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Abstract

Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia.

Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material

behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the

mathematical character of the response changes in a fundamental way from rate-independent necking to rate-dependent

necking, whether due to material constitutive behavior or to inertia. For rate-dependent behavior, neck development

requires the introduction of an imperfection, and the rate of neck growth in the early stages is closely tied to the

imperfection amplitude. When inertia is important, multiple necks form. In contrast, for rate-independent materials

deformed quasi-statically, single necks are preferred and they can emerge in an imperfection-free specimen as a bifurcation

at a critical strain. In this paper, the interaction of material properties and inertia in determining neck retardation is

unraveled using a variety of analysis methods for thin sheets and plates undergoing plane strain extension. Dimensionless

parameters are identified, as are the regimes in which they play an important role.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction: preview of the roles of strain and strain-rate hardening and inertia

In this Introduction a family of visco-plastic solids will be discussed whose behavior in uniaxial tension is
specified by

s ¼ sR�
Nð_�=_�RÞ

m, (1)

where s is the true stress, e is the logarithmic strain and _� � d�=dt is the strain-rate with t as time. Elasticity is
neglected and the material is taken to be incompressible. The parameters characterizing the solid are the
reference flow stress and strain-rate, sR and _�R, the strain hardening exponent, N, and the strain-rate
hardening exponent, m. The uniaxial relation (1) is generalized to multi-axial states in the standard manner
with strain increments proportional to the stress deviator, sij ¼ sij � skkdij=3.
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1.1. Two-state, long wavelength approximation for visco-plastic, inertia-free stretching

We begin by reviewing results from a simple approximate theory of neck development that captures many
trends relevant to neck retardation as dependent on strain and strain-rate hardening under quasi-static
stretching, i.e. stretch rates sufficiently slow such that inertia is not important. If the wavelength of the neck is
sufficiently long compared to the thickness of the sheet, the sheet is everywhere in a state of approximate plane
strain tension. This approximation was exploited by Marciniak and Kuczynski (1967) in their analysis of
necking in sheet metal and by Hutchinson and Neale (1977) in their study of necking in materials characterized
by (1). With reference to the sketch in Fig. 1, denote variables at the developing neck where the thickness of
the sheet is minimum by A and those in the thick, nominally uniform sections well away from the neck by B.
Approximate plane strain tension everywhere implies sBhB ¼ sAhA by elementary equilibrium, where hA and
hB are the current thicknesses of the sheet at the respective locations. Denote the initial thickness of the sheet
at the same material sections by h0

A and h0
B, and introduce the geometric imperfection amplitude as Z0 ¼

1� h0
A=h0

B with Z040. With �A and �B denoting the logarithmic strains at these same sections, it is elementary
to show

�N
B e
��B ¼ ð1� Z0Þ�

N
A e
��A for m ¼ 0;R �B

0 �N=me��=m d� ¼ ð1� Z0Þ
1=m
R �A

0 �N=me��=m d� for m40:
(2)

Note that the relation between the strains in the two sections is independent of time and, therefore, does not
depend on the rate of straining. The relation is plotted in Fig. 1 for various values of the strain-rate hardening
exponent with N ¼ 0:1 and Z0 ¼ 0:005.

There is a fundamental difference between the response of rate-independent and rate-dependent materials.
For m ¼ 0, the strain outside the neck reaches a limit point when �A ¼ N, and, if elasticity were included,
elastic loading would occur away from the neck beyond this point. By contrast, if m40, the maximum strain
attained outside the neck occurs asymptotically as �A !1. Infinite ductility is assumed, and the necking
strain, �NECK, is identified with the maximum value of �B, corresponding to the limit point when m ¼ 0 and the
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Fig. 1. Strain at the minimum section (A) as a function of the strain at the thickest section (B) for various material rate-dependencies

including the rate-independent limit, m ¼ 0, according to the two-state model for the power law stress-strain relation (1). The results are

quasi-static in the sense that inertia is neglected.
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asymptotic limit for m40. The role of the initial imperfection is illustrated in Fig. 2 with N ¼ 0:1.
A fundamental difference between the behavior of rate-independent and rate-dependent materials again
emerges. In the limit when the imperfection becomes zero, Z0! 0, the necking strain of the rate-independent
material has the well defined limit, �NECK ¼ N, while it is unbounded for the rate-dependent material.
Analytical asymptotic expressions derived from (2) for various functional dependencies on N and m for small
Z0 are given by Hutchinson and Neale (1977).

