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ABSTRACT

A mechanics study of the interface toughness of joints comprised of ceramic substrates
joined by a thin ductile metal layer is carried out for arbitrary combinations of mode I and mode
II loading. The crack lies on one of the metal/ceramic interfaces, and the mechanism of
separation at the crack tip is assumed to be atomic decohesion. The SSV model proposed by
Suo, Shih and Varias is invoked. This model employs a very narrow elastic strip imposed
between the substrate and the ductile layer to model the expected higher hardness of material
subject to high strain gradients and possible dislocation-free zone in the immediate vicinity of the
crack tip. The criterion for crack advance is the requirement that energy release rate at the crack
tip in this narrow elastic strip be the atomistic work of fracture. The contribution of plastic
dissipation in the metal layer to the total work of fracture is computed as a function of the
thickness and yield strength of the layer and of the relative amount of mode II to mode I. Ductile
joints display exceptionally strong thickness and mixed mode dependencies.

INTRODUCTION

Plastic dissipation at the tip of a crack constitutes a major fraction of the total work of
fracture for many ductile structural metals and tough metal/ceramic interfaces. A quantitative
understanding of interface toughness is just beginning to emerge [1,2]. Recent experiments on
the toughness of metal ceramic interfaces [3-5] have helped to elucidate the relationship between
the total work of fracture and the work of the fracture process. For interfaces which fail by an
atomic decohesion mechanism, the total work of fracture can be hundreds of times the atomistic
work of separation. Nevertheless, the atomistic work of separation sets the magnitude of the
contribution from plastic dissipation, and small changes in the former can produce huge changes
in the later. This exceptional nonlinear magnification has been recently demonstrated
experimentally for a niobium/sapphire interface [5].

Mechanics models of the toughness of structural metals and metal/ceramic interfaces must
be divided into at least two classes: those which are apply to the ductile fracture process of void
growth and coalescence, and those for which the atomic separation is the fracture process. The
important distinction between two classes arises because of the widely different scales of the
fracture processes. Void growth and coalescence takes place on a scale ranging typically from
ten to a hundred microns. Conventional continuum plasticity theory is sufficiently accurate at
this scale to connect the region where the loads are applied down to the crack tip where the
fracture process occurs. Models [1,2,6] which embed a traction-separation relation characterizing
the fracture process within a elastic-plastic continuum representation of the solid are capable of
capturing the most important features of interaction between fracture process and plastic
deformation. By contrast, conventional plasticity theory cannot be used at the very small scales
bridging down to the tip when atomic separation is the fracture process. According to continuum
plasticity crack solutions, the maximum stresses which can be attained in the vicinity of a crack
tip are never more than about five times the tensile flow stress of the metal. Such levels are
generally well below the stresses needed to bring about atomic separation of a strong interface.
The problem of bridging from the macroscopic level down to the atomistic level at the crack tip
through a plastic zone constitutes a major challenge.

In this paper, attention is directed to metal/ceramic interfaces which fail by atomic
separation. The problem just alluded to will be side-stepped with a model proposed by Suo, Shih
and Varias [7], which will hereafter be designated as the SSV model. This model has been
proposed for metals containing at least moderate densities of pre-existing dislocations such that
plastic deformation is associated with motion of these dislocations. It is assumed that no
dislocations are emitted from the crack tip such that the tip remains atomistically sharp. The

163
Mat. Res. Soc. Symp. Proc. Vol. 409 © 1996 Materials Research Society




essential modeling step is the imposition of an elastic strip of thickness t between the interface
and the plastically deforming metal layer, as shown in Fig. 1. In a crude way, the elastic strip is
intended to: (i) account for the high flow stress of metal which is expected to develop in the
vicinity tip where strain gradients are very large, and (ii) represent any dislocation-free region at
the tip. An elaboration on the SSV model [8] proposes a self-consistent way to identify t by
matching the dislocation density and effective flow stress a distance t from the tip. In the present
paper, the thickness of the elastic strip t is regarded as a parameter in the model whose value, for
example, can be chosen to fit one set of experimental data.
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Fig.1 The joint system subjected to mixed mode K-field at remote boundary

