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Abstract

Several levels of approximation are investigated to account for the effect of small fatigue cracks on the residual strength
of aircraft sheet materials and fuselage lap joints containing major cracks. A version of the Dugdale model is proposed
which accounts for strain hardening of the sheet in an approximate way and which incorporates a criterion for crack
advance leading to crack growth resistance. This model builds upon the model proposed by Nilsson and Hutchinson [[1]
and accounts for the detailed interaction between the major crack and the small damage cracks. A simpler version of the
model uses the damage-reduced local strength of the sheet or joint in assessing the effect of the major crack on residual
strength. The simpler approach thus bypasses the necessity of a direct determination of the highly complicated details of
the interaction of the small cracks in a lap joint with a major crack.

1. Introduction

There has been considerable effort in the last few years devoted to understanding and analyzing
the structural integrity of airplane fuselages in the presence of widespread fatigue damage in the
form of small cracks at rivets in the lap joints. Specifically, the issue has focused on whether small
crack damage significantly reduces the capability of the fuselage to arrest a major crack produced
in an accident scenario. The question is relevant because the original experimental validation of
crack arrest design was carried out using test fuselages with undamaged lap joints. The issue is all
the more pertinent because a significant fraction of the world aircraft fleet is reaching and exceeding
lap joint design life.

Experimental studies of the problem have been undertaken, some of which deal specifically with
actual fuselage sections and others which are designed to provide a more fundamental understand-
ing of the interaction of a large crack with small crack damage. In particular, two sets of basic
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experiments have been carried out on flat aircraft sheet material which were designed to provide
data on the interaction of a major crack centered in a uniform sheet with small cracks distributed
across the ligaments on both sides of the major crack. One set, referred to as the narrow panel tests
[2], were conducted on sheets having a width of 20 in. The wide panel tests in the other set had
90 in. wide sheets with central cracks as long as 20 in. [3]. In addition to their value for establishing
empirical criteria, the experimental results from the two sets of flat sheet tests have provided
a bench mark against which the analysis methods can be assessed.

A number of approaches for analyzing the effect of small crack damage on major crack arrest
capability have been proposed. There is general agreement that plasticity plays an important role
in the assessment of the effect of small crack damage on major crack arrest in the lap joint of
a fuselage. This can be appreciated most directly from the observation that, during mode I tearing
of typical aircraft aluminum sheet materials, the plastic zone size extends ahead of a major crack by
roughly 2-3 in. while the distance between the small cracks is the rivet spacing, typically about 1 in.
Thus, the plastic zone engulfs several damage sites. A general agreement has also emerged from the
theoretical studies that small crack damage lying outside the plastic zone has very little effect on the
major crack and can safely be neglected in the analysis. A general consensus has not yet emerged as
to the complication required in the fracture modeling for analyzing the influence of small crack
damage on residual lap joint strength, given a realistic level of accuracy expected for an engineering
analysis. Several approaches that involve highly detailed fracture modeling and intensive computer
analysis [4, 5] have shown promise for accurate prediction of major/minor crack interaction in
uniform sheets. It remains to be seen whether these approaches will prove to be practical when they
are applied to the intricacies and uncertainties of the lap joint and to additional complications
brought in by the curvature of the fuselage.

The main purposes of this paper are twofold. First, this paper extends Nilsson and Hutchinson’s
[1] use of the Dugdale model to this class of problems by more realistically accounting for strain
hardening and crack growth resistance. Issues related to this and other model which are based on
near-tip growth criteria are identified and addressed. The second purpose is to further illustrate the
merits of a more simplified approach initiated by Nilsson and Hutchinson [1] for assessing the
effect of small crack damage on residual strength in the presence of a major crack. The central idea
underlying the simplified approach is that the damage-reduced local strength of the sheet or lap
joint can be used to modify the fracture analysis without accounting for the fine details of the
interaction of the main crack with the small cracks. The determination of the effect of the damage
on the local strength of the sheet or joint can be decoupled from the analysis of its role in reducing
the residual strength in the presence of a major crack. This suggests a practical approach whereby
tests could be employed to measure the effect of fatigue crack damage on lap joint strength, and
then that information would be used to carry out the residual strength analysis in the presence of
a major crack.

