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a b s t r a c t

Steady state crack propagation produce substantial plastic strain gradients near the tip,
which are accompanied by a high density of geometrically necessary dislocations and addi-
tional local strain hardening. Here, the objective is to study these gradient effects on Mode I
toughness of a homogeneous rate-sensitive metal, using a higher order plasticity theory.
Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study
of a conventional material (no gradient effects) has indicated a significant influence of both
strain rate hardening and crack tip velocity. Moreover, a characteristic velocity, at which
the toughness becomes independent of the rate-sensitivity, has been observed. It is the
aim to bring forward a similar characteristic velocity for the current strain gradient
visco-plastic model, as-well as to signify its use in future visco-plastic material modeling.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The fracture toughness of elastic–plastic materials is primarily governed by plastic dissipation that decomposes into irre-
coverable heat energy and cold work associated with the dislocation structure [1–9], which in turn is responsible for the phe-
nomenon of stable crack growth [1,10,11]. At steady state crack advance, under small-scale yielding, the remote elastic
region follows the classical solution with a

ffiffiffi
r
p

-singularity in the stress field, while an active plastic zone travels with the
crack tip and shields it from the surrounding elastic stress–strain fields. Trailing behind, is a residual plastic strain wake
where elastic unloading takes place, and where a secondary loading zone exists in terms of reverse plastic deformation so
that the material remains in yielding close to the free fracture surface. The size and shape of these plastic regions, and thus
the macroscopic material toughness, are controlled by a wide range of parameters, characterizing material properties and
loading conditions. This has been extensively studied in the literature using both steady state [1,2,4,5,11,12], and Lagrangian
[6–8,13] model formulations. It is well known that properties such as the strain hardening, and thereby the evolution of the
local flow stress, significantly influences on the dissipated energy, thus on the energy needed to advance the crack in the
presence of plasticity. Any hardening effect, such as additional hardening owing to strain gradients should therefore be ex-
pected to play a noticeable role on the macroscopic fracture toughness.

To model experimentally observed gradient effects [14–17], a range of so-called higher order theories have been devel-
oped, counting both phenomenological [18–22], and micro-mechanics based [23–26] models. Moreover, a great deal of effort
has gone into applying the various models to interface cracking under stationary conditions [5,27–31]. Using the modeling
procedure by [1], developed for steady state structural analysis, Wei and Hutchinson [27] analyzed Mode I crack growth in
homogeneous rate-independent metals with focus on gradient effects. Special attention was given to the tractions acting on
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the plane ahead of the crack tip (see also [28]), the crack opening displacement, the shape of the active plastic zone, and the
associated change in the macroscopic fracture toughness, based on a cohesive zone modeling approach for the near tip frac-
ture process. Their work was later continued in [5] for interface failure, where the model by Suo et al. [3] (SSV-model) is
reviewed and unified with a cohesive zone model. While the above studies are carried out using the phenomenological gra-
dient enhanced J2-flow theory by Fleck and Hutchinson [18], similar studies for rate-independent mechanism-based strain
gradient (MSG) theories can be found in the literature. Jiang et al. [29], conducted an analysis of the stress field surrounding
the crack tip, in order to provide a means to explain cleavage cracking in metals. Wei et al. [31], compared their steady state
Mode I crack analysis, using an MSG theory by Qiu et al. [26], to predictions in [27]. Similar trends were obtained using MSG
theory, but with a length parameter 4–5 times the corresponding quantity in the Fleck-Hutchinson theory.

The objective of this study is to analyze steady state Mode I fracture in elastic-viscoplastic strain gradient enhanced
metallic materials, and thereby to bring out the combined effects of rate-sensitivity and strain gradient hardening on the
macroscopic fracture toughness. The viscous behavior of metals undergoing deformation, e.g. at elevated temperatures, is
known to be an important factor concerning plastic dissipation, and the assumption of a rate-independent response is typ-
ically not easily justified. In a recent study, Nielsen and Niordson [9], demonstrated this, using a conventional elastic-visco-
plastic material model without gradient effects. When compared to the rate-independent toughness, a significant increase in
fracture toughness exists for slowly growing cracks, while a decrease was found for fast growing cracks. Moreover, this study
revealed a characteristic velocity at which the fracture toughness becomes independent of the material strain rate harden-
ing, and thus equal to the rate-independent toughness. This was argued based on the time aspect of the stress build-up/
relaxation in the vicinity of the crack tip, but unfortunately no physical interpretation can be made of this velocity. Further-
more, the predicted characteristic velocity is yet to be identified in experiments. The finding of this characteristic velocity
fertilizes multiple questions regarding future modeling of viscoplastic materials. E.g. does a similar characteristic velocity exist
for other and more advanced constitutive models? Does the characteristic velocity allow for extracting information on the rate-
independent toughness which can be difficult to assess directly? In the present study, we consider a gradient enhanced material
model by Gudmundson [20] , (see also [21,32]), which is based on a similar visco-plastic framework as the conventional
model used in [9]. However, the current model formulation differs substantially from the conventional model, but

