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Abstract—An analysis of a model of the process of cold-driving a rivet is carried out with the primary aim of
identifying the origin and magnitude of the resulting clamping force exerted by the rivet on the lapped sheets.
The development of high hydrostatic pressure in the rivet shank in the first stages of the driving process, and its
subsequent release as the rivet head is squashed, is the key to understanding the origin of the clamping force.
The average clamping stress in the rivet shank is on the order of ¢,/4, where o, is the yield stress of the rivet.
The model is used to explore the role of some riveting variables, including differing yield stresses in the rivet and
sheet materials, strain hardening, and head size. © 1998 Elsevier Science Ltd. All rights reserved
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1. INTRODUCTION

The origin of the clamping force exerted on two sheets by a rivet that is driven hot and cooled is easy
to understand and estimate, based on the thermal contraction of the shank relative to the sheets. By
contrast, the origin of the clamping force in a rivet whose driving temperature is same as the sheets
(i.e. “a cold-driven rivet”) is not at all obvious. It is generally smaller in magnitude than the force in
a hot-driven rivet and less easy to control [1]. The force exerted by the tool used to cold-drive rivets
is known to have a significant effect on the fatigue life of riveted lap joints [2]. There is little doubt
that the clamping force is in some way related to the driving force, and, further, that an increase in
the rivet clamping force is responsible for the increase in fatigue life. Nevertheless, connections
between the driving force and the clamping force have not been established. Indeed, there appears to
be almost nothing in the technical literature on the mechanics of the clamping force of cold-driven
rivets. Nor do there appear to be published efforts to measure clamping forces directly. It will be seen
in this study that the mechanics of the clamping force is fairly subtle, requiring an understanding of
the multi-axial stress history in the rivet during the riveting process. Simple arguments which invoke
uniaxial stressing are unable to explain the origin of the clamping stress. Following the introduction
of the model, an overview of the deformation stages will be given to guide the reader through the
paper with emphasis on those stages in the process that are crucial to understand the origin of the
clamping stress.

2. AMODEL FOR EXPLORING THE ORIGIN OF THE CLAMPING STRESS

The clamping stress is defined as the load exerted by the rivet in clamping two sheets together
divided by the cross-sectional area of the shank at the interface between the sheets. The primary aim
in this paper is to detail the development of the clamping stress in a cold-driven rivet and to obtain
a reasonable approximation of its magnitude. In this spirit, the proposed model leaves out several
features which will have to be taken into account in later work if more refined predictions are
desired. The model does permit trends to be computed for dependence on some geometric para-
meters and on material properties of the rivet and sheet. A selection of such results will be presented
at the end of the paper.

The geometry of the rivet and sheets at the start of the process is defined in Fig. 1, including
a typical mesh in its undeformed state used in the numerical analysis. The same mesh in its deformed
state at the end of the process is included in Fig. 1 to facilitate the discussion. Focus will be on an
individual rivet. Interaction between rivets will be ignored. The geometry is axisymmetric and
symmetric with respect to the plane (z = 0) separating the two sheets. Each sheet has thickness ¢. The
initial radius of the rivet shank is R, and the cylindrical surface of the rivet is assumed to be in
contact with the sheets at the start of the process. The unrealistic two-headed starting shape is
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Fig. 1. (a) Undeformed geometry of the model. (b} Undeformed finite element mesh. (c) Same mesh as in (b) but

in the deformed state with A/é = 1.25. The proportions are correct for the example analyzed in Section 3 and

presented in Figs 3-7. The rivet is driven by imposition of equal and opposite vertical displacements A of rigid,
frictionless platens.

invoked to preserve symmetry about z = 0, which helps to isolate the essential mechanics as well as
to reduce the computational effort required to analyze the model. This geometry also permits
a meaningful small strain analysis of the process. By comparing small strain results with selected
results from a finite strain analysis, it will be shown that finite strain effects are not essential to
understand the origin of the clamping stress. The initial radius and thickness of the cylindrical rivet
head are denoted by Ry, and ty, respectively. The initial gap between the head and the sheet is taken
to be &, such that the entire initial length of the rivet shank is 2(ty + ). Throughout the paper
cylindrical coordinates (r, z) are used. At any stage in the process the average axial stress in the shank
of the rivet at the mid-plane, z = 0, is given by