The paper is divided into the following sections. Section 2 introduces two versions of the
modified Dugdale model, one which explicitly accounts for the interaction between the main crack
and the small cracks and the simplified version which employs the damage-reduced yield strength.
The fracture parameters are calibrated for the case of one particular aircraft sheet material. In
Section 3, the models are applied to analyze the effect of one or more small cracks ahead of the tip
of a long crack in an infinite sheet. In Section 4, the models are used to analyze the narrow panel
tests mentioned above. A summary discussion in the final section focuses on one unresolved issue
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generic to all models employing near-tip growth criteria and re-emphasizes the potential advant-
ages of the simplified approach.

2. Modified Dugdale models
2.1. Choice of yield stress in Dugdale model for a strain hardening material

The plastic zone in the well-known Dugdale model is represented as a line ahead of the crack tip
along which the yielded thin sheet transmits a normal force per unit length T = hoy, where h is the
sheet thickness and gy a measure of the yield stress. When strain hardening can be neglected, oy is
taken to be the tensile flow stress, as in Dugdale’s original paper. (Strictly speaking, oy should be
identified with the plane strain tension flow stress since plastic straining parallel to the crack line is
nearly zero. For sheet materials satisfying the Mises yield condition, this results in an increase of
the uniaxial flow stress by a factor 2/\/5.) The primary issue to be faced here is the choice of gy
when there is appreciable strain hardening, as in the case of the aircraft sheet material analysed
later which has an ultimate tensile stress which is almost 50% above its initial yield stress. Since the
Dugdale model uses crack solutions for the elastic sheet with an extended crack length on which
the plastic zone traction acts, the traction T is the nominal traction with & as the initial thickness of
the sheet and oy as a nominal stress (as opposed to a true stress). One suggestion, by Harrison, et al.
[6]. is to identify oy with the average of the initial tensile yield stress, ¢y, and the ultimate tensile
stress (the nominal stress at the necking load), g,, 1 e.

oy = 3(co + 7,). (2.1)

In what follows, we outline an approximate derivation leading to an alternative suggestion, which
turns out to differ only slightly from (2.1), as long as the strain hardening is not very high.

For the purposes of this derivation, let é denote the crack opening displacement in the model, o,
its critical value at the actual tip, and let J. denote the associated critical value of the J-integral as
evaluated from the elastic crack solution employed in the Dugdale model. As is well known,
evaluation of J on a path shrunk down to the Dugdale zone along the crack line gives

R 06

J :j o — dx, (2.2)
o Ox

where o is the (nominal) stress exerted by the yielded strip and the integration extends from the end

of the plastic zone where o = g to the crack tip. For the model with the constant flow stress gy,

J = oy0 and, in particular,

Jo = oyd.. (2.3)

The value of oy in the derivation below will be chosen to be consistent with (2.2).

Consider a sheet material with a nominal stress-engineering strain curve given by o(¢) and a
true-stress—true-strain curve given by o(g,). (Again, strictly speaking, these should be the plane
strain tensile curves rather than the uniaxial curves, but this is not the main consideration here.)
The sheet material within the zone supplies the traction to the flanks of the elastic Dugdale crack.
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Let H denote the thickness of the plastic zone in the plane of the sheet in the direction
perpendicular to the crack, and consider it to be approximately constant. In the portion of the zone
in which the sheet is necking down, H is approximately the sheet thickness h. Identification of do
with H dg¢ in the integrand in (2.2) gives