Nomenclature

_a crack tip velocity
D SSV parameter
E, G, m Young’s modulus, Shear modulus and Poisson ratio, respectively
Ep; _Ep effective plastic strain and plastic strain rate, respectively
fij(h) dimensionless mode functions
Jtip, Jss energy release rate at crack tip and at steady state, respectively
KI stress intensity factor
LD, LE dissipative and energetic length parameter, respectively
sijk total higher order stress tensor

sD
ijks

E
ijk dissipative and energetic part of the higher order stress tensor, respectively

Mij higher order tractions
N, m strain hardening and strain rate hardening, respectively
qij micro-stress tensor

qD
ij ; qE

ij dissipative and energetic part of micro-stress tensor, respectively
r radial distance from crack tip
R0, Rss reference plastic zone size and steady state plastic zone size, respectively
sij Cauchy stress deviator
Ti conventional traction vector
ui displacement field
xk Cartesian coordinates
Lijkl isotropic elastic stiffness tensor
rij Cauchy stress tensor.
ry, re initial yield stress and von Mises stress, respectively
rc gradient enhanced effective stress
_e0 reference strain rate
eij; ee

ij; ep
ij total strain, elastic strain and plastic strain tensor, respectively

ep
ij;k; _ep

ij;k gradient of plastic strain and plastic strain rate, respectively

h relaxation parameter
W free energy
Ctip fracture energy release at the crack tip
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approaches its response in case of small strain gradients, or equivalently by letting the length parameter go to zero. More-
over, equivalent to the conventional model, the gradient enhanced model is rather cumbersome in terms of stability, when
approaching the rate-independent limit for which the theory is incomplete at present. This model is therefore ideally used to
shed light on the questions raised above.

The paper is structured as follows. The classical boundary value problem of a semi-infinite crack, advancing at steady
state under Mode I loading is briefly summarized in Section 2, while the material model formulation and numerical proce-
dure are presented in Section 3. Attention is given to the steady state procedure, which has been adapted for integration of
the current gradient enhanced elastic-viscoplastic material model. The results of the analysis are laid out in Section 4, where
the combined effect of material rate-sensitivity and strain gradient hardening are illustrated. Moreover, Section 4 presents a
method that allows for extracting the rate-independent toughness without approaching this limit numerically. Some con-
cluding remarks are given in Section 5.

2. Problem formulation

Fig. 1 illustrates the Mode I crack growth problem considered in the present study. The crack is assumed to grow under
stationary conditions, with constant velocity, _a, so that the near tip stress and strain fields are fully developed. To link the
macroscopic and the microscopic scales, and thereby to model the shielding ratio, Jss/Jtip, a variation of the SSV-model by Suo
et al. [3] is adopted in this study (see Section 3). Plane strain conditions and small scale yielding are assumed, while the effect
of material inertia is neglected. Remote Mode I loading is applied on the outer boundary according to the elastic solution of a
semi-infinite interface crack [33], whereby the remote stress field is given in terms of the remote KI stress intensity factor

rij ¼
KIffiffiffiffiffiffiffiffiffi
2pr
p fijðhÞ: ð1Þ

Here, h is the angle from the positive x1-direction, r is the distance from the crack tip and fij(h) are the dimensionless mode
functions. By defining the length quantity, R0, as the reference plastic zone size

R0 ¼
1

3p
KI

ry

� �2

; and KI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECtip

1� m2

r
: ð2Þ

Fig. 1. Stationary Mode I crack growth in rate-sensitive materials, subject to a remote elastic KI-field. Employing the SSV model, an elastic material strip of
total width ‘‘D’’ is introduced around the crack, and the elastic material properties (E and m) are kept constant throughout the material. Symmetry is
enforced in the displacement field along x1 P 0 at x2 = 0, while a discussion on the higher order boundary conditions can be found in Section 3.3.