Specifically, we model the plane strain system with a thin metal layer sandwiched between
two ceramic substrates. A long crack lies along one of the interfaces. As depicted in Fig. I, the
crack is loaded by combinations of the mode I and mode II stress intensity factors, K1 and Kij.
The tensile yield stress of the metal is 6y and its strain hardening exponent is N. To limit the
number of material parameters in the study, the substrates and metal layer are assigned the same
Young's modulus E and Poisson's ratio v. The object of the study is to predict the total work of
fracture I'gg for the steady-state propagation of the crack down the interface in terms of the
following parameters of the model: the atomistic work of separation g, the relative amount of
mode II to mode I, as measured by y=tan-I(K1/Kp), the thickness of the metal layer h and its
yield stress and hardening exponent, Sy and N, and E and v. The thickness t of the thin metal
strip imposed between interface and the elastic-plastic layer is taken to be small compared to the
metal layer thickness h.

FORMULATION OF THE STEADY-STATE CRACK GROWTH PROBLEM

Each ceramic substrate in Fig. 1 is assumed to be semi-infinite. The remote loading is
specified by the mode I and II stress intensity fields:

K 1.1 ~ 10 .,
Oy = ﬁ[cij(e)cos(“/) +Gj (e)sm(\v)] (r —<0)

4y
y=tan '(Kg/Kp), K=[K2+Kg?]"
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The functions depending on @can be found in any text book on fracture. The remote loading is
characterized by Ky and Kjy or, equivalently, by G and vy, where Irwin's result for the energy
release rate is

_A=Vh 2 A=V g
G =K = T—[K + Ky @
This quantity is interpreted as the remote, or applied, energy release rate. It will be identified
with the total work of fracture for steady-state growth, I'ss.

As the crack tip is fully surrounded by elastic material, it is characterized by local stress
intensity factors, Ki‘l’ and Kﬁp . Alternatively the tip deformation can be characterized by Gp
and Yp, where

1=V ip2 - o tip? _

Gip - EV )[Ki‘p +KP ] and Wy, =tan" Ky /Kp) (3)

These quantities will be computed. In the application of the crack solution, Gyjp will be identified

with the atomistic work of fracture I'g.
The tensile stress-strain curve of the metal in the layer is taken to be
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This relation is generalized to multi-axial stress states by J2 flow theory for small strain
incremental plasticity (von Mises theory). For plastic loading, increments in stress and strain are
related by

e.,.=1i‘ic‘su-lckk5.lj+3&[ ! l]sij )

iTTE UTE 26, | E(6,) E
where sjj is the stress deviator, o, =,/3sijsij/ 2 and E, is the tangent modulus of the tensile

stress-strain curve at Ge from (4).
The emphasis here is on steady-state growth wherein the crack has advanced sufficiently
far from initiation such that stresses and strains no longer change from the vantage point of a
observer translating with the crack tip. The crack problem is posed for steady-state crack growth
under constant G and y. A zone of active plasticity moves with the tip, and a wake of plastically
deformed, but elastically unloaded, material extends behind the tip, as depicted in Fig. 1. The
steady-state condition for any quantity such as a Cartesian component of incremental stress is
G
Gy = -a%L (6)
X
where the crack is advancing in the x) direction and 4 is the increment of crack advance. A
numerical method [9] which employs iteration to satisfy conditions (6) is used to directly obtain
the steady-state solution. A similar method was employed in [7] and [8]. A finite element
procedure with a grid especially designed to cope with the steady-state wake has been used to
carry out the calculations, as will be discussed further in the next section. .
The main results of interest from the solution are the functional relations between the local
crack tip fields, as characterized by Gyp and Wiip, and the corresponding applied quantities, G
and y. The non-dimensional forms of these relations are

Gi =fi[v.hiN.6y/EV] and wy, = fo[w.hiN,oy/E,V] o)
tip

where the two dimensionless thickness quantities are
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The reference length, Rg, can be regarded as an estimate of the small scale yielding plastic zone

size in plane sirain for a crack loaded by Gyip. It will be seen to serve as a basic material length

scale against which to gage whether the metal layer is thick or thin. In the limit when h is very
small, plasticity is essentially eliminated and Gep and Wyip approach their applied counterparts, G
and y. When plastic dissipation is not negligible, the steady-state work balance is precisely
G= G!ip + Gplastic (9)

where Gplastic denotes the plastic dissipation rate (energy per unit length of crack edge per unit
length ofp crack advance). Thus the steady-state model permits a clear-cut partitioning of the work
of crack advance into plastic dissipation and the portion available for the local fracture process,
Gtip.