&e
J. = HJ ole)de (2.4)
£y
for the critical condition, where ¢, is the strain at initial yield and ¢, denotes the associated

engineering strain of the material bridging the tip. Taking the critical opening in the model as
0. = H(e. — ¢y) and equating (2.3) and (2.4}, one obtains the desired expression for oy:

1 b
oy = J a(e)de (2.5)
Sc - 80 £o

In this paper, the following representation for the tensile curve of true stress versus true strain
will be used:

JE for o, < gy,
.t_{ff/ ¢ <00 (2.6)

(oo/ENa,joy)" for o> ay.
If the critical strain in (2.5) is identified with the strain at necking (i.e. corresponding to ¢ = 1/n in
(2.6)), then (2.5) gives

I’l[(nf}()e)_(’l+ 1)/n 1]

ov = (n + 1) [(nege) ' — 1] o; (2.7)

whereas for this same stress—strain curve, (2.1) gives
a,. (2.8)

The dependence of ay/o, on n for each of the above formulas, (2.7) and (2.8) are shown in Fig. 1 for
several values of ¢,. As long as the strain hardening exponent is not smaller than about 5, there is
little difference between the two results. Since the critical strain will certainly be larger that the
strain at necking and since o(c) decreases slowly at strains above &, the best choice of gy is likely to
be lower than (2.7), perhaps closer to (2.8). In any case, in the present study we will use (2.7) with
n = 8 which giving a result very close to that obtained by using (2.8).

Oy = %(1 -+ (nﬁoe)_

2.2. Criteria for crack growth

Aircraft sheet alloys display crack growth resistance that in some cases can be appreciable. The
simplest criterion for crack advance usually used in conjunction with the Dugdale model is the
maintainance of a critical crack tip opening displacement d.. This criterion does not generate crack
growth resistance, but might be justified if 0. were indentified with the crack opening displacement
occuring after an amount of growth relevant to a particular application. A criterion based on the
maintainance of a critical crack tip opening angle o, once the crack has begun to propagate (or,
more precisely, a constant near-tip opening profile) does lead to crack growth resistance when it is
especially adapted to the Dugdale model, [7, 8]. This criterion has two parameters which can be
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Fig. 1. Dependence of the equivalent yield stress on the Fig. 2. Crack tip profile of the Dugdale model.

strain hardening exponent and initial yield strain.

chosen to best fit a given material’s resistance curve, one tied to the initial opening displacement
and the other to the near-tip opening profile of the propagating crack. The plane stress approach of
Newman et al. [4] employs a criterion based on the maintainance of a critical crack tip opening
angle, which can be modified in several ways to cope with initiation and the beginning growth
stage. The success of this approach has been clearly demonstrated, both in its ability to reproduce
test data for aircraft sheet material and in its replication of details of near-tip geometry under
growth conditions.

For the propagating crack, define an effective crack tip opening angle by « = arctan(d/r), where,
with reference to Fig. 2, d is the crack opening a distance r behind the current tip. In evaluating §,
one must account for the stretched crack flanks released by the advancing tip. Following Wnuk [8]
and Budiansky and Sumner [ 7], this is done by subtracting from the standard Dugdale opening (at
a distance r behind the current tip) the opening experienced when that same material element was
severed at the tip. This scheme is indicated in Fig. 2. The criterion for continuing crack advance is
o = x.. In the application of the criterion in the present paper, the crack tip is advanced in
increments equal to r. Thus, the condition « = %, can be applied in the first increment following
initiation.