Table 1
Mechanical properties.

Parameter Significance Value

E Youngs modulus 200 GPa
m Poisson’s ratio 0.3
ry Initial yield stress 200–600 MPa
N Strain hardening exponent 0.1–0.5
m Strain rate hardening exponent 0.01–0.1
_e0 Reference strain rate 0.002 s�1

Ctip Near tip fracture energy 1 J/m2

LD/R0 Dissipative length parameter 0–0.8
LE/R0 Energetic length parameter 0
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the fracture energy release rate at the crack tip, Ctip, enters as a near tip fracture criterion through the linear elastic fracture
criterion (Jtip = Ctip), which applies in the elastic strip introduced by Suo et al. [3] (see Section 3). Here, Ctip denotes the
microscopic fracture energy, while E is Young’s modulus, m is Poisson ratio and ry is the initial yield stress (see Table 1).
The macroscopic toughness at steady state, Jss, is in the following related to the corresponding Kss-field, prescribed to the
outer boundary, through an expression similar to Eq. (2).

3. Model: constitutive relation and numerical procedure

3.1. Rate-sensitive constitutive model

The crack growth problem is analyzed using a gradient enhanced elastic-viscoplastic material model proposed by
[20,21,32]. Employing a small strain formulation, an additive decomposition of the total strain is applied, so that
eij ¼ ee

ij þ ep
ij, where ee

ij is the elastic part and ep
ij is the plastic part. The total strain field is determined from the displacements,

which together with the plastic strain components are determined based on the principle of virtual work for the current
higher order material. In Cartesian components, this writesZ

V
rijdeij þ ðqij � sijÞdep

ij þ sijkdep
ij;k

� �
dV ¼

Z
S

Tidui þMijdep
ij

� �
dS: ð3Þ

Here, qij is the micro-stress tensor, sij = rij � dijrkk/3 is the Cauchy stress deviator and sijk is the higher order stresses, work
conjugate to the plastic strain gradients, ep

ij;k. Here, ( ),k denotes the partial derivative with respect to the coordinate xk. The
right hand side of the principle of virtual work includes the conventional traction vector Ti = rijnj, work conjugate to the dis-
placements, and the higher order tractions Mij = sijknk, work conjugate to the plastic strains.

Usually, plastic deformation is mainly considered to be a dissipative process that covers irrecoverable heat energy and
cold work, whereby no free energy is associated with the plastic strain itself. At large length scales, corresponding to the
conventional limit (small strain gradients), all energy associated with plastic deformation should therefore be dissipated.
However, when large plastic strain gradients appear, geometrically necessary dislocations (GNDs) are stored [34], which
gives rise to free energy associated with the local stress field of the GNDs [24,35], as-well as increased dissipation when
the GNDs move in the lattice. These mechanisms were originally incorporated into this higher order material model by
assuming the micro-stress to have a dissipative part, qij ¼ qD

ij , only, while the higher order stresses decompose into a dissi-
pative part, sD

ijk, and an energetic part, sE
ijk, so that: sijk ¼ sD

ijk þ sE
ijk. Thus, the free energy can be introduced according to the

isotropic expression

W ¼ 1
2

eij � ep
ij

� �
Lijklðekl � ep

klÞ þ
1
2

GðLEÞ2ep
ij;ke

p
ij;k ð4Þ

whereby the conventional stresses is given through the elastic relationship: rij ¼ Lijkl ekl � ep
kl

� �
, while the energetic higher

order stresses are: sE
ijkl ¼ GðLEÞ2ep

ij;k. Here, Lijkl is the isotropic elastic stiffness tensor, G is the elastic shear modulus and LE

is the isotropic energetic constitutive length parameter. In this study, the energetic length parameter is taken to be zero
throughout.