It is evident from Figs. 1 and 2 that rate-dependence has a profound influence on neck retardation.
Moreover, the retardation has strong dependence on the magnitude of the imperfection when rate-dependence
is important. The relevance of rate-dependence to total elongation attainable prior to necking is highlighted by
Fig. 3 where the lower plot presents experimental results for total elongation prior to necking in uniaxial
tension for wide selection of ductile alloys assembled by Woodford (1969). The upper plot in Fig. 3 presents
the elongation from (2), modified for uniaxial tension and approximated as e�NECK � 1.

1.2. Exact perturbation results for growth of plane strain necks

For a plate of the power-law viscous material (1) with N ¼ 0 and s ¼ sRð_�=_�RÞ
m, Hutchinson et al. (1978)

used perturbation theory to derive the rate of growth of a small, symmetric sinusoidal thickness undulation as
depicted in Fig. 4 and specified at the current instant by Dh ¼ 1

2 Z0h cosð2px=LÞ, where h is the current average
thickness. The increment of growth of the thickness is given by

_h ¼
1

2
mZ0 _̄�Gðm; h=LÞ cosð2px=LÞ (3)

with _̄� as the overall strain increment. The function Gðm; h=LÞ is plotted in Fig. 4 where it is seen that
undulations with the longest wavelength, L, grow the fastest. The result for the long wave length limit can be
obtained from (2) for small imperfections in the early stage of neck growth.

For rate-independent materials, Hill and Hutchinson (1975) used perturbation theory to obtain exact results
for necking bifurcations from a uniform incompressible plate subject to plane strain stretching. At the instant
of bifurcation, let h be the thickness of the plate, Et be the instantaneous tangent modulus relating true stress
and logarithmic strain increments in plane strain according to _s ¼ Et_�, and m be the instantaneous modulus
governing shear parallel to the plate edges. The bifurcation modes have a sinusoidal dependence, cosð2px=LÞ,
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in the direction of stretching, and the functional form of the stress at bifurcation is s=Et ¼ f ðEt=m; h=LÞ.
A plot of this dependence is given in Fig. 5. The lowest bifurcation stress is always associated with the long
wavelength limit, which is the classical result of Considère, s=Et ¼ 1, associated with attainment of the

ARTICLE IN PRESS

1

1

10 100

Trend line

N = 0.05 �
0
 = 0.005

N = 2

N = 0
Trend line

from (b)

ZIRCALOY-4

Pb - Sn

Pu

Ni

Fe - 1.2% Cr - 1.2% Mo - 0.2% v

Fe - 1.3% Cr - 1.2% Mo

Mg - 0.5% Zr

Ti - 6%AI - 4%V

Ti - 5%AI - 2.5%  Sn

1000 10,000
0.001

0.01

0.1

TOTAL ELONGATION %

1

B

A

10 100 1000 10,000

TOTAL ELONGATION %

S
T

R
A

IN
 R

A
T

E
 S

E
N

S
IT

IV
IT

Y
, 
m

1

0.001

0.01

0.1

m

Fig. 3. Total elongation in a uniaxial tension test (change in length divided by initial length) as a function of the strain-rate hardening
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maximum load. For a solid based on (1) with m ¼ 0 and generalized to multi-axial states by deformation
theory plasticity, 2m=Et ffi 1=2N (Storen and Rice, 1975).

Under quasi-static stretching, long wavelength modes are favored in the early stages of neck development
for plates of both rate-independent materials and viscous materials. When the stretch rate is sufficiently large,
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Fig. 5. Bifurcation stress at the onset of necking in a perfect plate deformed quasi-statically to the current state having tangent modulus,

Et, shear modulus, m, plate thickness, h, and sinusoidal bifurcation mode wavelength, L (Hill and Hutchinson, 1975).
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inertia becomes important and modes with finite wavelengths grow the fastest. This behavior is evident (Fig. 6)
in extensive recent experiments on dynamic ring expansion conducted by Zhang and Ravi-Chandar (2006),
building upon earlier ring expansion experiments of Niordson (1965) and Grady and Benson (1983).
Fressengeas and Molinari (1994), Shenoy and Freund (1999), and Mercier and Molinari (2003) used
perturbation analysis to study the relation among undulation growth, stretch-rate and undulation wavelength
under incompressible plane strain stretching. Here we focus on the analysis of Shenoy and Freund, which
generalizes that of Hill and Hutchinson to include inertia. The study examines the exponential growth rate of
small undulation modes as a function of wavelength that are proportional to Z0e