1 R

G =—:
p)
nR* [,

0, (r, 0)27r dr. (1)

Except for some results showing the effect of strain hardening given at the end of the paper, the
rivet and sheet materials will be taken to be elastic-perfectly-plastic with an isotropic yield surface
specified by the Mises stress invariant. The tensile yield stress of the sheet material is denoted by

oy and that of the rivet material by o§. The materials are assumed to have the same Young’s
modulus, E, and Poisson’s ratio, v.
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The rivet is loaded by imposing vertical driving displacements A of equal magnitude and opposite
sign on the surface of the heads with no shear traction (Fig. 1). The effects of shear traction due to
friction between the riveter and the rivet head will generally be small because most riveting processes
involve repeated “hammering” of the rivet. The load P on the rivet is computed. During loading,
when A is increasing, frictional effects between the rivet shank and the sheets are neglected and the
shear traction along the interface is taken to be zero. During unloading, when the rivet head clamps
the sheet, relative motion across the shank/sheet interface is suppressed, i.e. the interface is assumed
to be “welded”. Justification for these assumptions will be given later. The interface between the rivet
head and the sheet is assumed to slide freely during the entire process. Selected calculations
accounting for frictional contact on this interface will be cited that show the residual clamping force
is insensitive to the condition assumed.

The model just described has been analyzed using the ABAQUS finite element code with
eight-noded bi-quadratic axisymmetric quadrilateral elements. Most of the results have been
computed within the small-strain framework, but selected results have been recomputed within a full
finite-strain formulation. Six-noded axisymmetric interface elements are employed for the friction-
free interface between the rivet head and the sheet and for the portion of the interface of the rivet
shank not yet in contact with the sheet. The outer radius of the sheets is taken to be 11t, ensuring that
the stresses in the rivet will be essentially independent of this dimension of the model. The
constitutive model is classical incremental plasticity (J, flow theory). For the elastic-perfectly-plastic
solids, the plasticity is completely characterized by oy and o¥. The stress—strain relation used for the
hardening materials will be specified later in the paper.

To alert the reader on what to look for in reading the paper, a qualitative quide through the stages
of the plastic loading phase of the riveting process is now provided. Five stages in the loading process
are identified:

(A) Initial yield in the rivet shank;

(B) First contact between the rivet head and sheet;

(C) Attainment of maximum average axial compressive stress in rivet shank; (2)
(D) Squashing of the rivet head and release of compression in the shank;

(E) The limit stress state.

The top four sketches in Fig. 2 depict the geometry and the direction of material flow at three of the
five stages. The bottom four sketches depict evolution as a function of the driving displacement A at
the various stages of the loading process. Shown are the half-length of the shank, H, the radius of the
head, Ry, the pressure, p, at the center of the shank, and the average compressive axial stress at the
center plane of the shank, — &. Prior to contact between the rivet head and the sheet at (B), the axial
compression in the shank is only slightly in excess of the yield stress. Once contact occurs, the sheets
and shank experience extra constraint which causes the axial compression in the shank, — &, to
increase to a peak at (C) of almost twice the yield stress, accompanied by a corresponding increase in
the hydrostatic pressure, p. Until this point, the rivet head itself remains nominally elastic except
where it joins the shank, and the overall direction of flow in the upper half of the rivet is directed
downward. When the driving displacement A reaches the level required to begin squashing the rivet
head at (D), the flow in head develops an outward radial component which in turn permits a release
of much of the compression in the shank. This is the critical stage in the riveting process that
ultimately produces a clamping stress. Material in the shank actually flows out of the hole during
this stage, as depicted by the transient increase in H in Fig. 2(e). For an elastic—perfectly-plastic
system, the limiting compressive stress in the shank, — 4, in the loading phase ((E) in Fig. 2(i)) falls to
roughly 3/4 6y. The unloading phase (not shown, but discussed in the next section) adds a tensile
component = oy across the center of the shank, leaving a residual clamping stress of roughly 1/4sy.
Details are provided for a specific example in the next section.