The corresponding dissipative quantities are derived from a visco-plastic potential, consistent with [20] and [32], where
the effective stress, rc = rc(Ėp,Ep), is taken to depend both on the accumulated effective plastic strain, Ep, and the current gra-
dient enhanced effective strain rate

_Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij
_ep

ij þ ðLDÞ2 _ep
ij;k

_ep
ij;k

r
: ð5Þ

Here, LD is the dissipative length parameter, and _ep
ij;k are the rates of the plastic strain gradients. The length parameter LD is

included for dimensional consistency. It scales the dissipation contribution from geometrically necessary dislocations to that
arising from plastic deformation in the absence of plastic strain gradients. Following [20], the dissipative stresses are given by

qD
ij ¼

2
3

rC ½ _Ep; Ep�
_Ep

_ep
ij; and sD

ijk ¼
rC ½ _Ep; Ep�

_Ep
ðLDÞ2 _ep

ij;k ð6Þ

while the associated effective stress measure is

rC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

qD
ij q

D
ij þ ðLDÞ�2sD

ijksD
ijk

r
ð7Þ

A power-law relation for the visco-plastic behavior is assumed, so that

_Ep ¼ _e0
rC

gðEpÞ

� �1=m

; with gðEpÞ ¼ ry 1þ EEp

ry

� �N

ð8Þ

where N is the power hardening exponent, m is the strain rate hardening exponent and _e0 is the reference strain rate. In this
model, the visco-plastic behavior becomes significant for high values of the strain rate hardening exponent, m, while the cur-
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rent constitutive material model approaches the response of a J2-flow material model in the rate-independent limit (m ? 0).
Moreover, the response of the gradient enhanced model reduces to the prediction of its corresponding conventional version
for zero length scales (LE = LD = 0).

3.2. Steady state formulation and numerical procedure

In this study, a steady state finite element (FE) formulation is chosen over a classical transient FE model since it directly
brings out the crack tip field under stationary conditions, which is the aim for this analysis. Thus, the convergence of any
transient behavior is avoided, which in turn makes the steady state formulation much faster in terms of calculation time.
Dean and Hutchinson [1], define steady state as the condition at which the stress field and strain field surrounding the
advancing crack tip remains unchanged to an observer moving with the tip. Thus, any time derived quantity, _f , in the con-
stitutive model can be related to the spatial derivative through the crack velocity, _a, along the x1-direction, according to

_f ¼ � _a
@f
@x1

: ð9Þ

An incremental quantity, in a given material point x�1; x
�
2

� �
, can then be evaluated by a streamline integration along the neg-

ative x1-direction, which starts well in front of the active plastic zone (upstream, x1 ¼ x0 � 0; x2 ¼ x�2) and ends at the point
of interest x1 ¼ x�1; x2 ¼ x�2

� �
. This spatial streamline integration is carried out using a standard forward Euler time integra-

tion, with the point of interest holding the history of all upstream material points.
For the adopted model formulation, the conventional principle of virtual work for quasi-static problems can be use to

determine the displacement field, ui,Z
V

deijLijklekldV ¼
Z

S
duiTidSþ

Z
V

deijLijklep
kldV ð10Þ

whereas a corresponding Minimum Principle can be formulated for the plastic strain rate field [32],Z
V

qD
ij d _ep

ij þ sD
ijkd _ep

ij;k

� �
dV ¼

Z
V

sijd _ep
ij � sE

ijkd _ep
ij;k

� �
dV þ

Z
S

Mijd _ep
ijdS: ð11Þ

The displacement field, and the related plastic strain rate field thereby decouple partially, whereby a solution can be iterated
upon in a ‘‘staggered’’ approach, with one solution limping behind the other.

The numerical implementation of the current visco-plastic strain gradient enhanced model follows that of [36]. Thus,
based on the Minimum Principles in Eqs. (10) and (11), a standard finite element interpolation of the form

_ui ¼
X8

n¼1

NðnÞ _uðnÞi and _ep
ij ¼

X4

n¼1

NðnÞ _eðnÞij ð12Þ

can be introduced for the displacement increments and the plastic strain rate field, respectively. Here, 8-node isoparametric
plane strain elements are used for the discretization of the displacement field, and corresponding 4-node elements are used
for the plastic strain rate field. Both element types are integrated using Gauss quadrature, with 2 � 2 Gauss points. The nodal
solution is iterated upon following a steady state integration procedure similar to that of [1,9,12,27]. Here, the corresponding
gradients to the nodal fields are readily derived in line with the standard displacement-to-strain matrix based on Eq. (12).
The basis of this numerical procedure is summarized below.