P In applying the solution to establish the relation of the total work of fracture for steady-state
crack advance along the joint, I'g, to the atomistic work of separation of the interface, I'g, ['ss is
identified with G and ['g with Gyp. Thus, results will be presented for the ratio I'sy/T, reflecting
the magnification of toughness due to plastic dissipation. The nondimensional thickness
quantities are still defined in (8), but with Rg evaluated using Gip=T0.

NUMERICAL METHOD

As described in [9], the steady-state solution procedure requires stress histories to be
integrated along lines parallel to the x; axis within the active plastic zone and the wake. This is
most effectively implemented in a finite element framework if the plastic zone and wake lie
within a horizontal grid whose elements at any distance above the crack line all have the same
height in the x3 direction. The grid used in the present work is shown in Fig. 2. The horizontal
mesh near the tip which contains the metal layer transitions to a radial mesh in the outer field.
Tractions obtained from (1) are prescribed on a circular boundary of radius R. In all the
numerical results presented below, the computations have been performed with R/Rp=1012. This
choice ensures that layer thickness and the plastic zone extent ahead of the tip will always be
small compared to R in the examples considered here. Four-noded quadrilateral elements were
employed and four Gauss points are used for integration. A mesh with 3664 elements was used
in all the calculations reported below.

777720077

(a) Far field mesh (b) Near tip mesh

Fig.2 Finite element mesh
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The local energy release rate, Gijp, Was computed using the J-integral such that the contour
below the crack line was chosen to lie within the thin elastic strip, i.e. x3>-t, ensuring path-

independence. The local measure of mode mix, Yp, was identified with tan-l(o12/072) as
evaluated on x2=0 just ahead of the tip.

NUMERICAL RESULTS

All the dimensionless variables in (7) except oy/E and v are important in determining
I'ss/To. Numerical results will now be presented which reveal the main trends. Plots of I'sgTg as
a function of h are given in Fig. 3 for an applied mode I loading, y=0, for two choices of T and
three values of the strain hardening exponent N. For dimensionless metal layer thicknesses h
above a certain level (between 2 and 4 for the examples in Fig. 3), I's¢/T"g becomes independent
of layer thickness. For values of h above this level the plastic zone does not spread all the way
across the layer to the other substrate, and a further increase of the layer thickness does not alter
the plastic dissipation. The layer and the substrates have the same elastic properties.in this
example, and thus the limiting value of I'syT¢o for large h represents the small scale yielding
toughness enhancement for the metal/ceramic interface. At the other limit, as h approaches zero,
the amount of metal deforming plastically becomes unimportant and the total work of fracture

approaches I'g. The qualitative features seen in Fig. 3 are similar to those predicted by the
embedded fracture process model [1,2].
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Fig.3 Variation of toughness with ductile layer Fig.4 The variation of toughness with
thickness for different N. Solid lines correspond clastic strip thickness. Solid lines stand
to t=0.15, and dashed lines to {=0.25. for w=9%, and dashed lines for wa¢° .

The dimensionless parameter 1 characterizing the thickness of the plasticity-free elastic
strip in the SSV model is a critical intrinsic parameter in establishing I'sg/I'g. Curves displaying
this ratio as a function of t for mode I (y=0) and mode II (y=90°) are shown in Fig. 4 for several

values of N. When 1 exceeds a value of roughly 1/4, there is little plasticity enhancement of
toughness. The elastic strip is then sufficiently thick that it eliminates most of the crack tip

shielding due to plastic deformation. For values of 1 less than 1/10, the toughness enhancement
becomes significant. In this range, shielding is a strong function of t. One approach to applying
the SSV model is to regard { as a parameter to be chosen to fit one set of experimental data for a

given interface. Alternatively, and more fundamentally, T can be assigned its value using an
approach such as that suggested in [8] which attempts to estimate the width of the plasticity-free

region from first principles. Either way, the value of t is associated with the interface and must
be regarded as being independent of the metal layer thickness, the mode mixity, and other
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extrinsic factors, such as residual stress in the metal layer, which are not considered in this paper.
The value of the model rests in the fact that once 1 has been set, the dependence of I'g/T"g on the
extrinsic factors can be computed. There is a correspondence discussed in [2] between the
parameter t of the SSV model and the ratio of the peak separation stress to the yield
stress, &/@y, of the embedded fracture process zone model. For corresponding behaviors, the

smaller is T the largeris 6/0y .
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Fig.5 Variation of toughness with ductile layer
thickness for different'¥. Solid lines stand for

t =0.15, and dashed lines for t=0.25.