t=t� , where Z0 is a measure
of the amplitude of the current undulation and t� is the growth time scale. The analysis identifies
modes that grow the fastest in the early stage of necking, i.e. those with smallest t�. The fundamental
solution for the perfect plate about which the perturbation expansion is carried out is an exact dynamic
solution with a uniform stretch-rate _l. At the instant when the undulation growth rate is assessed, l ¼ 1 such
that the overall strain-rate is _̄� ¼ _l. The Shenoy–Freund analysis is carried out for a finite length plate with
boundary conditions consistent with periodicity, but it can also be applied to an infinite plate with periodic
modes which is the view taken here. The instantaneous moduli governing the plane strain increments of
deformation are again Et and m, and these do not evolve with time in the analysis. For the rate-independent
power-law solid (1) with m ¼ 0 and 2m=Et ¼ 1=2N, Shenoy and Freund obtained the stress, s, and the
wavelength, L, of the fastest growing sinusoidal mode with prescribed normalized growth time, _lt�. The result
of this analysis is restated briefly in the Appendix emphasizing the dimensionless parameters relevant to the
infinite plate with sinusoidal undulations: i.e. _lt�, _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
, s=Et, h=L and N where r is the density and h is

the current average thickness. As emphasized by Shenoy and Freund, the normalized growth time, _lt�,
represents the overall stretch increment that occurs in the time increment, t�, during which the amplitude of
the undulation increases by a factor e. The smaller is _lt�, the more rapid is the undulation growth relative to
overall straining. Since

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
is the plastic wave speed, the all-important inertia parameter, _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
,

represents the ratio of the relative transverse contraction velocity of the lateral surfaces of the plate to the
plastic wave speed.

The plot in Fig. 7 presents the stress required to achieve a specified undulation growth time, _lt� ¼ 0:071, as
a function of the inverse normalized undulation wavelength, h=L, for several values of _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
, all with
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Fig. 6. Segment of an aluminum ring that has been dynamically expanded showing a necking mode with wavelengths several times the

specimen width (Zhang and Ravi-Chandar, 2006). The cross-section of the ring is rectangular with initial thickness 0:5mm and width

1mm. The width view is shown.
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N ¼ 0:2. The lowest stress required to achieve this undulation growth rate is associated with a finite
wavelength that scales with the plate thickness. The larger is _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
, the shorter is the wavelength, but the

minimum with respect to wavelength is quite flat implying that a relatively wide range of wavelengths will be
competing for dominance in the early stages of growth. Fig. 8 presents results similar to those of Shenoy and
Freund for combinations of wavelength and stress associated with the most rapidly growing undulation
(all with _lt� ¼ 0:071), but expressed in terms of the dimensionless parameters relevant to the infinite plate. For
specified _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
, any mode with wavelength differing from that in Fig. 8A has a longer growth time than

_lt� ¼ 0:071. The weak influence of the strain hardening exponent, N, is evident. Fig. 9 presents results for
several normalized growth times.

The Shenoy–Freund analysis reveals that dynamic straining favors the early growth of finite wavelength
undulations, with L typically in the range, 3h� 10h, depending on _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
and _lt�. The elevation of stress

above the stress at onset of quasi-static necking (i.e. s ¼ Et) strongly suggests neck retardation due to inertia
at high stretch-rates. However, the perturbation analysis is only accurate in the early stages of undulation
growth before well-developed necks form, and thus the strain associated with the stress in Figs. 7–9 is not an
accurate reflection of the full retardation effect. Guduru and Freund (2002) closely examined behavior at very
high stretch rates in a range of _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
higher than that considered here. They found that at sufficiently

high stretch rates the fastest growing wavelengths become shorter than the thickness of the strip and the mode
has the character of a surface instability.

In the sections of the paper which follow, the simple two-state model of Section 1.1 is first extended to
include inertia and then applied to study dynamic neck retardation. Then, an extensive finite element
computational study is carried out with the aim of providing unifying results under finite strain for fully
developed necks.

2. Two-state model for dynamic neck development

There have been a number of attempts to capture the effect of inertia on neck development using
simplified one-dimensional models (Regazzoni et al., 1986; Tuggu et al., 1990). Here, a two-state model is
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with strain hardening exponent N.
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introduced that identifies the essential dimensionless parameters and accurately captures most trends in neck
retardation as dependent on material properties and inertia. The initial geometry and the geometry in the
current deformed configuration assumed for the dynamic two-state model are given in Fig. 10. In addition
to assuming incompressible plane strain deformations, two approximations are made: (i) each of the
segments, A and B, are states of uniform stress and strain. (ii) The stress state in each segment is uniaxial
plane strain-effects due to transverse stress triaxiality are ignored. Otherwise, the equations which
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follow exactly account for finite geometry changes, nonlinear stress-strain behavior and dynamic equilibrium.
In standard notation, denote the overall stretch by l ¼ L=L0 and overall logarithmic strain by �̄ ¼ lnðlÞ,
with similar notation for each segment. An ordinary differential equation relating the evolution of
the stress and strain in segment A to that in segment B, is obtained based on approximations (i) and
(ii) noted above as follows. Invoking (i) and (ii), integrate the equilibrium equation in the current state
over one complete periodic unit of the plate in Fig. 10. It is straightforward to show that the results
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, as determined by the analysis of Shenoy and Freund (1999). In the current state, Et is

the tangent modulus, h is the plate thickness, and L is the wavelength of the sinusoidal undulation.
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can be written as

