix crack spacing
or for non-uniform fibre distribution. Perhaps the most
serious shortcoming is the assumption that the friction
stress is independent of temperature. Temperature
changes will result in changes in the normal stress acting
across the fibre-matrix interface and are therefore
expected to have some effect on the friction stress.
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NOTATION

a;, by, ¢; dimensionless coefficients — see ref. 9
d matrix crack spacing

D, D] dimensionless coefficients

E;, E, axial and radial moduli of fibre

E. modulus of matrix

Kn mode II stress intensity factor

{ debond length

L L, L length of current sliding zone

R, R radii of fibre and cylindrical cell

Ty, T ‘bonding’ and current temperatures

o, of axial and radial CTEs of fibre

A, CTE of matrix

o, O, axial and radial effective CTEs of cracked
composite

oz, o axial and radial effective CTEs of

uncracked composite
Aa= of — o, thermal expansion mismatch
& = (1 — v,)n parameter for transversely isotropic fibre

n = E/FE; modulus ratio for transversely isotropic
fibre

A= alal  CTE ratio for transversely isotropic fibre

Vi, V,, & Poisson ratios of transversely isotropic
fibre — see equations (1) and (5)

Vi Poisson’s ratio of matrix

£ dimensionless coefficient — see equation
(7b)

p = (R/R)> fibre volume fraction

T fibre-matrix sliding shear resistance

APPENDIX: SHEAR-LAG ANALYSIS FOR
PERFECTLY BONDED FIBRE-MATRIX
INTERFACES

The shear-lag model has been widely applied to study
the fracturing behaviour of fibre-reinforced composites.
Here it is modified to solve for the stress field in the fibre
caused by a uniform temperature change AT in a uni-
directional composite as a function of matrix crack
spacing, d. A formulation for the case of perfect
fibre-matrix bonding is presented. This is extended in
the body of the paper to cover interfacial debonding with
frictional sliding. Several approximations are made in
the course of the derivation to simplify the problem. The



Effects on thermal expansion: T.J. Lu and J.W. Hutchinson

accuracy of the end results are assessed with the aid of
selected finite element calculations in Figure 5. Our
approach is similar in a number of aspects to those of
Laws and Dvorak® and McCartney® for transverse
cracking in cross-ply laminates.

Let of (r,z) be the axial stress in the fibre, and let
Or (2) be 1ts average over the cross-section. With 7(z) as
the shear stress on the fibre~matrix interface, equilibrium
requires

@=_211(z) (Al)
dz R;

We can approximate the shear stress distribution within
the fibre as

r7(2)

o) =—7
f

(A2)

We will neglect the influence of radial displacement of
the fibre on the composite response by taking u, to be
zero. With w(r,z) = u, as the axial displacement in the
fibre, the shear strain in the fibre is y = ow/dr. Thus, from
equation (A2)

rt(z) ow
B = =7 = G _— A3
wna=—p= =0y a3
which implies that
r1.(z)
,2) =w(0,2) + ——~ (Ad)
w(r,z) =w(0,2) G.R,

Then, because or = Edw/oz, it follows that

op(r, Z)—Gfo(2)+ [Gﬁ(Z) op(2)]  (AS)

where o and oy are, respectively, the axial stress in the
fibre at the centre and at the interface. Note that the
average stress is given by

1
Gf =5(Gf0 +O-ﬁ) (A6)
Next, we use equations (A1)-(A3) and (A5) to obtain

d’e; 1 do;
dz? R(1+vy)| or r=R;

2
= ————(05 - Opy) A7
R(+ve) o (A7)

Assuming that the matrix stress oy, is independent of
radial distance r, continuity of axial strain at the
fibre-matrix interface, r = Ry, requires

O _Om (A8)
E E,

Equations (A6) and (A8), together with the overall equi-
librium condition

(1- p)o, +pd; =0 (A9)

enable one to solve o3 and oy in terms of average fibre
stress @ With this result in hand, the governing differ-
ential equation (A7) finally becomes

2_
d O¢ _ - 4F 61« (AIO)
dz?  E_RI(1-p)1+v,)

Equation (A10) is now solved with the boundary
condition

Or = mE,A0AT at z=2d2 (Al1)
to get
- cosh(kz)
= ¢, E_AaAT —2"20 Al2
i(2) = 4, Ey coh(kd /) M2
where
1/2
= [ £ ] (A13)
E R:(1-p)1+vy)

and the non-dimensional coefficient a, is defined in HJ.
The additional strain due to matrix cracking in the cell
element is given by

2 J“”2 Efd _E 2ACAT(1 ~ p) tanh(kd/ 2) (Al4)
E kd/2

From (A14), the effective longitudinal thermal expan-
sion coefficient of the cracked composite is readily
obtained as

E_(1-p)o; -o,) tanh(kd /2) (A15)
E kd /2

— 0
a, =ao +

which approaches ¢ as d — 0.

So far the transverse displacement of the fibre due to
temperature change has been taken to be zero. As a first
approximation, however, one can substitute the fibre
stress (A12) into the relation o, = b0 given by HJ and
calculate the resulting average strain in the radial direc-
tion. An approximate solution for the effective CTE in
the transverse direction is thus obtained as

E.(1- p)(e; — o) tanh(kd /2)
E kd /2

a, =0’ +& (A16)

where the dimensionless coefficient £ has been defined in
equation (7b).