It can be mentioned in passing that a small contribution to the clamping stress in a cold-driven
rivet is produced from the temperature rise brought about by plastic deformation of the shank and
the consequent thermal contraction when it cools. Most of the work of plastic deformation in the
shank of the rivet appears as heat. Therefore, for an elastic—perfectly-plastic rivet material with yield
stress, oy, the temperature rise in the shank due to plastic work is approximately AT = gy¢/cy,
where cy is its specific heat per unit volume and ¢ is the compressive plastic strain in the shank. When
the shank cools, the resulting contribution to the clamping stress is given by Eocoy/cy, where E and
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Fig. 2. A qualitative overview of the stages of the loading phase of the riveting process wherein A is increasing.
The stages in the loading process, (A)—~(E), are identified in Eqn (2). The arrows in parts (b)-(d) indicate the
general direction of the material flow in the rivet.

a are the Young’s modulus and coefficient of thermal expansion of the shank material. The
compressive plastic strain in the shank itself does not exceed 10%, as will be seen. For a typical
aluminum rivet material, this corresponds to a temperature rise AT of only several degrees
centigrade and a clamping stress contribution of less than ¢y/20. This thermal contribution will be
neglected in the analysis which follows.

3. DETAILS OF STRESS DEVELOPMENT: A QUANTITATIVE EXAMPLE

In the example chosen to show quantitative details predicted by the model, the sheet and rivet
materials are taken to be elastic—perfectly-plastic with a common tensile yield stress, oy. The value
oy/E = 0.005 and v = 0.33 used in the computations correspond to an aluminum alloy with a yield
stress of 50 ksi (345 MPa). The geometric ratio R/t = 2 is representative of that for an aircraft lap
joint; in addition, the values Ry /R = 2 and tg/t = 1.75 have been chosen for the example. The initial
gap between the rivet head and sheet is taken to be §/t = 0.5. It will be seen subsequently that this
choice for the initial gap gives rise to nearly the maximum possible clamping stress. The computa-
tions for this example, with one exception, have been carried out using the small strain formulation.
The numerical results for this example are displayed in Figs 3—-7, whose contents will be introduced
and explained in some detail.

The plot of compressive load applied to the rivet P as a function of the driving displacement A is
given in Fig. 3(a). A cross plot of P versus ¢ is given in Fig. 3(b). In each of these two plots, the solid
curve denotes the loading portion of the history (with A monotonically increasing) and a dashed line
represents unloading (with A decreasing after attaining A_,,). Unloading to P = 0 from three values
of A 1s illustrated. The residual value of 6 at the end of the process when P = 0 is denoted by
O resiquar- A plot of the computed values of & egigua/ 0y as a function of A,,/9 is given in Fig. 4 (the
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Fig. 3. (a) Load versus driving displacement. (b) Load versus average axial stress at the mid-plane of the rivet
shank, . The solid line curves denote the loading phase. The dashed line curves are associated with unloading
from A,_,,, Unloading from three values of A, are shown. The residual clamping stress is the value of & at
P = 0 in the unloading response. Identical rivet and sheet material properties with ¢y /E = 0.005 and v = 0.33,
and an undeformed geometry specified by R/t =2, d/t = 1/2, R/t =4 and ty/t = 1.75. The stages in the
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loading process, (A)—(E), are identified in Eqn (2).

Bresidual/ Oy
03 T T T T
F — = Finite strain
4 = Small strain
0.2; /_’_;':_—
01 fod ;
00k - -
1.0 1.5 20 2.5
Bpld

Fig. 4. Residual clamping stress at the mid-plane of the rivet shank as a function of the loading displacement

at the onset of unloading, Ama,. The limiting value approached, as A,,, increases, is termed the asymptotic

residual cramping stress. The parameters specifying the model are the same as those associated with the example

in Fig. 3. Predictions from the finite-strain formulation are compared with those from the small-strain
formulation.

finite strain results contained in this figure will be introduced later in the paper). The clamping force
is given by TR? Gyesiquarr TO shed light on the behavior, we discuss these plots, supplementing them

with additional stress distributions.