1

sR

sBe
��B � ð1� Z0ÞsAe

��A
� �

¼
1

2

L0
B

h0
B

 !2

½ðð1� Z0ÞR
2 þ 2RÞ�e�A

d2�A

d2t
þ

d�A

dt

� �2
 !

þ e�B
d2�B

d2t
þ

d�B
dt

� �2
 !( )

. ð4Þ

Here, sR is any conveniently chosen reference stress,

R ¼
L0

A

L0
B

; Z0 ¼ 1�
h0

A

h0
B

, (5)

and the dimensionless time variable is

t ¼
t
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
h0

B

. (6)

The overall stretch is related to the stretches in the individual segments by l ¼ ðRlA þ lBÞ=ð1þ RÞ. For the
case considered here, where the overall stretch-rate, _l, is prescribed to be constant, (4) reduces to

d2lA

dt2
¼

2ðh0
B=L0Þ

2
ð1þ RÞ2

ðð1� Z0ÞR
2 þ RÞ

1

sR

½sBe
��B � ð1� Z0ÞsAe

��A � (7)

supplemented by lB ¼ ð1þ RÞl� RlA. When inertia is negligible, d2lA=dt2 � 0 such that (7) reduces to the
equation governing the quasi-static two-state model: sBhB ¼ sAhA.

Two uniaxial constitutive models will be considered: the power-law solid (1) introduced earlier, and another
widely used relation called the over-stress relation:

s ¼ sR�
N ð1þ ð_�=_�RÞ

p
Þ (8)

with p and _�R as parameters characterizing the material rate-dependence. It can be noted immediately that
the dimensionless parameters characterizing the imposed stretch-rate and the material rate-dependence
(in addition to m or p) can be taken as

_lh0
Bffiffiffiffiffiffiffiffiffiffiffi

sR=r
p and

_�Rh0
Bffiffiffiffiffiffiffiffiffiffiffi

sR=r
p . (9)

In the perturbation studies Et was used in the dimensionless stretch rate since it is held fixed in assessing
small undulation growth. In the finite strain problems, the dimensionless parameters in (9) employ sR rather
than Et because the tangent modulus changes as the neck develops.

Numerical simulations based on the simple dynamic two-state model (7) for uniform overall stretching are
readily carried out. The model does a good job of capturing essentially all the important trends except for
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identifying the critical wavelength. Because stress triaxiality is ignored, the model exhibits no tendency to
suppress short wavelength modes which give rise to high triaxiality. However, as long as realistic values for
L0=h0

B and R ¼ L0
A=L0

B are used, trends with respect to the other parameters are correctly reproduced, as will
be illustrated by comparing with selected finite element simulations. In this connection it is relevant to observe
that results from the two-state model do not depend on either L0=h0

B or R ¼ L0
A=L0

B in the inertia-free limit. In
the results presented below we have chosen, L0=h0

B ¼ 3 and R ¼ 0:5. Necking is assumed to occur when either
d�B=dt ¼ 0 or �A ¼ 5, whichever is attained first. It will be demonstrated that the choice �A ¼ 5, which is
arbitrary, does not have an important effect on the general trends.

The combined role of material rate-dependence and inertia on neck retardation was emphasized by
Needleman (1991) based on dynamic finite element simulations. The advantage of the two-state model is that
it can efficiently generate results over the full range of the parameter space, as will be illustrated for selected
trends. The role of material strain-rate dependence for the overstress relation (8) is illustrated in Fig. 11 under
conditions of dynamic stretching. Fig. 11A presents the overall strain at necking, �̄ ¼ lnðL=L0Þ, while Fig. 11B
presents the strain in segment B at necking, �B ¼ lnðLB=L0

BÞ. Because the strain in segment A is always larger
than that in B, �̄ is always larger than �B. Nevertheless, the difference in these two strains is not large at necking
and either can be used to display trends of interest here. The main trend evident in Fig. 11 is the substantial
necking retardation due to both inertial effects, as measured by _lh0