Fig.6 The curves of toughness with applied
loading mixity.

The effect of mixed mode loading is shown in Fig. 5, where plots are displayed for three
values of the applied mode mixity measure y. For pure mode II with y=90°, the crack along the
interface remains open to the tip, as will be discussed below. Fig. 6 displays the plots of I'sg/T"g as
a function of y for three values of ¢, all with h=5 and N=0.1. As can be seen from the curves in
Fig. 5, the dimensionless layer thickness h=5 is sufficiently large such that the mode dependence

in Fig. 6 corresponds to the asymptotic limit for "thick" metal layers. Here, again, the trends are
remarkably similar to the trends of toughness on mixed mode loading predicted by the embedded
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Fig.7 Relations of applied loading mixity with
crack tip mixity for three different elastic strip
thickness.
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fracture process model [1]. The lowest total work of fracture I'gs is attained for near mode I
loadings. Large enhancements of toughness arise for loadings which have a major component of

mode II. Of course, these enhancements are lost when the layer thicknesses are small ( h<<! in
Fig. 3). Companion plots to those in Fig. 6 showing the relation of the local mode mixity yyp to
the applied mode mixity y are given in Fig. 7. The asymmetry in the relation is due to the ?act
that the metal layer lies below the plane of the cracked interface. Note that pure mode I at the
local level corresponds roughly to y=15° at the applied level. The crack tip is open under
=900, but is closed at values of y more negative than about -85°. There is a range of applied
mixed mode loadings y, from roughly -45° to 30°, over which the local mode mixity is only
weakly dependent on the applied mode mixity with yp=-15°

For completeness, curves displaying the effect of two choices of 6y/E are shown in Fig. 8.
The effect of this parameter is very small. Note, however, that Gy has a strong influence on the

toughening enhancement through h and 1 by virtue of their dependence on Ry. Calculations with
different values of Poisson's ratio v show that this parameter also has a very weak effect on
Tso/To.

DISCUSSION

The SSV model predicts a strong dependence of the interface toughness on the relative
amount of mode II to mode I applied to the joint when plastic dissipation makes a major
contribution to the macroscopic toughness. This effect is due to the more effective crack tip
shielding by plastic deformation when the loading has a large component of mode II. The version
of the SSV model invoked here assumes that the atomistic work of fracture I'g is independent of
the local crack tip mixity, yiip. Any local dependence on yijp would be further magnified at the
macroscopic level. Qualitatively, the mode dependence of the SSV model is similar to that
displayed by the embedded fracture process zone model [1]. Both models also display a similar
trend of joint toughness with the thickness of the metal layer. When the thickness of the metal
layer becomes comparable to the characteristic plastic zone size, Ro, plastic dissipation is
reduced. The plasticity contribution to the total work of fracture becomes nearly inconsequential
for layer thicknesses below about Ro/4.

As discussed in the Introduction, the imposition of the thin elastic strip of thickness t
between the interface and the metal layer in the SSV model is a device for circumventing the
limitations of conventional plasticity at scales below about several microns. In this spirit, t can be
regarded as a parameter in the model to be chosen to fit one set of experimental data for a given
interface. More rigorous models for bridging down to the crack tip will require a plasticity theory
capable of characterizing behavior at the micron to sub-micron scale when large strain gradients
are present. The following numerical example illustrates the inconsistency inherent in applying
the SSV model to a metal/ceramic interface undergoing atomic separation. Take the following
representative values for the interface system: E=200GPa, 6y=200MPa, and T'g=1Jm-2. Then, by
(8), Rp=0.5um. From the numerical results (cf. Fig. 4), values of t=t/Rq needed to give rise to
significant levels of plastic dissipation must be less than about 0.2. Thus, the thickness of the
plasticity-free elastic strip must satisfy t<0.lpm. While such values are reasonable, it is not
reasonable to expect conventional plasticity will remain valid down to the strip. In other words,
even with the introduction of the elastic strip, there remains a significant domain of the model
within which the rationale for using conventional plasticity is highly questionable.
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