3.1. The loading process
The load P in Fig. 3 is normalized by oyn R}, which to a good approximation is the limit yield

load of the rivet head (E). A limit load and the associated limiting stress distribution exist because
a small-strain formulation is employed together with materials comprising the sheet and rivet which
are elastic—perfectly-plastic. Initial yield in the rivet shank (A) occurs at a value of P slightly in excess
of oynR? due to the lateral constraint of the sheets. Because friction between the shank and sheet is
neglected during loading and because (R/Ry)? = 1/4 in this example, the slope of the normalized
load versus average shank stress in Fig. 3(b) is exactly — 1/4 before the head makes any contact with
the sheet.

Between initial yield (A) and contact between the head and sheet (B), some shank material outside
the sheet is forced into the rivet hole further compressing and radially expanding the shank, causing
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Fig. 5. Distribution of (a) the axial stress component, .., and (b) the hydrostatic pressure, p, across the
mid-plane of the rivet shank at three stages of the loading process. See Eqn (2) for definitions of stages (C)-(E).
The parameters specifying the model are the same as those associated with the example in Fig. 3.
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Fig. 6. Vertical displacement, u,, at the center of the shank where it meets the upper rivet head. The parameters
specifying the model are the same as those associated with the example in Fig. 3. Note that material fiows
upward after the head has contacted the sheet and begins to be squashed.
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Fig. 7. Radial stress component acting normal to the shank/sheet interface at three stages of the loading
process. See Eqn (2) for definitions of the stages (C)-(E). The parameters specifying the model are the same as
those associated with the example in Fig. 3.

the sheet material to yield plastically in the vicinity of the hole. Contact between the head and sheet
occurs when A is slightly in excess of 8. After contact, P increases sharply, and the average axial
compressive stress at the mid plane of the shank peaks at almost 1.8ay ((C) in Fig. 3(b)). This is the
stage when the stress in the rivet head is increasing prior to attaining a level sufficient to begin
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squashing the head. Lateral constraint of the sheets permits the development of a large component
of hydrostatic pressure, p = — 30y, superimposed on the state of uniaxial compression. Stress
distributions across the mid-plane of the shank are plotted in Fig. 5 at (C), at an intermediate stage
(D) when squashing of the head has begun, and in the limit state (E). The maximum axial
compressive stress in the rivet occurs at stage (C) at the center of its mid plane. As the rivet head is
deformed during the history between stages (C) and (E), both the compressive axial stress — & and
the hydrostatic pressure p in the shank decrease and asymptotically approach their values in the
limit state. The limit load, P~ nR%ay, corresponds to the squashing load for the rivet head.

It can be seen from the differences between the undeformed and deformed meshes in Fig. 1 that the
compressive axial strain in the central section of the shank is only about 5%, except at the corner
where it meets the rivet head. If, in this example, the gap were closed by uniform compressive
straining confined exclusively to the shank, the shank strain required would be about 33%. Instead,
most of the deformation required to close the gap takes place in the vicinity of the rivet head and at
the corner.

An explanation for the sharp drop in compressive axial stress and hydrostatic pressure in the
shank of the rivet between stages (C) and (E) will now be given, as this drop is crucial to
understanding the development of the clamping force. The state of high triaxial compression which
develops in the shank of the rivet at stage (C) can only be contained as long as plasticity in the rivet
head is confined to the central region just above the shank. As the load approaches P~ 7R3 oy, the
rivet head undergoes general yielding as a squashing deformation with material flowing radially
outward. Then, the highly compressed material in the shank flows out of the rivet hole into the head,
substantially lowering the stresses in the shank to a level which can be contained by the plastically
deforming head. This can be seen directly in Fig. 6 where the downward axial displacement at the
center of the top of the shank where it meets the rivet head, — u,, is plotted as a function of the
driving displacement, A. Material at the top of the shank displaces monotonically downward until
stage (C) is attained. Beyond this stage, between (C) and (E), a transient reversal occurs with the
material flowing out of the rivet hole into the head. Most of the stress relief in the shank
accompanying this reversed flow occurs over a relatively small range of A/ (Fig. 6). For this
particular example, the average compressive axial stress across the mid plane of the shank in the
asymptotic limit state is approximately (cf. Fig. 3(b))