B=
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
, and material rate-dependence as

measured by _�Rh0
B=

ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
. When these two dimensionless parameters are of comparable magnitude, each

makes comparable contributions to neck retardation as will be discussed further in the next section.
The role of the strain-rate hardening exponent, m, in the power-law relation (1) in combination with

dynamic stretching is presented in Fig. 12. In the power-law relation, the strain-rate amplifies the stress over
the entire strain-rate range, while for the overstress relation the stress is only amplified in the range of high
strain-rates. This accounts for the fact that significant neck retardation is observed over the entire range
of _lh0

B=
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
for the power law material, as would be expected from Fig. 3 where inertial effects are absent.

Fig. 12 also illustrates that both material rate-dependence and inertial effects combine to significantly increase
the strain prior to necking.

Han and Tvergaard (1995) have noted that imperfections play an essential role in dynamic instability
problems such as necking and have computed results displaying the effect of imperfection amplitude on
necking. These authors have also studied the effect of imperfection amplitude and shape on neck development
in dynamically expanding circular rings. As emphasized in the Introduction, a flat plate with neither geometric
nor material imperfections will not exhibit necking deformations under dynamic stretching. Moreover, the
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early growth of undulations is linearly proportional to the amplitude of the initial imperfection. Fig. 13
displays the dependence of the overall necking strain from the two-state model on the dynamic stretch rate
parameter for different levels of geometric imperfection, Z0, for the overstress relation. The relation between
neck retardation and the imperfection amplitude is not linear, but the necking strain becomes unbounded as
the imperfection amplitude goes to zero.
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3. Computational model for assessing necking under dynamic stretching

3.1. Computational model and procedures

Dynamic stretching of an infinite plate under plane strain constraint, _�R !1, is considered with the
undeformed geometry shown in Fig. 14. Initial and boundary conditions are imposed on the unit periodic cell
in Fig. 14 consistent with a constant stretching rate. The reference configuration is an infinite imperfection-free
plate of initial thickness h0. The imperfect plate has an initial sinusoidal geometric imperfection with initial
wavelength, L0, and amplitude, Z0, as depicted in Fig. 14,

h ¼ h0 1�
1

2
Z0 cos

2pX 1

L0

� �
. (10)

Cartesian coordinates ðX 1;X 2Þ mark the location of a material point in the undeformed state, while the location
of the same material point in the deformed state is ðx1;x2Þ. With reference to Fig. 14, attention will be restricted to
solutions that are periodic in the X 1-direction with period lL0 in the current state, where l is the overall imposed
stretch. The solution is also required to be symmetric with respect to the center-line X 2 ¼ x2 ¼ 0 and about the
mid-point of the periodic unit at X 1 ¼ 0. Thus, invoking a Lagrangian description referred to the undeformed
state, only the upper-right quarter of the section for X 1X0 and X 2X0 in Fig. 14 needs to be considered. The
tractions on the top of this cell are taken to be zero, while the bottom of the cell has zero displacement in the
X 2-direction and zero shear traction. The left end of the section at X 1 ¼ 0 has zero horizontal displacement and
zero shear traction. The right end at X 1 ¼ L0=2 also has zero shear traction, and it is moved horizontally with
constant velocity V 0=2 such that the length of the periodic unit at any time, t, is L ¼ L0 þ V 0t. With l ¼ L=L0 as
the overall stretch, the overall stretch-rate, _l ¼ V0=L0, is prescribed to be constant, but the rate of the overall
logarithmic strain, �̄ ¼ lnðlÞ, diminishes in time as _̄� ¼ _l=l. Initial conditions will be described below.

Shenoy and Freund (1999) showed that if one neglects compressibility and if the plate is uniform, the plane
strain solution for uniform stretching (_l ¼ V0=L0, €l ¼ 0),

x1 ¼ lX 1; x2 ¼ l�1X 2, (11)

is an exact solution to the dynamic field equations. The velocity and acceleration components are

v1 ¼ _lX 1 ¼ ð
_l=lÞx1; v2 ¼ �l

�2 _lX 2 ¼ �ð
_l=lÞx2;

a1 ¼
€lX 1 ¼ 0; a2 ¼ 2l�3 _l

2
X 2 ¼ 2l�2 _l

2
x2:

(12)

The stress component, s22, is determined directly from equilibrium as

s22ðx2Þ ¼ rð_l=lÞ2ðx2
2 � ðh=2Þ

2
Þ (13)
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where r is the density and h is the current thickness of the plate. The other nonzero stress components, s11 and
s33, are independent of x1 and can be determined with the aid of the constitutive relation. This fundamental
solution for the imperfection-free plate has stresses and strains with no dependence on x1.