A criterion for restarting crack growth must be invoked when the advancing tip breaks through
to engulf a small crack. If the small crack were sufficiently long, it is obvious that growth should be
restarted with the same criterion used to initiate and grow the main crack, i.e. 6 = J., followed by
application of & = .. It is equally obvious that this restart procedure will not be correct if the small
crack is very short, since this procedure gives rise to discontinuous behavior in the limit of a small
crack of zero length, whereas the resistance curve behavior should be continuous in this hypotheti-
cal limit. Here we propose a criterion which gives continuous behavior for arbitrarily short damage
cracks and approaches the behavior expected of a virgin crack for sufficiently long damage cracks.
Let L be the length of the engulfed damage crack, and L; be a transition length parameter.
Specifically, with ¢, denoting the value of ¢ at the instant just before the advancing tip breaks
through to the small crack (see Fig. 3), take as the restart criterion:

5 {5p + (L + L), —d,) for 0 <L <Ly, 29

O, for L > L.
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Fig. 3. Simulation of the crack growth and link-up.

The transition length Ly characterizes the size of the small crack such that restarting becomes the
same as initiating a virgin crack; it is almost certainly proportional to the small scale yielding
plastic zone size. Experiments will be required to establish whether (2.9) is an appropriate restarting
criterion and, if so, the value of L. Whether (2.9) proves to be valid or not, it seems clear from the
discussion above that some restart criterion must be invoked for any crack growth model based on
a critical value of a quantity such as an opening displacement or an opening angle.

In keeping with the aim of the paper to develop a method which will be applicable to fatigue
damaged lap joints, we also consider a simpler approach which does not account for the major/
minor crack interaction explicitly. Following Nilsson and Hutchinson [17], we use a damage-
reduced yield strength ¢y in the Dugdale plastic zone. This idea is motivated by the fact that the
plastic zone for the propagating crack extends over at least several damage sites (e.g. rivet spacings)
in the actual lap joint problem due to crack growth resistance behavior. For uniform sheets with
small cracks of length 2aygsp uniformly spaced by a distance [ ahead of the main crack tip, the choice

gy = (1 — Dusp)ov (2.10)

reflects the reduced limit strength of a sheet material on either side of the main crack when the
damage parameter is Dysp = 2amsp/l. In principle, the choice of gy for the lap joint could be
determined by analysis. However, because of the complications and uncertainities inherent in the
joint, it may be preferable to determine gy by strength tests on fatigue damaged lap joint coupons.
Indeed, the justification for a simplified approach such as this over a more detailed one rests on the
fact that important quantities influencing lap joint fracture, such as the residual rivet clamping
force and friction forces between lapped sheets, are not well characterized yet almost certainly have
a significant effect on the joint strength.

2.3. Calibration for 2024-T3 Alclad aluminum

The tensile true stress—strain curve for 2024-T3 Alclad aluminum sheet alloy taken from
Newman et al. [4] is shown as solid points in Fig. 4. The solid line curve in this plot is the
power-law relation (2.6) with the following material parameters: o, = 41.4 ksi = 285.4 MPa,
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Fig. 4. Stress-strain curve for 2024-T3 Aclad aluminum Fig. 5. Comparison of theoretical and test results for
alloy. narrow panels of 2024-T3 Aclad aluminum alloy with

only a central crack. The pancl with ¢ = 3.5 in. was used
to determine .

E = 10356 ksi = 71.4 GPa and n = 8. The effective yield stress for this material to be used in the
Dugdale model is found from (2.7) to be oy = 51.3 ksi. Eq. (2.8) gives gy = 48.9 ksi..

The solid points in Fig. 5 are experimental data of applied stress versus crack extension for three
sheet panels of the 2024-T3 Alclad material [2] with a single central crack. Each of the panels has
a total width of 20 in. and the three crack lengths, 2a, are 4, 7, and 11 in., respectively. The solution
to the Dugdale problem for the single central crack in a finite width panel was solved using
boundary integral methods. For given choices of d., r and o, and a given initial crack length, the
history of applied stress versus crack length was computed using the first of the criteria discussed
above. The value of 3. can be chosen to reproduce the initiation of growth for a particular
experimental record. By systematically repeating the procedure for various combinations of r and
%, One can arrive at a combination of these parameters which gives a good fit to the growth portion
of the record. The middle set of data in Fig. 5 for the 7 in. crack was used for this purpose. The
choices are 6, = 9.45 x 1073 in. (corresponding to K. = 71 ksiin.!/? at initiation for small scale
yielding), r = 1 mm (0.0394 in., which happens to nearly coincide with the sheet thickness) and
2. = 2.86°, leading to the middle solid line curve in Fig. 4. The other two solid line curves are the
computed results for the panels with initial cracks of 4 and 11 in. in length, and they show good
agreement with the corresponding experimental data.