Glimi = — 0.800y. 3)

The calculations for this example were repeated with friction along the head-sheet interface
modeled by Coulomb friction with a coefficient of unity. This change had virtually no effect on the
results plotted in Fig. 3 nor on the limiting stress of Eqn (3). Including friction along the head-sheet
interface also had no effect on the unloading response described next.

3.2. The unloading process

Let A be increased monotonically until A,,,,, and then decreased until P reaches zero. The
unloading calculation is made anticipating that the interfaces between the rivet and the sheet remain
closed, which is verified a posteriori. As mentioned in the statement of the model, sliding between the
shank and the sheet is suppressed during unloading while the tangential traction between head and
the sheet is taken to be zero. The unloading response is found to be strictly elastic producing no
reversed plastic flow. Unloading at three different values of A,,,, are shown as dashed lines in Fig. 3.
Fig. 3(b) reveals that unloading to P = 0 takes place such that the slope of the normalized unloading
curve is very nearly — 1, ie. the changes in ¢ and P satisfy A6~ — AP/(nR%). Note that this slope
would be exactly — 1 if the sheet material outside the radius r = Ry did not influence the unloading
stress distribution. If that was the case, the stress change during unloading within the cylindrical
region r < Ry would be given precisely by the uniform uniaxial stress P/(nR%), where P is the load at
Amax The minimal role of the sheet material outside r = Ry during unloading also clarifies why
the sliding tractions on interfaces between sheet and the shank and head have little influence on the
unloading stress changes: the stress change produces neither shear stress nor relative sliding on the
interfaces in question. Thus, to very high accuracy, the change during unloading in the average axial
stress across the mid plane of the rivet shank is

AG = P/(nR%). @)
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3.3. The residual clamping stress
Combining the loading and unloading processes, one obtains the residual clamping stress as

G_residual = (O_-)A,,m + P/(anzi)s (5)

where (6), , denotes the average shank stress at A = A, when unloading is initiated. The curve for
the small strain formulation in Fig. 4 is obtained using Eqn (5) together with the numerical data
associated with the plots for the loading process in Fig. 3. The entire curve in Fig. 4 is generated by
Eqn (5) from the single set of data for the loading process. For this example, the maximum residual
clamping stress is approached asymptotically and is attained for practical purposes for A,../0
somewhat greater than 1.5. The asymptotic residual clamping stress for the elastic-perfectly-plastic
materials corresponds to the limit state. Using P= 7R gy for the limit load in Eqn (5), along with
Eqn (3) for (6),__, one obtains as the asymptotic residual clamping stress

6residua] = 0.200’}/ . (6)

In the present example, no clamping force develops if Ap,,,/d is less than about 1.2 (Fig. 4). As A,/
is increased to 1.5 and larger, most of the loading displacement imposed by the frictionless platens on
the rivet is accommodated by squashing of the rivet head. This is evident from the deformed mesh
shown in Fig. 1.

It is worthwhile digressing at this point to emphasize why stress reversal in the shank during
loading is crucial to understanding the origin of the clamping stress. The argument leading to
P/nRE as the change in axial shank stress during unloading in Eqn (5) is valid independent of the
stress history prior to unloading. As already noted, P/nR% = ay, to an excellent approximation,
once the rivet head experiences general yield. Therefore, by Eqn (5), it follows that average
compressive stress across the mid-plane of the rivet shank prior to unloading at A, must be less
than oy if a residual tensile clamping stress is to exist. If the shank supported a uniaxial compressive
stress oy at Ap,,, the residual clamping stress would be zero.