(1) Based on the plastic strains from the earlier iteration, epðn�1Þ
ij , the current displacement field, uðnÞi , is determined from

Eq. (10).
(2) Compute the total strain, eðnÞij , from the current displacement field, uðnÞi .
(3) Determine the plastic strain rate field, _epðnÞ

ij , iteratively:
do m = 1, . . .

(A) Determine _epðmÞ
ij from Eq. (11), based on _ep�ðm�1Þ

ij and evaluate

_ep�ðmÞ
ij ¼ ð1� hÞ _ep�ðm�1Þ

ij þ h _epðmÞ
ij ð13Þ

with h being a relaxation parameter introduced to enhance stability.
(B) Update _epðmÞ

ij;k ; _EpðmÞ; qDðmÞ
ij and sDðmÞ

ijk , based on _ep�ðmÞ
ij .

(C) Perform streamline integration (epðmÞ
ij ¼ 0 outside steady-state region)

epðmÞ
ij ¼

Z x�

x0

@epðmÞ
ij

@x1
dx1; with

@epðmÞ
ij

@x1
¼ �1

_a
_ep�ðmÞ

ij ð14Þ

epðmÞ
ij;k ¼

Z x�

x0

@epðmÞ
ij;k

@x1
dx1; with

@epðmÞ
ij;k

@x1
¼ �1

_a
_ep�ðmÞ

ij;k ð15Þ

EpðmÞ ¼
Z x�

x0

EpðmÞ

@x1
dx1; with

EpðmÞ

@x1
¼ �1

_a
_EpðmÞ ð16Þ
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(D) Compute the current stress field, rðmÞij , using the elastic relationship.
(E) Repeat steps A through D until convergence in _ep�ðmÞ

ij is achieved.
end do

(4) Repeat steps 1–3 until convergence is achieved. Convergence in both the displacement field and the stress field is here
considered.

3.3. A variation of the SSV model

Suo et al. [3] put forward the SSV-model as a means of investigating cleavage cracking in the presence of plastic flow.
Their model relies on the basic assumption that an elastic region, on the order of the dislocation spacing, surrounds the crack
tip whereby the dislocations emitted at the tip play a minor role in the fracture process, and are unlikely to blunt the major
portion of the crack front. In the steady state formulation, this implies that the crack lies fully within an elastic region of
width 2D, whereby linear fracture mechanics applies and an elastic singularity exists near the tip (see Fig. 1). Thus, the elastic
energy release rate is easily evaluated using the J-integral, whereby the criterion for crack propagation is: Jtip = Ctip, with Ctip

being the work of separation which must be supplied by the local elastic crack tip field for crack advance to occur (see e.g. [5]
for further details). For the case of plastic flow in regions bordering on the elastic SSV-strip of material, a large amount of the
energy supplied to the far boundary goes into plastic deformation, whereas only parts of it reaches the crack tip. Thus, let Jss

be the steady state energy release rate supplied far from the tip, the ratio Jss/Jtip quantifies the fraction of energy going into
plastic deformation during crack growth.

It is recognized that substantial plastic strain gradients occur near the crack tip, which are accompanied by additional
hardening associated with a high density of geometrically necessary dislocations (GNDs). Thus, in order to accurately esti-
mate the stresses and the plastic dissipation during crack advance, a higher order continuum model is adopted in the present
work. Additional boundary conditions most thereby be enforced, making this variation of the SSV model differ from that
originally proposed by Suo et al. [3].