3. Semi-infinite crack interacting with small cracks

To illustrate the application of the CTOA criterion and to highlight important and as well as
unimportant factors in the analysis, consider the problem of a long crack in an infinite sheet of the
Al 2024-T3 Alclad material interacting with a short crack of length 2aygp such that there is
a ligament of length d between them, as shown in the insert of Fig. 6. The main crack is considered
to be very long such compared to the size of the plastic zone, In this way, the main crack can be
replaced by a semi-infinite crack loaded remotely by the K-field. For the Alclad material, this
approximation becomes accurate for main cracks longer than about 15-20 in. In the example
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Fig. 6. Effect of small crack interaction with main crack on crack growth resistance in small scale yielding according to
several approximations.

shown in Fig. 6, the length of the small crack is 2aysp = 0.5 in. and the ligament between the tip of
the main crack and the left-hand tip of the small crack is d = 1 in.

For reference, the prediction for the sheet in the absence of the small crack is included in Fig. 6 as
the dashed-line curve. Let K(Aa) denote the applied stress intensity factor after crack advance Aa
and let R = (n/8)(K /a+)? be associated plastic zone size when aysp = 0. The Dugdale model gives
for the stretch-adjusted opening a distance r behind the current crack tip:

. 8K /R+r 8oy /R(R+7r) doyr g2
b_{f\/ T ‘nTm[W“"mz/”}‘m’ 3.

where K denotes the stress intensity factor when the crack tip was at Aa — r. The terms in the curly
brackets in (3.1) represent the usual opening for the Dugdale model, while the term involving K is
the stretch-adjustment. The opening angle is « = arctan(d/r), and the condition for continuing
growth is @ = «,. In applying the criterion, we have advanced the crack tip in increments equal to r.
Growth is initiated when é for the stationary crack (i.e. 6 = K?/(Eay)) attains d.. For the sheet with
amsp = 0, this corresponds to K = K, = 71 ksiin'/?.

The three solid line curves in Fig. 6 are for the main crack in the presence of the small crack as
calculated using three different modeling approximations for the interaction of the small crack with
the main crack which will be discussed below. Apart from the extensions up to Aa/d = 0.15, the
three approximations lead to essentially identical predictions which are indistinguishable in the
plot. Thus, we begin by considering the general behavior common to all the approximations. In this
example, the crack tip begins to extend just before its plastic zone has spread across the ligament to
the small crack. Interaction with the small crack is weak during this brief phase of the loading and
the crack growth resistance is only slightly lower than for the case when there is no small crack. The
local maximum in K occuring at Aa/d = 0.1 is the point where the ligament becomes fully yielded.

Once the ligament is fully yielded, the plastic zone engulfs the small crack. The basic Dugdale
problem associated with this phase of the loading history can also be solved analytically with
expressions which are only slightly more complicated than (3.1). The main crack tip extends under
increasing K until it reaches the left end of the small crack. The main crack now breaks through
and jumps’ ahead by a distance Aa/d = 0.5 corresponding to the length of the small crack, as
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Fig. 7. Effect of small cracks on crack growth resistance in small scale yielding for four choices of the transition length.
The approximation based on a damage-reduced yield stress is also shown.

represented by the gap in the history of K versus Aa in Fig. 6. A criterion for restarting crack
growth must be invoked. Criterion (2.9) has been used here, it is illustrated in Fig. 6 for the two
limits, Ly = o0, or equivalently ¢ = é,, and Ly = 0 such that 6 = d.. The limit with 6 = J, is
equivalent to restarting the crack as a virgin crack and, therefore, corresponds precisely to a shift of
the dashed resistance curve to the right by Aa/d = 1.5 in Fig. 6. The upper curve, with a restart
using & = J,, should represent the highest resistance curve possible. Thus the two limiting curves
shown in Fig. 6 should bracket all possibilities. Since the difference between these curves is not
large in this example, predictions for intermediate values of Ly are not given.