The fundamental solution is used to impose initial conditions on the dynamic problem. Specifically, at the
start, at t ¼ 0, the displacements are zero and the velocities are given by (12) with l ¼ 1. These initial
conditions are not exact for the problem posed in this paper for two reasons, but the errors are small. (i) The
constitutive model introduced below has elastic compressibility. (ii) The solution (12) applies strictly only to
the perfect plate whereas, in the solved problems, a small initial imperfection is always present. It should be
noted that it is essential to identify the correct initial conditions in modeling behavior consistent with a long
plate under uniform stretching. For example, if the right end of the unit at A is abruptly moved at t ¼ 0 with
velocity V 0 while the remainder of the plate is initially at rest, a wave is initiated that propagates from A to B

(Needleman, 1991). For sufficiently intense waves, the plastic wave itself can serve as the trigger for inducing a
neck.

The problem is posed within a finite strain framework accounting for large geometry changes. The stresses
and strains used below are true stresses and logarithmic strains. The constitutive behavior of the material
metal is elastic/visco-plastic. The elasticity is isotropic with modulus E and Poisson’s ratio n and the material
density is r. Uniaxial tensile behavior is characterized by the over-stress relation augmented by an initial
elastic response

s ¼ E�; �p�Y � sY=E,

s ¼ sY

�

�Y

� �N

½1þ ð_�p=_�RÞ
p
� ¼ sR�

N ½1þ ð_�p=_�RÞ
p
�; �4�Y ð14Þ

where s is the true stress, _�p is the logarithmic effective plastic strain-rate defined as _�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_�pij _�

p
ij=3

q
,

sR ¼ sY ��N
Y , N is the strain hardening exponent, and the two constants specifying the material rate sensitivity

are _�R and p The standard Mises flow law is assumed: _�pij ¼ 3_�psij=2se where sij is the stress deviator and
se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
.

The computational problem defined above was solved using the finite element method as available
in ABAQUS Explicit (2004). Four-node bilinear plane strain elements with reduced integration
are used. For all cases, near-square elements (elements are distorted slightly due to the imposed initial
imperfection) with approximate size H0=40 are uniformly distributed over the unit computational
cell, corresponding to 20 elements uniformly distributed through the half-thickness of the plate.
Computational convergence was established with this meshing scheme by employing a series of similar
meshes of various refinements. As described above, a constant, uniform horizontal velocity V 0=2 is applied to
the right end of the unit cell, and the initial velocity condition from (12) is imposed along with zero
displacements at t ¼ 0.

3.2. The effect of material and inertial effects on neck retardation

Features of neck evolution are illustrated in Fig. 15 for five imperfection wavelengths with the same
imperfection amplitude, Z0 ¼ 0:04, and subject to the same overall stretch rate, _lh0

� ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
¼ 0:09. The rate-

independent limit (_�R !1) of the over-stress relation (14) is used. Fig. 15B displays evolution of the average
strain at the minimum section of the neck, �̄A ffi lnðh0

A=hAÞ, as a function of the overall strain, �̄ ¼ lnðlÞ, while
Fig. 15A presents the corresponding strain evolution at the section of maximum thickness at B, i.e. �̄B ffi

lnðh0
B=hBÞ vs. �̄. Fig. 15C shows the deformed shape at �̄ ¼ 0:37 for each of the five imperfection wavelengths.

Localization sets in at the overall strain when the strain at the thickest section ceases to increase. Beyond this
point straining is localized with essentially all deformation occurring within the neck region. In the results
which follow, the overall strain at necking, �̄NECK, is defined to be the overall strain at the point where the
maximum strain in the thickest section is attained, as indicated by the dashed vertical lines in Fig. 15A. Note
from Fig. 15 that the neck at A is in the early stage of development with this definition, and �̄A is not much
larger than �̄B and �̄NECK.
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Fig. 15. (A) Average strain through the thickness at the thickest section (B) as a function of reference overall strain. (B) Average strain

through the thickness at the thinnest section (A) as a function of reference overall strain. (C) Deformed configuration of plates, in each

case at an overall strain, �̄ ¼ 0:37. The plates are subjected to dynamic stretching with _lh0
. ffiffiffiffiffiffiffiffiffiffiffi

sR=r
p

¼ 0:09. Five imperfection wavelength

ratios are considered: L0/h0 ¼ 1, 2, 3, 4, and 5 respectively. The imperfection amplitude is Z0 ¼ 0:04 for all cases. The material has a

hardening exponent of N ¼ 0:1 and sR=E ¼ 0:002. Material strain-rate dependence is not incorporated. For a steel plate ðr ¼ 8000kg=m3
Þ

with initial thickness, h0 ¼ 0:02m, and sR ¼ 400MPa, the overall stretch rate is _l ¼ 1000 s�1.
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The effect of the normalized imperfection wavelength, L0=h0, is apparent. Relatively little neck development
occurs over the range of overall strain plotted in Fig. 15 for either the very short wavelength ðL0=h0