Using the current model set-up for Mode I cracking, dimensional analysis dictates that the crack tip shielding ratio at
steady state is controlled by [5,37]

Jss

Jtip
¼ F

_a
R0 _e0

;
R0

D
;
LD

R0
;
LE

R0
;
ry

E
;N;m; m

� �
ð17Þ

Moreover, the crack tip shielding ratio, Jss/Jtip, is influenced by the choice of higher order boundary conditions, which by no
means is trivial as the elastic region introduced by Suo et al. [3] is non-conventional. The ‘‘traditional’’ higher order boundary
conditions with zero plastic strain rate at an elastic–plastic interface might therefore not be the obvious choice. Two sets of
boundary conditions are considered: (i) constraint plastic flow at the elastic–plastic interface so that _ep

ij ¼ 0 in the elastic
strip (x2 6 D), and (ii) leaving the higher order tractions zero at the interface so that Mij = 0 at x2 = D (enforced by neglecting
the higher order stiffness in the elastic strip). Fig. 2 compares the predicted crack tip shielding ratio that reflects the mac-
roscopic toughness owing to plasticity, as function of the SSV quantity R0/D for the two sets of higher order boundary con-
ditions. The comparison is made for both a slowly growing crack and a fast growing crack, with LD/R0 = [0,0.2]. The figure
shows that the predicted trends, using the two sets of boundary conditions, are comparable, although it is clear that a con-
straint on the plastic flow at the elastic–plastic interface ( _ep

ij ¼ 0 at jx2j 6 0) lowers the shielding ratio, especially when intro-

Fig. 2. Steady state fracture toughness vs. inverse elastic layer thickness (SSV parameter ‘‘D’’) emphazising the effect of the higher order boundary
conditions. Here, results are shown for N = 0.2, m = 0.05, LD/R0 = [0, 0.2], and _a=ðR0 _e0Þ ¼ ½102;104�.
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ducing the dissipative length scale (LD – 0). This has to do with the boundary layer of low plastic straining forming at the
interface close to the crack tip, where substantial plastic strains and plastic strain gradients would otherwise occur. On
the other hand, leaving the higher order stresses zero at the interface (Mij = 0 at x2 = D) eliminates this boundary layer, which
in turn makes this model prediction comparable to a conventional (local) model when LD ? 0. The second higher order
boundary condtion is therefore adopted in the remaining part of this paper enabling a direct comparison with earlier pub-
lished results by Nielsen and Niordson [9].

Throughout this work, the phrase ‘‘a slowly’’ or ‘‘a fast’’ growing crack refers to the velocity interval investigated as it
spans four orders of magnitude, for which inertia effects can be neglected as the maximum velocity considered is
_a ¼ 104 � R0 _e0, with R0 � 0.1–1 lm for materials failing by atomic separation (see [5]).

4. Results

Using a conventional model formulation, [9] recently showed that the macroscopic toughness of visco-plastic metals in-
creases monotonically with increasing rate-sensitivity at low crack tip velocity, while it decreases monotonically with
increasing rate-sensitivity at high crack tip velocity (independent of the strain hardening). This has to do with the stress
build-up/relaxation, which is to be further elaborated on in the following (see also [9]). In the present work, predictions com-
parable to those of a conventional plasticity model are obtained for the current strain gradient enhanced model (see Fig. 3).
In fact, by omitting the length scale effects (LD = 0), the model predictions closely coincides, with neglegible differences that
are related to convergence issues.

Fig. 3 shows the predicted crack tip shielding ratio as function of the SSV quantity R0/D for a slowly growing crack (in
Fig. 3a) and a fast growing crack (in Fig. 3b) under Mode I loading. To bring out the combined effect of material rate-sensi-
tivity and strain gradient hardening, results are shown for various strain rate hardening values (m = [0.01,0.05,0.1]), and dis-
sipative length parameters (LD = [0,0.2] for all cases, and LD 2 [0,0.8] for selected model settings). From Fig. 3, it is seen that
the macroscopic toughness increases monotonically with increasing rate-sensitivity at low crack tip velocity, while it de-
creases monotonically with increasing rate-sensitivity at high crack tip velocity (see [9] for further discussion). In addition
it is seen that an increase in length parameter, LD, lowers the macroscopic fracture toughness. This is ascribed to additional
hardening effects in the crack tip region, where the material undergoes substantial plastic deformation, which in turn leads
to elevated stresses near the tip that enable satisfying the fracture criterion at much lower macroscopic loads. This hardening
effect is also reflected in the von Mises stress field depicted in Fig. 4a as the variation along the streamline closest to the
elastic strip (x2 � D, thus near the SSV region). By accounting for the strain gradient hardening, the peak reference stress near
the crack tip increases significantly, independently of the crack tip velocity. This becomes even more pronounced for increas-
ing R0/D (decreasing elastic strip width). Compared to the results in [9], these predictions agree well with the trends found
for the overall strain hardening - increased strain hardening lowers the shielding ratio. It should be noticed that at high crack
tip velocity, the material rate-sensitivity and strain gradient hardening act together in order to lower the toughness as both
mechanisms help to elevate the stresses near the tip (see Fig. 4a). On the other hand, the two mechanisms will be competing
at low crack tip velocity. For a slowly growing crack, it has been observed that the level of the peak reference stress close to
the crack tip is little affected by changes in the rate-sensitivity when omitting gradient effects (independent of the ratio R0/
D), whereas the surrounding field relaxes with increasing strain rate hardening. Moreover, for a slowly growing crack with
LD > 0, it is observed that rate-sensitivity slightly lowers the peak reference stress, while a slight elevation of the wake stress
field is observed. Thus, generally speaking; for a slowly growing crack (and m > 0), the material has time to relax the stress
field that surrounds the tip through plastic straining, whereby the material rate-sensitivity serves as to increase the shielding
ratio.