Constraint supplied by the sheets on the lateral surface of the shank increases the average
compressive stress in the shank to a value of about 1.8cy prior to stress reversal (Fig. 3(b)). Were the
rivet to be unloaded before stress reversal, there would be no clamping stress and, indeed, a gap
would form between the rivet head and the sheets. In conclusion, stress reversal in the shank during
loading is essential to the development of clamping stress. As already pointed out, stress reversal is
a consequence of the multi-axial stress state in the shank, together with a partial release of the high
hydrostatic compression when squashing of the head begins.

3.4. Radial stress across the interface between shank and interface

A substantial component of hydrostatic pressure exists across the shank at its mid-plane at the
various stages of the loading process (Fig. 5(b)). The radial component of stress, g,,, acting on
the interface between the rivet and shank at » = R is plotted in Fig. 7 at three stages of loading. (The
numerical resolution of this component of stress near the corner where the sheet, shank and head
come together is poor. For this reason the plot is terminated at z/t = 0.8.) The trends are similar to
those discussed in connection with Fig. 5. The compression along the interface is lowered due to
relief of high triaxiallity when the rivet head starts to be squashed. However, even in the limit state,
the radial compression acting on the interface is almost oy/2. Since unloading produces only
a uniaxial stress change, to a very good approximation, this radial compression represents the
residual radial stress across the interface at the end of the riveting process in the unloaded state. It
also follows that the residual compression acting across the interface will act to suppress any sliding
during unloading, because little change in shear stress acting on the interface occurs during
unloading.

3.5. Finite strain modeling

Several aspects of the results presented for the present example suggest that finite strain deforma-
tion effects might be important in the loading portion of the riveting process, and, therefore, in the
development of the clamping stress. In particular, once contact takes place between the rivet head
and the sheet, the head undergoes significant plastic deformation. For example, in Fig. 4 one notes
that the development of the full clamping stress requires that A,,../é be greater than 1.5. Because the
initial gap J in the example is ¢/2, the rivet head must be squashed by an additional x 0.5 = t/4
after the first contact occurs. As the initial thickness of the rivet head is 1.75¢, the squashing strain is



Clamping stress in a cold-driven rivet 691

approximately 0.14. An associated increase of about 14% in the cross-sectional area of the head also
occurs. While these are not large strains or geometry changes, they might be sufficient to produce
a significant change in the predictions for the clamping stress. To assess the validity of the
small-strain formulation, the calculations for the present example have been repeated using a finite-
strain formulation as included in ABAQUS. The starting geometry is identical to that in the present
example, and the sheet and rivet materials are again taken to be the same with yield stress gy. The
formulation fully updates geometry changes during the loading process and evaluates the stress
changes during unloading starting from the deformed geometry at Ay,,.

A limit load does not exist in the finite strain formulation. Instead, as the rivet head is squashed,
the load increases approximately as 6ymR% where Ry is the current radius of the head. Nevertheless,
the residual clamping stress predicted by the finite strain analysis differs little from the prediction
from the small strain formulation (Fig. 4). Even at A,,,/é = 2, corresponding to the head flattened
to a thickness of about 0.75¢, there is only a 10% difference between the two predictions for the
residual clamping stress. Insight into the agreement between the two formulations can be had from
consideration of the two contributions in Eqn (5). Apart from the vicinity of the corner, the shank
itself experiences relatively small strains, and it is reasonable to conclude that the average axial stress
at the mid-plane of the shank at the onset of unloading is reasonably accurately predicted by the
small-strain formulation. Secondly, the ratio P/nR% is the average normal stress applied to the
surface of the rivet head, and this value is correctly estimated to be very nearly oy in each of the two
formulations, even though the difference in Ry can be fairly large. Thus, by Eqn (5), the residual
clamping stress is well approximated by (6), _+ oy. This argument is bolstered by the finding
presented in the next section that the residual clamping stress is essentially independent of the size of
the rivet head, as long as it is sufficiently large.