¼ 1Þ or the
longest wavelength (L0=h0

¼ 5), while significant neck development occurs for imperfection wavelengths in the
range 2pL0=h0p4 with the most advanced neck associated with L0=h0

� 3 in this example. The necking
strains, �̄NECK, are presented in Fig. 16 as a function of normalized imperfection wavelength for various
overall stretch rates. These results have also been computed assuming no material rate-dependence.

For the lowest two overall stretch rates, which are effectively only just above quasi-static, long wavelength
imperfections are the most deleterious but there is little dependence on wavelength if L0=h0

X3. Over the range
of overall stretch rates plotted in Fig. 16, the minimum necking strain is very close to that associated with the
wavelength, L0=h0

¼ 3. Fig. 17 presents the minimum necking strain, �̄NECK, as a function of the dimensionless
stretch rate for the wavelength L0=h0

¼ 3 for three values of the strain hardening exponent, computed with
imperfection amplitude Z0 ¼ 0:04. Unlike the early growth rate of the undulation in Fig. 7 which is essentially
independent of N, the finite amplitude analysis of necking indicates a strong dependence on N similar to what
one would expect from the Considère result, �̄NECK ¼ N, for quasi-static straining of rate-independent power-
law materials with no imperfections. The reduction of the necking strain below �̄NECK ¼ N at low values of
overall stretch rate when quasi-static behavior is approached is due to the initial imperfection. The necking
strain is virtually independent of the elastic modulus. Results for N ¼ 0:1 in Fig. 17 were computed for three
values of sR=E with essentially identical results as evident in that figure.

The interplay between material rate-dependence and inertia in the phenomenon of neck retardation is
brought out in Fig. 18 where the necking strain has been computed over a range of imperfection wavelengths
for material properties representative of 304 stainless steel. Three sets of calculations have been performed:
(1) with material rate-dependence but no inertia, (2) with inertia but no material rate-dependence (_�R !1),
and (3) with both inertia and material rate-dependence. This example illustrates that both inertia and strain-
rate hardening contribute in a significant way to neck retardation in a manner that is not additive. Material
rate-dependence has little influence on the critical wavelength associated with the minimum necking strain—
which appears to be determined primarily by inertia—but it can significantly increase the necking strain.

The curves in Fig. 19 display the role of material rate-dependence in combination with inertia on neck
retardation for material behavior characterized by the overstress relation (14). The plot gives the near-
minimum necking strain (associated with L0=h0

¼ 3) as a function of the dimensionless stretch-rate,
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_lh0=
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
, for several values of the dimensionless material rate parameter, _�Rh0=

ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
, including the rate-

independent with _�R !1. At low stretch rates it is again seen that material rate effects are small due to the
character of the overstress relation, as discussed earlier. However, at higher stretch rates, when _l becomes
comparable with _�R, material rate effects contribute significantly to neck retardation. As previously
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emphasized, the minimum of the necking strain with respect to the normalized imperfection wavelength,
L0=h0, is very shallow implying a wide range of wavelengths are likely to be observed.

4. Conclusions

Necking behavior under dynamic stretching is highly nonlinear and is influenced by material behavior and
inertial effects in a complex manner. This paper has attempted to unravel this interdependence with particular
emphasis on neck retardation. In doing so, use has been made of a combination of results, some based on
perturbation methods, which are valid in the very early stages of neck growth, and others based on a simple
nonlinear one-dimensional, two-state model. The two-state model captures most of the parametric
dependencies except for the dependence of the necking strain on imperfection wavelength. It has been
supplemented by extensive finite element calculations of periodic neck development in plates having initial
sinusoidal imperfections. A brief summary of the main findings follow.

(i) The essential dimensionless stretch-rate characterizing the role of inertia on necking is _lh0=
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
.