Interestingly, strain gradient hardening is also found to significantly lower the mean stress near the crack tip, and thereby
suppresses the stress triaxiality in the region surrounding the fracture process zone (see Fig. 4b). On the other hand, a much
smaller effect is found on the stress component that drives failure by cleavage or atomic separation (here being r22). In fact,
the peak of the r22-component remains nearly unchanged when altering the dissipative length parameter, independently of
the ratio R0/D.

As discussed in [9], the monotonic increase/decrease of the shielding ratio with rate-sensitivity facilitates a definition of a
characteristic velocity, for which the toughness is independent of the material rate-sensitivity. As noted from Fig. 3, the cur-
rent gradient enhanced model exhibit the same monotonic behavior, independently of the dissipative length parameter, LD.
Thus, it is expected that a similar characteristic velocity exists for the current model. This is confirmed from Fig. 5 showing
the shielding ratio as function of the crack tip velocity, _a=R0 _e0, where a characteristic velocity is easily identified as the com-
mon intersection point for curves with fixed dissipative length parameter.

Comparing Figs. 3 and 5 to the extensive parametric study presented in [9], the limitations of the gradient enhanced mod-
el shine through the choice of material parameters investigated. It is well known that the current visco-plastic model formu-
lation becomes numerically unstable for m ? 0. In fact, choosing m = 0.01 in Figs. 3–5 provides numerical challenges, and
similar numerical difficulties are experienced for this model set-up when considering low strain hardening materials (e.g.
N = 0.1) when the rate-sensitivity is low, especially for LD ? 0. However, these inaccessible regions of the parameter space
can be accessed in terms of the rate-independent response by exploiting the characteristic velocity identified from Fig. 5. As
discussed, this intersection point is independent of the material rate-sensitivity, thus consequently it directly brings out the
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shielding ratio for the rate-independent limit (m = 0 would be a horizontal line in Fig. 5). Moreover, the intersection point has
been shown also to exists for high strain rate hardening at which the model is numerically stable - even for low strain hard-
ening and LD ? 0. Thus, repeated calculations similar to those in Fig. 5, can be used to extract the variation of the rate-inde-
pendent shielding ratio with a parameter of interest. An example is given in Fig. 6 where each point is extracted from the
intersection of two ‘‘toughness vs. velocity’’ curves with m = 0.1 and m = 0.08, respectively. Results are shown for two levels
of strain hardening (N = [0.1,0.5]), and for various values of the dissipative length parameter (LD 2 [0,0.4]). It is seen that the
predicted shielding ratio follows the expected trends when compared to Fig. 3 (and to [9]). In addition, the extracted curves
for LD = 0 in Fig. 6 is directly compared to the predictions of a corresponding conventional model with an m-value that closely
resembles the rate-independent limit (m = 0.001, see Fig. 6). This comparison is made possible from the choice of higher or-
der boundary conditions as discussed in Section 3.3. From Fig. 6, a remarkably good agreement is obtained for the high strain
hardening material (N = 0.5), while a somewhat less impressive, but still rather accurate, prediction is obtain for the low
strain hardening material (N = 0.1). In the case of high strain hardening (N = 0.5) convergence is more easily obtained com-
pared to the case of N = 0.1 (keeping m and LD fixed), which are reflected in the accuracy of the predicted shielding ratio. The