The small differences between the curves for crack extensions less than about Aa/d = 0.1, during
the phase of loading in which the plastic zone has not yet engulfed the small crack, correspond to
differences in modeling the interaction between the main crack and the small crack. The middle
curve accounts for the presence of the small crack but does not include any plastic zone eminating
from either of its crack tips. This curve is only slightly below the curve determined for the case
where there is no small crack. The lower curve is computed by taking into account the plastic zone
eminating from both the main crack tip and from the left tip of the small crack. The effect of the
plastic zone of the small crack hardly effects the predictions. The effect of a plastic zone at the
right-hand end of the small crack during this phase of the loading should be even smaller and has
not been considered. The main conclusion to be drawn is similar to that proposed by Nilsson and
Hutchinson [1]: damage cracks not engulfed by the plastic zone of the major crack have little effect
on the main crack.

A second example for a very long main crack is given in Fig. 7 for the case of an array of equally
spaced damage cracks (I = 11in.) ahead of the main tip, all with the same length, 2aysp = 0.5 in.
(Note that the tip of the first small crack is now taken to be only 0.5 in. away from the main crack
tip, where as in the previous example is was 1 in.) The calculations have been performed using the
same values for the fracture parameters as those used in the previous example such that crack
growth initiation for the sheet with no small cracks remains at K. = 71 ksiin.!/2, The upper dashed
curve in Fig. 7 is again the prediction for the sheet with no small cracks (i.e. aysp = 0). The lower
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dashed curve is the prediction obtained in precisely the same manner, except that the damage-
reduced yield stress ay given by (2.10) with Dygp = 0.5, 1s used in place of gy. In other words, the
lower dashed curve accounts for the small crack damage only through its effect on the yield
strength of the sheet. The initiation and growth criteria are based on same values of ¢, and ;. The
four solid curves in Fig. 7 were computed in the same manner as in the previous example — the
small cracks are rigorously taken into account in the modeling once they are engulfed by the plastic
zone of the main crack, but neglected otherwise. The upper and lower of the four solid curves
correspond to Ly =ao0 and 0, respectively. The middle two curves were computed with a finite
transition length in the restart criterion (2.9): Ly = 2! and 4l (i.e. 2 and 4 in.).

For multiple small cracks, the choice of the transition length in the restart criterion has
a significant effect on the predictions. Clearly, the simplified approach based on a damage-adjusted
yield stress cannot reproduce this effect for arbitrary L;. Since this example uses material
properties and small crack spacings representative of aircraft fuselage applications, it seems
prudent to conclude that some further attention should be directed to establishing (or, possibly,
dismissing) the nced for a restart criterion in any computational model based on near-tip quantities
such as those considered here.

4. Central crack with small crack damage

In this section, the modified Dugdale model will be used to analyze the residual strength of the
flat sheet panels of 2024-T3 Alclad aluminum with small cracks symmetrically placed on each side
of a central major crack. Twelve panels were tested by Broek et al. [2]; three, with a central crack
and no small cracks, are considered in Fig. 5. The remaining panels had small cracks as well as the
major central crack. The lengths and positions of the cracks for the panels have been published in
the papers by Broek [9], Newman et al. [4] and Schijve [10]; the information discussed below is
given in Table 1, with the same notation to identify individual tests as has been used by all these
authors. The width of all panels is 20 in., the height is 40 in. and the sheet thickness is 0.04 in, The