4. DEPENDENCE OF THE CLAMPING STRESS ON RIVET PARAMETERS

The model is used to explore the effect of several of the rivet parameters. Specifically, calculations
are reported on the influence of the normalized gap size, d/t; the size of rivet head; the ratio of rivet to
sheet yield stresses; and strain hardening. All the result have been obtained using the small strain
formulation.

4.1. Initial gap size &

The initial gap size in the example reported in the previous section was one half the sheet
thickness, o/t = 1/2. Figure 8 displays the dependence of the asymptotic (maximum) residual
clamping stress as a function of ¢/t. The other parameters specifying the initial geometry and
materials are the same as those used in the example problem. In particular, the rivet and sheet
materials are elastic—perfectly-plastic with a common yield stress, oy. When &/t is less than about
1/10, the clamping stress is negligible. The asymptotic residual clamping stress approaches a max-
imum of about 1/4ay as d/t approaches unity, which is the largest value for which calculations were
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Fig. 8. Influence of the initial gap length d on the asymptotic residual clamping stress. Identical rivet and sheet
material properties with oy/E = 0.005 and v = 0.33, and an undeformed geometry specified by R/t = 2,
Ry/t =4 and ty/t = 1.75.
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Fig. 9. Influence of the initial size of the rivet head on the asymptotic residual clamping stress. (a) Variation

with respect to Rg/R with 15/t = 1.75. (b) Variation with respect to ty/t with Rg/R = 2. Identical rivet and

sheet material properties with ¢y/E = 0.005 and v = 0.33, and an undeformed geometry specified by R/t = 2
and d/t = 1/2.

performed. The increase in clamping stress with increasing gap size tends to level off for values of /¢
above about 1/2. Given the idealized nature of the symmetric double-headed rivet, it is difficult to
draw conclusions for an actual single-headed rivet from the results in Fig. 8. Further insight would
require a more realistic model of an unsymmetric rivet.

4.2. Initial size of the rivet head

The example problem had for the initial geometry Ry/R = 2, R/t = 2 and ty4/t = 1.75. Figure 9(a)
shows the effect of reducing Ry/R on the asymptotic residual clamping stress, and Fig. 9(b) shows
the effect of variations in tg/t. Other than variations in Ry /R and ty/t, the parameters characteriz-
ing the system are the same as those in the example problem. There is less than a 10% reduction in
the asymptotic clamping stress resulting from a 25% reduction in the radius of the rivet head, from
2R to 3R/2. For all practical purposes, the clamping stress is independent of the radius of the head
for thicknesses above about 3R/2, assuming the shank radius satisfies R = 2t.

The effect of varying the head thickness about the choice in the example problem, t5/t = 1.75, is
not insignificant. It appears that the asymptotic clamping stress levels out for ty/t around 2, but
there is a decided reduction in the clamping stress when ty/t is reduced to unity.

In conclusion, the model suggests that for a system with R/t = 2, which is typical for many riveted
sheet joints, the maximum clamping stress can be developed for a rivet head with radius 2R and
thickness R. Here, again, the idealized nature of the model precludes definitive conclusions.

4.3. Ratio of rivet to sheet yield stress, 6% /ay

The effect of the ratio of the yield stress of the rivet material to that of the sheet material, 6% /0y, on
the asymptotic clamping stress is shown in the two plots of Fig. 10. In the first of these plots [ Fig.
10(a)], the clamping stress is normalized by the sheet yield stress, while in the second [ Fig. 10(b)] it is
normalized by the rivet yield stress. Both materials are elastic—perfectly-plastic, and all the other
parameters have been taken to be the same as in the example problem. The yield stress of the sheet is
fixed at ay/E = 0.005. One sees immediately that the maximum asymptotic clamping stress for this
example will never exceed =0.2006F, and this value is attained for values of ¢¥/ay about unity.
Moreover, with oy held fixed, Fig. 10(a) reveals that reducing o5 /oy below unity substantially
reduces the clamping stress. Conversely, if 6§ /0y is increased above unity there is essentially no
further increase in the clamping stress. Putting aside any influence of strain hardening, one can
conclude that a rivet whose yield stress is equal to that of the sheet appears to provide as large
a clamping stress as can be achieved.