(a)

(b)
Fig. 3. Steady state fracture toughness vs. inverse elastic layer thickness (SSV parameter ‘‘D’’) for a homogeneous material with N = 0.2, m = [0.01,0.05,0.1],
LD/R0 = [0,0.2,0.4,0.8], (a) _a=ðR0 _e0Þ ¼ 102, and (b) _a=ðR0 _e0Þ ¼ 104.
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convergence of the strain gradient dependent model is, however, improved for high values of N, m and LD. Thus, choosing
higher m-values for the intersecting ‘‘toughness vs. velocity’’ curves when considering N = 0.1 could improve both conver-
gence and accuracy.

It should be emphasized that Fig. 6 represents the rate-independent toughness which cannot be predicted directly using
the current strain gradient model formulation, since the rate-independent theory is incomplete at present. Most importantly
issues concerning loading/unloading are yet to be fully resolved (see [36] for further details).

5. Concluding remarks

Mode I toughness of homogeneous strain gradient enhanced visco-plastic metals is studied using a variation of the SSV
model with main focus on rate-sensitivity, strain gradient hardening and the possibility of a characteristic velocity, for which
the toughness becomes independent of the material rate-sensitivity (see [9] for a further discussion). Questions have been
raised whether the characteristic velocity identified in [9] for a conventional model also exists for the current more advanced

Fig. 4. Variation of (a) von Mises reference stress, and (b) stress triaxiality (T = rkk/(3re)) along the streamline closest to the SSV-region (x2 � D). Here,
shown for a fast growing crack ( _a=ðR0 _e0Þ ¼ 104) in a homogeneous material with N = 0.2, m = [0.01,0.05,0.1], LD/R0 = [0,0.2], and R0/D = 3.55.
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constitutive model, and if this phenomenon can be exploited in the modeling process. The present work provides a detailed
treatment of the steady state modeling procedure for the current model set-up, including a discussion of the choice of higher
order boundary conditions. The primary findings for Mode I crack propagation are

	 The additional hardening effect owing to strain gradients, that is accounted for through the dissipative length parameter,
LD, lowers the macroscopic toughness for all crack tip velocities considered (see Figs. 3, 5 and 6). This is ascribed to ele-
vated stresses observed near the tip which enable satisfying the fracture criterion at lower macroscopic loads (see Fig. 4).
	 Moreover, strain gradient hardening significantly lowers the mean stress near the crack tip, and thereby suppresses stress

triaxiality in the region surrounding the fracture process zone (see Fig. 4), whereas a much smaller effect is found on the
stress component that drives failure by cleavage or atomic separation.
	 The shielding ratio, and thus the macroscopic toughness, displays a monotonic increase with increasing rate-sensitivity at

low crack tip velocity, and vice versa at high crack tip velocity (see Fig. 3). This allows for the definition of the character-
istic velocity mentioned above (see Fig. 5), which in fact exists for all model settings since the monotonic behavior is
found to be independent of all other model parameters.

Fig. 5. Steady state fracture toughness vs. crack velocity for a homogeneous material showing the effect of strain gradients for N = 0.2, LD/R0 = [0,0.2], R0/
D = 4, and m = [0.01,0.05,0.1].

Fig. 6. Steady state fracture toughness vs. inverse elastic layer thickness (SSV parameter ‘‘D’’) for a homogeneous material with N = [0.1, 0.5] and LD/
R0 = [0, 0.2,0.4] for m ? 0. Here, determined from two intersecting toughness vs. velocity curves with m = 0.1 and m = 0.08, respectively. The coorsponding
conventional results (m = 0.001) are shown for comparison.
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Despite the lack of physical interpretation of the characteristic velocity, it facilitates a novel approach to model the rate-
independent response of metallic materials, characterized by the current visco-plastic model formulation. This approach can
be summarized in the following three steps: (i) ensure the monotonic behavior emphasized above, (ii) perform two sets of
calculations for different strain rate hardening, m, and plot the parameter of interest (here being the shielding ratio) vs. the
crack tip velocity, (iii) identify the intersection point of the two curves, which directly brings out the rate-independent re-
sponse. An example is given in Fig. 6 for the current steady state model; however, the procedure is believed to apply to a
much wider range of problems.
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