Multiple necks become a dominant feature when _lh0=
ffiffiffiffiffiffiffiffiffiffiffi
sR=r

p
�0:01 and significant neck retardation due

to inertia occurs for larger values of this parameter.
(ii) The wavelength of the initial imperfection in the undeformed state that leads to the lowest necking strain

was found to be L0=h0
ffi 3 over the parameter range explored in the finite element calculations. However,

there is a broad range of initial wavelengths that give nearly the same necking strain suggesting a strong
competition for dominance when the imperfection is not purely sinusoidal in shape. When inertia is not
important, long wavelength initial imperfections are the most critical and the necking strain is
nearly independent of the normalized imperfection wavelength if L0=h0

X3. The Shenoy–Freund
perturbation analysis of undulation growth discussed in Section 2.2 predicts the necks that grow the
fastest in early stages will have somewhat larger values of L=h than L0=h0

ffi 3. In part, this difference can
be accounted for by noting that L=h in the Shenoy–Freund analysis represents the dimensionless
wavelength in the deformed state when the overall strain is at the onset of neck growth whereas L0=h0 is
defined in terms of quantities in undeformed state. Thus, for example, L=h ¼ 1:49 L0=h0 when �̄ ¼ 0:2,
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and L=h ¼ 1:82 L0=h0when �̄ ¼ 0:3. It is also likely that necking growth rates change as the necks develop
and behavior becomes highly nonlinear.

(iii) Imperfections must be invoked to analyze necking of an otherwise perfect specimen whenever either
material rate effects or inertia are important. Bifurcation from a solution for a perfect configuration does
not occur, unlike the situation for quasi-static straining of rate-independent materials. Moreover, the
imperfection amplitude can have a significant influence on the necking strain, as illustrated by the two-
state results in Fig. 13. The dependence on the amplitude of the imperfection has been calculated using the
finite element method for the case of sinusoidal imperfection shapes and found to be comparable to those
in Fig. 13. In the present study, the material is assumed to have unlimited ductility. Damage in the form of
void growth and coalescence has been taken into account in studies of necking and fragmentation in
dynamic ring expansion by several authors, including Pandolfi et al. (1999), Sorensen and Freund (2000)
and Becker (2002). Since inertia and material rate-dependence increase the necking strain, it is likely that
material damage will emerge at high rates of stretch possibly even before significant necks develop. It
should be noted, however, that material rate-dependence and inertia will still contribute beneficially to
neck retardation even if damage is occurring. Needleman (1991) observed that stress triaxiality is reduced
in a neck forming dynamically relative to that under quasi-static conditions, and this is beneficial when the
damage mechanism is void growth.

(iv) The interplay between material rate-dependence and inertia in neck retardation is complex and dependent
on the precise form of the constitutive model. It was noted (cf. Fig. 12) that a power-law dependence on
the strain-rate (1) leads to neck retardation over the entire range of stretch-rates, including the quasi-static
limit. By contrast, rate effects in the overstress constitutive relation (14) only come into play at higher
strain-rates and have no influence on the quasi-static limit. It is important that material strain-rate
hardening be correctly characterized. For the overstress relation (14), the parameter map in Fig. 20 shows
the regimes dominated by either material rate-dependence or inertia, and it also reveals the regime in
which both should be taken into account.
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Appendix A. Growth rate of small undulations under dynamic stretching

Here the equation governing the growth of small undulations under dynamic plane strain stretching as given
by Shenoy and Freund (1999) is translated into a form appropriate to sinusoidal undulations on an infinitely
long plate. The reader is referred to the Shenoy-Freund paper for full details not covered here. The analysis
assumes a constant overall stretch rate, _l. The notation and dimensionless variables introduced in Section 1.1
are employed. Coordinates ðx1; x2Þ are aligned with and perpendicular to, respectively, the mid-plane of the
plate. The perturbation in the velocity component in the x2-direction relevant to the range of parameters
presented in this paper has the form

v2 ¼ sin
2px1

L

� �
A< sin

px2

h

� 	h i
þ BI sin

px2

h

� 	h in o
fCet=t� þDe�t=t� g, (A.1)

where <ð Þ and Ið Þ denote real and imaginary parts, A; B; C;D are real constants, and p is any root of
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Shenoy and Freund identified four regimes, depending on the complex character of the roots p of (A.2).
Over the range of parameters presented in this paper, p is a complex number with nonzero real and imaginary
parts such that (A.1) is the relevant representation. For the infinite plate, _lh=

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
, emerges as the

dimensionless stretch-rate as evident in (A.2). We have followed Shenoy and Freund by taking _lt� as the
dimensionless time scale characterizing the undulation growth rate. However, by (A.2), it can be noted that an
alternative choice for the second parameter could be t�

ffiffiffiffiffiffiffiffiffiffi
Et=r

p
=h. The homogeneous boundary conditions are
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Solutions require the determinant of this system to vanish.
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