Table 1

Predicted and test link-up for the specimen P4-P12

Specimen Predicted first link-up  Test Predicted second link-up Test
Lr=0and Ly = Ly=0 Ly =w

P4 23.41 22.50

P5 17.30 16.88

P6 15.66 15.00 1571 17.07 16.50

P7 16.52 16.13 1521 17.18 15.38

P8 14.93 14.25 16.00 16.93 16.13

P9 21.22 21.00 23.50 2534 22.13

P10 25.64 25.13 2375 2597 25.13

P11 16.13 15.38 16.50 17.85 16.13

P12 28.47 28.13
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values of o, and «. used in the present analysis are those arrived at in Section 2.3 from the
panel with the single 7 in. central crack. The results for the panels have been computed using the
simplest of the three approximations discussed which ignores the interaction between the major
crack and any smaller cracks, as long as the smaller crack is not engulfed by the plastic zone of the
major crack. When a small crack is engulfed, it is accounted for exactly in the modified Dugdale
model.

First, the panels containing one small crack symmetrically positioned on either side of the major
crack will be considered (panels P4, P5, P12). The tests of panels P4 and P12 are similar, and results
for P4 are shown in Fig. 8. The applied stress increases monotonically as the crack advances until
the plastic zone of the major crack engulfs the small crack. The applied stress drops slightly at this
point. As the plastic zone spreads across the outer ligament, the applied load increases slightly as
the crack advances until it reaches a maximum and then slowly declines as the major tip closes in
on the smaller crack and jumps across the small crack. Crack growth is restarted using (2.9), and
curves for the same two limits discussed above are displayed in Fig. 8. During this phase, the
applied stress again increases slightly as the crack advances. Once the plastic zone reaches the free
edge of the panel, the applied stress is simply the current ligament length as a fraction of the total
width times the yield stress gy and, thus, drops linearily with the length of the main crack, as shown.
Included in Fig. 8 is the test result for the maximum recorded applied stress for panel P4. In this
test, the crack became dynamically unstable at that load. For panel P35, the plastic zone size at
initiation already engulfs the small crack and the small drop in load seen for panel P4 does not
occur. Plots of applied stress versus crack advance for panels P5 and P12 are otherwise similar to
that for P4 and will not be shown. The maximum applied stress prediction is included with the
corresponding test result for these panels in Table 1.

The other test panels (P6—P11) have either two or three small cracks symmetrically located on
each side of the central major crack. These panels have been analyzed by the same approach.
Interaction between the major crack and the small cracks is fully accounted for in the solution of
the Dugdale model when the plastic zone engulfs any small crack but is ignored otherwise. In
a number of these panels, the plastic zone of the major crack engulfs two of the small cracks before

i
130 ! L ;
— |
Z !
=
©
@ 20 e O . ; il
= - __-__.___\
7]
3
= 10 — Limit L = oo
% : —= Limit L, =0
< Seui(s T =
i s Experimental Result
0 | L
2 3 4 5 6 7

Half Length, a, of the Leading Crack (inches)

Fig. 8. Applied stress history of narrow panel P4 with one central crack and two small cracks.
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Fig. 9. Applied stress history of narrow panel P6 with one central crack and four small cracks.

the major crack tip breaks through to the first small crack. Results for panel P6, which are
representative of the others, are shown in Fig. 9. The first ligament length of P6 specimen is 0.75 in.
which is smaller than the plastic zone size when the leading crack begins to grow. Thus, the plastic
zone of the leading crack engulfs the first small crack at the beginning of crack growth and the
applied load increases and then reaches a local maximum while the plastic zone is still within the
second ligament. The test result for P6 for this first maximum is shown. The crack then breaks
through the first small crack and is restarted corresponding to the two limits in (2.9) used
previously. The plastic zone has not yet engulfed the second small crack. But when the plastic zone
reaches the second crack there is a slight drop in the applied stress. Then the applied stress again
rises slowly with crack advance until the second local maximum is reached. The test result for this
critical stress is closer to the prediction for the restart criterion based Lt = oo rather than L1 = 0,
but the difference is relatively small. The results for the two critical stress quantities for the other
panels are included in Table 1.