4.4. Strain hardening
A limited study of the effect of strain hardening has been carried out for the special case where
the rivet and sheet materials have identical properties. The tensile stress-strain curve used to
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Fig. 10. Influence on the asymptotic residual clamping stress of the ratio of the yield stress of the rivet to that of

the sheet, 6%/ay, for elastic-perfectly-plastic materials. (a) Clamping stress normalized by yield stress of sheet.

(b) Clamping stress normalized by yield stress of rivet. The sheet material properties are fixed at ay/E = 0.005,

and the undeformed geometry is specified by R/t = 2, 8/t = 1/2, Ry/t = 4 and ty/t = 1.75. Both materials have
vy =0.33.
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Fig. 11. The residual clamping stress versus A.,,/é for two levels of strain hardening and for an elas-
tic—perfectly-plastic material. Identical rivet and sheet material properties with 6y/E = 0.005 and v = 0.33, and
an undeformed geometry specified by R/t = 2, 6/t = 1/2, Ry/t = 4 and tg/t = 1.75.

characterize the material was taken to be the piecewise power law

o
7 for ¢ <oy,

£= . )
(e for o >0
E oy Y:

where oy is now the initial yield stress and » the stress hardening exponent. The residual clamping
stress as a function of A,,,/d for two levels of strain hardening is compared with the earlier result for
the elastic-perfectly-plastic case in Fig. 11. The geometric parameters chosen for this comparison are
identical to those used in the example problem, and the choices, 6y/E = 0.005 and v = 0.33, are also
taken to be the same. When strain hardening is present, an asymptotic limit state and an asymptotic
clamping stress no longer exist. The clamping stress increases monotonically with A, /5 over the
range for which the calculations have been carried out.

Values of the clamping stress greater than those predicted for the perfectly plastic system are
obtained, but only at larger A,,,/. Larger normalized clamping stresses in Fig. 11 are not surprising
because oy is the initial yield stress for the hardening materials, while it is the flow stress for the
elastic—perfectly-plastic solids. Both the rivet and the sheet deform plastically, and thus both will
strain harden above ay. But the amount of straining in the rivet is quite different from that in the
sheet, and, therefore, it is not a straightforward matter to relate the behavior in Fig. 11 to the
perfectly plastic behavior due to differing yield stresses in Fig. 10. The main conclusion to be drawn
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from the limited set of results in Fig. 11 is that, while strain hardening does not qualitatively change
the mechanics underlying the development of the clamping stress, it appears to be quantitatively
important.

5. CONCLUDING REMARKS

At the heart of the origin of the clamping stress in a cold-driven rivet is the release of the high
hydrostatic pressure in the shank as the rivet head is squashed. The resulting average compressive
stress in the shank prior to unloading has to drop below oy if a residual clamping stress is to exist.
The effect is all the more subtle because the residual clamping stress, x oy/4, is small compared
to the maximum compressive stress which develops in the shank during the riveting process, ~x 2qy.
The model enables the clamping stress to be computed as a function of the defining geometric and
material parameters. Even for the model, the set of nondimensional parameters is surprisingly large:
R/t, Ry/t, ty/t, &/t, ay/E, aF/ay, n and ng. In this paper, only the roles of Ry/t, ty/t, 8/t, 6% /oy and
n have been considered. The advantage of invoking elastic—perfectly-plastic materials within the
small-strain framework is the clarity accorded by the existence of the asymptotic residual clamping
stress. Nevertheless, based on the limited study conducted here, strain hardening appears to be
important, giving rise to a residual clamping stress which increases monotonically with respect to
the maximum driving deformation, A,,,,. Indeed, Schijve’s [2] experimental study reveals increases
in lap joint fatigue life accompanying increases in riveter force, over the range of riveter force
investigated. Further work with more realistic models will be needed to develop more refined
predictions.
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