We now apply the simplified approach based on a damage reduced yield stress to panel P6 even
though there are only two small cracks on either side of the major crack. The curve shown in Fig. 9
for Lt = o0 is reproduced in Fig. 10, along with the two experimental measurements for that panel.
The choice of a sensible damage level Dygp in (2.10) for determining Gy is by no means obvious for
this panel because the damage is so nonuniform on either side of the major crack.

With reference to the lengths labelled in the insert in Fig. 10, two extreme choices would be Dysp

=a,/(l; + a;) =0.53 and Dysp = (a1, + a,)/(l; + 1, + 15 + a; + a,) = 0.16, based on the net liga-

ment reduction immediate to the tip and on the total ligament reduction, respectively. A sensible
intermediate choice is Dysp = (a; + a,)/(I; + I» + a; + a,) = 0.41, based on the two damage
cracks and the two adjacent ligaments. The predictions of the simplified approach based on these
three choices of Dygp are included in Fig. 10. Apart from underestimating the resistance in the early
stage of growth, the choice Dygp = 0.41 gives the most reasonable reproduction of the more
detailed model and the test points. The wide latitude in possible choice of Dygp for the narrow
panel tests is a reflection of the fact that these tests do not realistically scale the relative spacing of
the major and small cracks of a full size fuselage joint.
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Fig. 10. Applied stress history of narrow panel P6 as predicted by method based on damage-reduced yield strength,

5. Discussion

An approach based on the Dugdale model, modified to account for crack growth resistance,
appears to be capable of reproducing the effect of small cracks on the residual strength of a sheets
containing a major crack. Moreover, by concentrating the plasticity in the sheet along a pre-
determinded line, Dugdale-type models have significant computational advantages which will
carry over to more complex models of full fuselage sections. One issue which has been identified is
the problem of ’restarting’ the crack tip growth when the major crack has swallowed up a small
crack. A restart criterion must be introduced for any model, such as the present, which uses
a critical value of some near tip crack quantity such as a crack opening angle as the condition for
continuing growth. From the discussion given in the paper, it would appear that some experi-
mental work is needed to identify the characteristic length Ly of small cracks which are sufficiently
long such that the newly extended main crack restarts as if it were a virgin crack.

Even if this model, or more detailed ones, are capable of replicating behavior of the panel tests, it
is by no means certain that these same models will be effective in predicting the effect of fatigue
damage on the residual strength of a lap joint containing a major crack. The complications of the
joint may be too difficult for accurate modeling. Any attempt to model joint failure at the same
level as for the panel tests will have to contend with residual stresses in both the rivets and sheets,
friction and sliding between sheets, local bending effects, and local geometry. To be effective at this
level of detail, the models will obviously have to be capable of predicting the strength of a damaged
lap joint in the absence of a major crack. This appears to be a fairly formidable problem in it own
right, and it is not clear that the models being developed will be capable of providing accurate
predictions. It is this logic which highlights the value of the alternative simpler approach which
decouples the determination of the strength reduction of the damaged lap joint from its effect on
the residual strength in the presence of a major crack. In principle, combined fatigue/strength tests
could be performed on lap joint coupons providing the reduced yield strength &y. Then, this
damage-reduced strength would be used in the manner indicated in the body of the paper to
calculate the residual strength of the fuselage in the presence of a major crack. In this way, the
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computational model for residual strength would not have to bring in the fine details of the lap
joint itself. As emphasized, this approach makes sense only if the plastic zone ahead of the major
crack extends over several damage sites (e.g. rivet spacings), but this is expected to be the case for
the aircraft sheet materials at representative intensity levels.
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